最新棒材切分轧制工艺
棒材轧钢工艺介绍知识讲解

➢ (3)切分道次切分楔磨损严重,换槽频繁,同时切分 道次切分楔很容易掉块。
➢ (4)中轧机组圆轧件进入精轧机平辊轧制,轧机冲击 大,机械损害严重。
➢ 3、带肋钢筋的多线(四线、五 线)切分轧制
➢ 四线切分轧制技术是在两线 和三线切分轧制技术的基础上 开发出来的。四线切分轧制工 艺是把加热后的坯料先轧制成 扁坯,然后再利用孔型系统把 扁坯加工成四个断面相同的并 联轧件,并在精轧道次上延纵 向将并联轧件切分为四个尺寸 面积相同的独立轧件的轧制技 术(图3)。
第一种孔型系统主要适用于精轧机组水平布置
的连轧棒材生产线,第二种孔型系统主要适用于 精轧机组带立辊(或者平立可转换)的连轧线,这种 孔型系统最大特点是可以实现无扭轧制。
两线切分最大的优点是对称切分轧制,在预切 分和切分孔型中左右变形对称,轧辊调整相对容 易,轧制稳定,多使用于 Φ l6螺以上带肋钢筋的生 产,对于小规格带肋Φ10螺~Φ14螺钢筋,机时产 量低,一般不采用两线切分生产。
➢
切分后,轧件两边面积小于中部面积,而连轧的
秒流量相等原则被破坏,轧制不稳定,为了保证切分后三
线面积相等,这就要求预切分边部面积大于中部面积,所 以三切分轧制难度远大于两线切分生产,而这种孔型系统
在实际生产中存在一些问题,主要是:
➢ (1)预切分延伸系数大,一般在1.3以上,轧制负荷 大。
➢ (2)方轧件进入预切分对中性差,导致3根成品之间尺 寸不均,轧制不稳定。
图4 第14到16道孔型示意图
➢ 在此工艺中,第15道次孔型的任务是在 平板条形上切出凹凸截面花生型条形,属
于严重不均匀变型状态,本道次轧制时宽 展量很大。因此,第14道次条形宽度须明 显小于第15道孔型。同时,第15道孔型本 身对轧件缺少对中扶持的能力,这是造成 多线切分各线之间不均匀性的主要原因。
Ф14棒材生产中三切分轧制技术研究

题 。 但 孔 型 设 计 时 ,还 需 考 虑 预 切 分 与切 分 孔 型 的 配 合 问 题 ,如 配 合 不 当 ,会 造 成 轧 制 过程 中 的调 整 难 度 及 导 卫粘 铁 的现 象 。 ( 3 )立箱孔 立箱孔型延伸系数 很小 ,基本无 宽展 , 起到轧件微调平整 的作用 ,其与前 后孔的配 合很重要 。 根据经验, 其侧壁斜度为 7 。左右,
以达到限制宽展 的 目的 ,立箱孔型 的槽底 宽
应 比来 料 高 小 1 - 2 m m ,如 果 过 大 ,边 孔 会 出
一
现过大的强制性压下 ,导致 出现 中间料型比 两边料型突 出的现象 即 中间料型 的面积比两 边料型大 ,进而导致后续道次料型不好调整 方案一中 1 2 # 料型设计 高度为 2 4 . 6 m m, 而1 3 撑 孔型槽底宽为 2 0 mm,与料型相 比槽底 过窄,咬入 困难 ,且 l 3 孔型限制 了边孔的宽 展, 由 图 8可 以看 出 , 边 孔 最 宽处 为 2 2 . 2 5 mm, 而中间孔不考虑 宽展 已达到 了2 2 . 6 mm,毫无 疑 问会造 成 1 3 料型 中间突出的现象, 而两边 的料 型 明 显 比 中 间 的料 型 偏 大 。 方案二 中 1 2 # 边孔 比 1 3 捍 孔 对 应 位 置 稍 低, 这样 l 3 # 孔 不会 过 多 限制 1 2 # 边孔 的 宽展 , 从而避免造成轧件 向中间孔的流动过 多。 综 合 以 上分 析 , 最 终选 择 了方 案 二 : l 群 - 8 料型与 中1 6两 切分基本相同 , 可减少换孔量 , 1 8 群 、1 9 # 沿用中1 4两 切 分 孔 型 。
切不开,过 小会形成对切分轮的夹持力过 大, 加大切分轮 的负荷 ,一般 在 6 0 。一 6 5 。 :楔子 尖部圆角为 1 ~1 . 5 mm 为好 , 过尖会 加快轧辊 磨损,甚至 掉肉;连接带厚度应 与辊缝接近 , 1 - 2 mm 最好 ;延伸系数在 1 . O 8 ~1 . 1 5 ,并留有 定量的宽展余地 。 工艺布局确 定后 ,初步确 定了两套孔 型 系统,具体情 况如下 : f 1 )预 切 分 孔 第 一 道 预 切分 孔 ( 1 2 撑 ) : 1 2 #  ̄ L 是第一道预切 ,主要作用是可减 小 l 4 牟 孔的变形量,降低 1 4 #  ̄ L 的轧制负荷,减 轻 1 4 #  ̄ L 的变形不均匀性 ,提高轧制稳定性; 同时经过 1 2 # 轧制后的料 型带有 凹槽 , 在进入 1 4 #  ̄ L 时对中性比较好 ,成 品尺寸较均匀。其 延伸系数一般为 1 - 3 ~1 . 4 。 两方案 9 一 1 1 撑 料型 ( 9 撑 都 是 由 4 7 . 8 r m n的 基 圆 放 大辊 缝 ) 。 方案 二设定的料型 比较合理 ,压 下分 配 比较平均 ,l l 的压下量 为 1 2 am左右 ,在轧 r 制过程 中 1 1 # 电流大于 2 O %。 第二道预切分孔 ( 1 4 #) ; 1 4 # ? L 型 的切 分楔进 一步对 初步 压 出凹 陷形状的轧件完成压下 定位 ,并精确 分配 轧 件 的断面面积 。其 变形系数较小 ,延伸系数 般为 1 . 1 . 1 . 2 两种方案中 1 4 #  ̄ L 的 延伸 系数 分别 为 1 . 4 0 7 、1 . 1 9 o ,由此可见方案 一的轧制负荷较 大 ,冲击力大。 方案一中连接带的高度为 4 . 9 am,仅为 r 孔 型 高度 的 0 . 2 5倍 , 且 其 圆 角 半径 为 3 mm, 边孔 与中间孔的连接 比较陡,易导致 1 6 ≠ } 边孔 靠里侧料 型扁平 即边孔型里侧未充满。
青钢半连轧棒材生产线切分轧制工艺初探

・ ." ・
钢
1,XXF YZFF?3-
・ 第 &( 卷 ・ 第!期 !##! 年 $ 月 [J@ P !##! \>D* &( 3> * !
青钢半连轧棒材生产线切分轧制工艺初探
孙 新 华
(青岛钢铁控股集团有限公司第一小型轧钢厂,山东 青岛 !""#$%)
摘 要:针对青钢半连轧棒材生产线生产 !&!、!&$’’ 带肋钢筋时制约生产力的问题,采用了自行设计的 切分轧制方案,并对轧辊材质、导卫装置型式进行优选,使生产效率明显提高,合格率达 () * )!+ 。 关键词:棒材;半连轧;切分轧制 中图分类号: ,-%%. * " 文献标识码: / 文章编号:&##% 0 ((("(!##!)#! 0 ##." 0 #%
两轧件断面积高度对等。同时将 !% 切分孔设计 成 $ 个不同心的连接圆,切分后的 $ 根轧件在运 行过程中自动翻转 0&’ 进入 !$ 椭圆孔,使轧件 切分撕裂处得到有效的压力加工,从而保证了钢 材表面的质量。经检验,没有发现折叠、裂纹以 及尺寸 不 均 匀 等 缺 陷。 产 品 综 合 合 格 率 达 到 02 . 2$3 。 ($)由于对工作条件最恶劣的 !% 切分孔, 分别采用了贝氏体中合金铸铁轧辊和离心浇注复 合铸铁轧辊,因此单槽过钢量均达到 %&&/ 以上。 而 !( 预切孔采用中镍铬铸铁轧辊单槽过钢量只 有 $#&/。 选用霍太克型式的全套切分导卫,在切分试 轧生产过程中,共消耗 % 套易损件,平均每套导 卫过钢量达到 )&&&/。 &’# 存在问题 由于精整工序生产能力不足,特别是冷床对 齐辊道速度过快等原因,因而造成钢材弯曲、剪 切困难、非定尺增多,加剧了该工序生产能力不 足的局面。生产中因该工序积压钢材被迫停产处 理,占 用 时 间 长 达 %"-, 占 全 部 生 产 时 间 的 %& . "3 ,使有效作业率仅达到 "0 . (3 ,严重制 约了切分轧制优势的发挥。
Ф10mm螺纹钢的五切分轧制新工艺开发

Ф10mm螺纹钢的五切分轧制新工艺开发文章简述五切分轧制工艺情况,结合萍钢公司轧厂高棒车间Ф10mm螺纹钢筋五切分轧制的生产实践,分析五切分轧制工艺在生产中遇到的主要问题及解决方案。
标签:五切分;轧制;工艺1 公司轧厂五切分工艺发展简述萍钢公司轧厂高棒车间先后开发了Ф16mm、Ф18mm、Ф20mm三种规格的二切分轧制工艺,进而开发了Ф14mm的三切分轧制工艺,在此基础上又开发了Ф12mm的四切分轧制工艺。
公司轧钢厂本着永不停步的精神,在四切分生产工艺成熟稳定的基础上,又向Ф10mm五切分轧制工艺这一世界先行技术进行探索,经过一段时期的工艺探索和生产实践,五切分轧制生产逐步稳定,工艺日趋成熟。
目前公司轧厂Ф10mm五切分最高班产达到950吨,最高日产超过2700吨。
2 车间工艺布置萍钢公司轧钢厂棒材车间于2003年6月动工兴建,2004年8月建成投产。
采用全连续式平立交替无扭轧制,控轧、控冷等先进工艺,自动化程度高。
设计轧制坯料为规格为170×170×9000mm,可生产规格为Φ10~Φ32mm螺纹钢及圆钢,年设计生产能力为80万吨。
高棒车间生产工艺流程坯料验收→排钢→加热→出钢→出磷→粗轧→1#飞剪→中轧→预水冷→2#飞剪→精轧→穿水冷→倍尺减切→上冷床→定尺冷切→收集→打包→检验→称量→入库3 Ф10mm螺纹钢筋五切分工艺简述3.1 精轧孔型图(图1)3.2 中轧来料为平椭料型,精轧15~18#机架采用水平布置。
13#机架为平棍,14#机架料型为矩形,15#机架为预切分机架,16#机架为切分机架,17#、18#机架轧制与常规机架相同。
公司轧厂五切分轧制采用切分轮法,其中16#机架为整个五切分轧制工艺控制的核心,切分辊将轧件切分成五根并联的由很薄连接带连成的轧件,切分导卫中的前后两排切分轮先后将轧件撕开,切分刀片将轧件完全切开后通过导槽将五根轧件分开导出,实现了五切分。
4 Ф10mm螺纹钢筋五切分生产中遇到的问题及改进措施自2007年5月份试轧五切分以来,在实际生产中主要遇到了如下一些问题:(1)精轧16#出口导卫冲钢工艺故障;(2)精轧18#出口导卫冲跑钢工艺故障;(3)轧制五线差不稳定;(4)上冷床湾钢。
棒材轧钢工艺介绍

a
10
➢ 思考题: ➢ 1、轧制时采用切分轧制的优缺点有哪些? ➢ 2、为什么圆钢轧制时不采用切分轧制?
a
11
三、棒材多线切分生产工艺分析
➢ 切分轧制生产具有高产、低耗的特点,其中 多线切分对提高产量、降低主机电耗的效果更为 显著,但是由于多线切分时条形的不对称性,获 得各线之间均匀的条形成为切分生产过程中的一 个难点,尤其在对产品精度要求较高的情况下(如 在钢筋生产过程中要求负偏差接近国标下限时), 多线切分各线之间的不均匀性更是成为生产过程 中的一大障碍。
a
图5 新工艺设计原理图
18
➢ 因此,在这个道次中,即使三个单元之间切分 得不太均匀,也可以由后面第13道次进行二次切 分来补救。
➢ 通过了第11道和第12道的轧件,进入第13道时 的条形基本上是宽度合适、不均匀变型已经基本 消化的条形,这样的条形再经过第13道次的二次 预切分和第14道次对宽度的进一步整理,进入第 15道时其条型宽度及形状已与 孔 型完全匹配,而 第15道 孔 型的轮廓与第13道是基本相似的,所以 第15道次已经基本属于均匀变型的轧制过程了, 即可以把第14道次孔型的宽度设计得与第15道次 的宽度接近。这样 孔 型本身对条型就有较好的扶 持作用,这样就解决了第15道预切分超负荷的问 题。
图4 第14到16道孔型示意图
a
13
➢ 在此工艺中,第15道次孔型的任务是在 平板条形上切出凹凸截面花生型条形,属 于严重不均匀变型状态,本道次轧制时宽 展量很大。因此,第14道次条形宽度须明 显小于第15道孔型。同时,第15道孔型本 身对轧件缺少对中扶持的能力,这是造成 多线切分各线之间不均匀性的主要原因。
➢ (3)切分道次切分楔磨损严重,换槽频繁,同时切分
棒材直接轧制

棒材直接轧制1. 引言棒材直接轧制是一种常见的金属加工方法,用于将金属坯料通过轧制工艺加工成具有特定形状和尺寸的棒材产品。
这种加工方法广泛应用于钢铁、铝合金、铜合金等金属材料的生产中,具有高效、经济、灵活等优点。
本文将对棒材直接轧制的工艺流程、设备和应用领域进行详细介绍。
2. 工艺流程棒材直接轧制的工艺流程通常包括原料准备、预轧制、精轧制、冷却和整形等步骤。
2.1 原料准备原料准备是棒材直接轧制的第一步,主要包括选择合适的金属材料、切割成适当的坯料尺寸和加热处理等操作。
金属材料的选择应根据产品的要求和生产成本进行综合考虑,常见的金属材料有碳钢、不锈钢、铝合金等。
切割成适当尺寸的坯料可以提高轧制效率和产品质量。
加热处理可以改善金属的塑性和可加工性。
2.2 预轧制预轧制是棒材直接轧制的第二步,主要目的是通过辊道的压力和摩擦力将坯料逐渐塑性变形成较小的截面尺寸。
预轧制可以提高轧制效率、减少轧制力和改善产品表面质量。
预轧制通常采用多道次的轧制,每道次的辊道间隙逐渐减小,使坯料逐渐变形。
2.3 精轧制精轧制是棒材直接轧制的第三步,主要目的是进一步减小截面尺寸、提高产品的表面质量和机械性能。
精轧制通常采用单道次的轧制,辊道间隙较小,轧制力较大。
精轧制过程中需要控制轧制温度、轧制速度和轧制力等参数,以保证产品的质量和尺寸精度。
2.4 冷却和整形冷却和整形是棒材直接轧制的最后一步,主要目的是通过冷却和整形工艺使产品获得所需的形状和尺寸。
冷却可以改善产品的力学性能和表面质量,通常采用水冷或空冷方式。
整形包括切割、修直、打标等操作,以满足产品的需求。
3. 设备棒材直接轧制需要使用一系列专用设备,包括轧机、辊道、传动系统、冷却系统和控制系统等。
3.1 轧机轧机是棒材直接轧制的核心设备,用于通过辊道的压力和摩擦力将金属坯料塑性变形成棒材产品。
轧机通常由上辊和下辊组成,辊道间隙可以调节,以适应不同的轧制需求。
轧机的类型和规格根据产品的要求和生产能力确定。
龙钢公司轧钢厂棒二线Φ16四切分轧制工艺浅析

龙钢公司轧钢厂棒二线Φ16 四切分轧制工艺浅析摘要四线切分轧制技术是在两线和三线切分轧制技术的基础上开发的,该工艺是把加热后的坯料先轧制成扁坯,然后再利用孔型系统把扁坯加工成四个断面相同的并联轧件,并在精轧道次上沿纵向将并联轧件切分为四个尺寸面积相同的独立轧件的轧制技术。
四线切分轧制技术的核心是先完成并联轧件的三切分,再完成并联轧件的两切分,通过这两个步骤实现四切分的目的。
四线切分轧制工艺与传统的单线轧制工艺和二、三线切分轧制工艺相比,在坯料控制、导卫调整、速度控制、轧机准备等方面都有更大的难度。
龙钢公司轧钢厂棒二线Φ16 四切分轧制工艺于 2019 年 8 月开发和投产,至今相关工艺已经逐步成熟,产量相对稳定,为以后的小规格五线及以上切分轧制工艺的开发奠定了基础。
关键词:四线切分;轧制技术;孔型系统一、棒线材切分轧制工艺概述切分轧制原理是在轧制过程中,将轧件用轧辊或者其他设备沿纵向切分成两条或多条轧件的一种轧制方式。
(一)发展过程1.年代初期,加拿大钢铁公司国际公司首先应用和发展切分轧制技术,日本钢管公司 ( N K K ) 于 1977 年 3 月由加拿大钢铁公司引进切分轧制新技术生产棒材 , 经过研究改进 , 在东伸钢铁公司姬路厂建立起切分轧制生产线。
1979 年 N K K 公司向国内大安公司和山口平有限公司等出售切分轧制技术 , 该项技术用于生产棒材。
70 年代初期 , 英国在斯德哥尔摩技术研究所专门的 Triplet 轧机上采用立轧法把板坯变成方坯。
首先是在板坯中间轧一条沟槽 , 然后用火焰将板坯切割成两条,最后轧成方坯。
我国从 50 年代起开始应用切分轧制技术,目前多数还是坯料切分,然后生产成型材和线材 , 切分的方式主要是:辊切切分、切分轮切分,现在已着手研究和应用在连轧机组上,充分发挥切分轧制提高生产率等优势。
(二)工艺特点1.生产率高轧制钢坯时的生产率为:⁄(1-2-1)A = 36001轧制成品时的生产率为:⁄(1-2-2)A = 36001式中:A——轧机生产率,t/h;——坯料重量,t;——轧机利用系数;1——轧制周期,s;——成材率,%。
切分轧制孔型设计

切分轧制孔型设计切分轧制作为一项具有生产效率高、节约能源等优势的轧制新技术已成了现今轧钢领域推行增产节能的有效手腕。
近几年来,切分轧制技术进展迅速,日趋成熟,已普遍应用于棒线材、型材以有开坯等生产,尤其是在棒线材生产中进展尤其迅速。
目前棒材的多线切分轧制技术已由二线切分迅速进展为四线切分、五线切分轧制,使小规格螺纹钢筋的生产效率取得了极大提高。
切分轧制原理切分轧制技术是把加热后的坯料先轧制成扁坯,然后再利用孔型系统把扁坯加工成两个以上断面相同的并联轧件,并在精轧道次上沿纵向将并联轧件切分为断面面积相同的独立轧件的轧制技术。
切分轧制技术的关键是如何持续地把并联轧件切分开。
要取得合格的成品,要求切分进程必需知足以下要求:(1)切分带表面质量要有保证,不需要额外的修理或加工;(2)切分带不能形成成品表面折叠;(3)切分设备利用方便,工艺稳固,投资小;(4)轧件通长尺寸均匀,头部状态和轧件弯曲度不是阻碍后续的咬入;(5)切分的速度与轧制速度相同。
切分位置的选择切分位置是阻碍产品产量、质量、轧线量和操作的重要因素,切分位置应视轧机的特点和工艺要求而定。
切分位置选择的原那么是:(1)不改变或尽可能少改变原有工艺流程;(2)不改变或尽可能少改变原有设备;(3)切分位置依轧机的布置而定,尽可能靠近成品机架,以便减少复线道次,但又应有必然的加工道次,以保证成品质量;(4)切分后不该给操作带来困难。
结合目前小型连轧机上采纳切分轧制技术轧制螺纹钢筋的设备特点和工艺要求,其切分孔型系统大体上都将切分位置安排在K3孔型完成切分,切分后经两道次轧制出合格的成品螺纹钢。
切分方式切分技术进展到此刻,通过一系列热轧状态下纵向切分轧制的方式进行研究,最终确信破坏并联轧件联接带的最正确方式是在联接带上成立足够的拉应力,因此切分轧件的力学条件为:∑Fx≧Sбb式中:∑Fx——各横向拉力之和S—连接带的身微小面积;бb——金属的强度极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三切分孔型
四线切分工艺概况
•
四线切分轧制技术是在两线和三线 切分轧制技术的基础上开发出来的。 四线切分轧制工艺是把加热后的坯料 先轧制成扁坯,然后再利用孔型系统 把扁坯加工成四个断面相同的并联轧 件,并在精轧道次上延纵向将并联轧 件切分为四个尺寸面积相同的独立轧 件的轧制技术。
四线切分工艺概况 • 四线切分轧制技术的核心是先完成并 联轧件的三切分,再完成并联轧件的 两切分,通过这两个步骤实现四切分 的目的,可以简单描述为四切分就是 三切分与两切分的组合,但是四线切 分轧制工艺与传统的单线轧制工艺和 二、三线切分轧制工艺相比较在料型 控制、导卫调整、速度控制、轧机准 备等几个方面都有更大的难度。
两线差的速度图示
四切分工艺概况
切分轧制对温度的要求
• 承钢各线均配备侧进侧出双蓄热步进 式加热炉,坯料165*165*118000,切分 开轧温度控制在1030-1150之间,或高 或低均会引起切分轮故障,即温度低 切分负荷重,切分轴承容易坏,温度 高切分刀容易粘铁,切分终轧温度不 低于850℃。
温度高低对轧制的影响
切分轧制工艺的意义
1、不同规格产品的生产能力基本均衡。因为
炼钢连铸能力相对稳定,而轧钢能力因为 生产规格不同波动大,特别是小规格棒材 产量低。采用切分工艺可以使多种规格棒 材的轧制能力基本相等,同时,对于轧钢 工序来说,可使加热炉、轧机、冷床及其 它辅助设备的生产能力充分发挥。 2、可大幅度提高轧制小规格产品的台时产量。 采用切分轧制由于缩短了轧件长度,从而 缩短了轧制周期,提高了轧机生产率。
• 开轧温度过高,如果开轧温度过高, 同时切分楔尖处压下量非常大,会因 急剧变形产生大量热量,造成局部金 属温度迅速升高切分带状不规则,引 起切分刀粘铁皮。 • 开轧温度过低,会增加切分的负荷, 特别是预切分轧槽的磨损,切分导卫 轴承的损坏,引起轧废。
切分轧制对速度调整的要求
•
速度调整方面,中轧到精轧之间不应有 拉钢现象,一方面如果机架之间拉钢值太 大,精轧的来料相对就小,钢料小机架间 的秒流量不相等,造成机架间始终处于拉 钢状态,给下游轧机的料型控制带来难度。 另一方面精轧的来料小将造成14架的料型 充不满,导致预切分不匀,容易出现线差, 发生拱套。机架间的堆拉关系需要主操作 工通过观察电流对速度进行补偿调整。
切分轧制工艺的意义
3、在相同轧制条件下,可采用大断面的坯料; 或在坯料尺寸相同时,减少轧制道次。如 生产φ12mm的螺纹时,单线轧制工艺时用 18道次,采用四切分轧制工艺16道次出成 品。 4、节约能源、降低成本。由于切分轧制为连 铸连轧匹配创造更有力的条件,可节约大 量能源,且由于轧制成品长度减短,钢坯 的出炉温度可适当降低。
棒材切分轧制工艺
郭宝峰
学习目标
1、让大家对切分轧制工艺有个初 步的认识。 2、理解切分轧制的概念、意义。 3、了解实际生产过程中的注意事 项。
切分轧制的概念
• 所谓切分轧制,就是在轧制过程中把一根 轧件利用孔型和导卫的作用,轧成具有两 根或两根以上相同形状的并联轧件,再利 用切分设备或轧辊的辊环将并联的轧件沿 纵向切分成两个或两个以上的单根轧件, 这些切分后的轧件有的可直接作为成品, 有的则作为中间坯继续在线同时进行轧制。 根据切分后形成轧件的数目多少,又可分 为二切分、三切分、四切分、五切分等。
• 棒材切分轧机区的设计一般采用18架布置,即 6+6+6,粗中精各6架。粗中轧平立交替无扭轧制, 精轧16、18架平立可转换,轧单线时全部平立交 替无扭轧制。切分时,16、18架为平轧,13架平 辊,14架立轧,15架预切,16架切分,17架成前 扭转后经活套进入18架成品。也有19架的,预切 分为两架。 • 轧机全部使用短应力机型,一般配套120米冷床, 3#剪和冷床距离为120米,即与冷床长度1:1设计。 我们由于地形限制,冷床96米,上冷床距离63米, 这将成为制约提速的关键问题。
切分轧制的特点
• 棒材的切分轧制是将一根钢坯经过轧 辊上的特殊孔型加工后形成并联轧件, 然后利用切分导卫将并联轧件分割成 断面积相等的两根以上轧件,再加工 成尺寸相同的多根成品棒材的特殊轧 制方法。请注意:切分轧制的关键是 如何得到多根尺寸相同的成品。如何 判断尺寸相同与否呢?
棒材切分轧制工艺布置
二切分孔型1
=1512.53 =1326.98
=1093.78
=963.29
=394.3 2
=307.7 2
二切分孔型2
47,5
120,00°
R2
R10Leabharlann ,55R1,5R13
,17
2
2,2
23,74
三线切分轧制工艺概况
三线切分轧制技术是从两线切分 切分轧制技术演化而来的。其总体技 术思路是通过特殊孔型加工出三线并 联轧件,然后利用切分孔型加工出具 有薄而窄的连接带的三线并联轧件, 由切分架次出口的三线切分导卫实现 切分为三根独立轧件的过程。基本孔 型:平轧孔——立轧孔——哑铃孔— —切分孔——椭圆——成品,如下图
二切分工艺概况
二线切分轧制是国内应用最广泛的一种 切分轧制生产工艺,根据轧钢设备条件不 同,为了提高孔型系统的共用性,中轧机 系统基本都是椭圆——圆孔型系统,但是, 精轧机孔型系统有两种形式: • 菱形孔——弧边方孔——哑铃孔(预切 分)——切分孔——椭圆——成品孔,见图1 • 平轧孔——立轧孔——哑铃孔(预切分)— —切分孔——椭圆——成品孔,见图2 •
切分轧制中的问题
•
棒材切分带容易产生毛刺,如调整不当 有可能形成折叠,影响产品实物质量;对 坯料的质量要求较严格,切分后坯料中心 部位的缩孔、疏松等易暴露在轧件表面; 对料型、导卫、切分装置、速度调整精度 要求高,在操作上应调整好进、出口导卫 及切分轮间距,确保轧件对称地切分。线 差存在,切分后成品料型不一样大。