发动机总成装配线技术方案的探讨

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机总成装配线技术方案的探讨

为了适应汽车市场日益加剧的竞争形势,汽车生产厂家越来越重视产品的性价比。厂家根据对市场的分析理解,选择或开发一种车型,恰如其分地定位各个总成的性能和各项主要质量标准,以保证产品的性能指标;在达到上述目标的同时,也要努力将投资和产品成本降到最低。以上两个目标,是生产厂家追求的主要目标,也是决定一种车型投放市场成败的关键所在。

新建装配线的技术方案定位的方向是至关重要的。要避免两个误区:一是有的技术方案过分注重所谓形象,采用了一些不是很必要的,华而不实甚至是不太成熟的新技术或高配置,多花很多甚至几倍的资金,但取不到应有的效果,投资回报率低,最终客观的评价是很不理想的。二是有的技术方案一味只追求节省投资,装配线削减了许多必要的设备和功能,从而不具备装配出高品质产品的最基本条件,结果花了钱也达不到应有的效果,反而造成了浪费。

对同一条装配线技术方案的要求,不同人群从不同角度往往得出差异很大的结论,所以我们主张在确定技术方案时要多看,多思考,多讨论,实事求是地对具体情况作具体分析,将技术方案的方向定得更科学。

一条典型的装配线应具备以下七方面基本功能:

①质量保证功能、②满足通过多品种产品的柔性功能、③对设备的监控功能、④信息管理功能、⑤安全与人机工程合理化功能、⑥物流与零件供应功能、⑦完成总成装配后的整机

测试功能。

产品质量保证功能

此项功能是装配线的核心,是一条装配线最基本功能,也是耗资最大部分。这项功能技术定位,要考虑如下因素:

首先,依据是某汽车产品的档次和产量。

不同的产品,对装配线有不同的要求,如高档豪华轿车的总成,由于这类车型的总成追求的目标是性能优越,故对装配质量要求高度稳定可靠,而且这类车售价都很高,高的设备费用在成本中也比较容易分摊。所以在技术方案中质量保证措施应该是很完善的。但对于普通和较低档次的车型,由于整车售价就很低,分摊到总成装配上的费用很少,因而在质量保证的技术措施方面,应该只要求必要的质量保证措施到位同时辅以一定的经过严格培训的工人进行操作和监控,来保证装配质量。

其次,是确定质量保证措施的风格和原则。

这是造成设备投资差异的重要因素。欧美类型设备质量保证基本是依赖设备,以求排除人为因素差异对质量的干扰。这一原则从技术角度去看是完备的,但随之而来的设备高投资,带来汽车产品的高成本。

日本类型设备质量保证措施基本上是采用必要的技术措施加高素质人员的操作和监控,如丰田公司的操作人员上岗前必须经过严格培训,考核合格后才允许上岗,这一原则起码已给经济型轿车生产带来了众人皆知的成功。

人的因素第一是中国一向倡导的最基本管理原则,但我国的汽车工业实际上对人员培训往往重视不够。有时虽然花了大量资金购置了先进设备,但由于人员培训没有跟上并没有有效的发挥其作用。所以在制定技术方案时,应该实事求是地看待欧美与日本的经验和技术,认真吸收别人优点和经验,走自己的路。

第三,确定装配线的配置水平。

一个大型汽车集团,它的产品必然包括从低档次到高档次的各种产品,同时还会包括轿车、

大客车和商用车等各种车型,各产品产量和生命周期也会千差万别,显然对不同的产品用同一种装配线的模式和配置都用统一的水平去要求是不合理的,应该有所区别。

选配与测量

为了保证产品质量,相匹配部位有时采用中间调整环节,来确保配合性质。调整环节的选取需根据相匹配部位的实际尺寸选配,如缸孔和活塞、曲轴主轴瓦与连杆瓦、气门高度与凸轮轴基圆以及变速器中各类垫片等。

曲轴主轴瓦与连杆瓦测量与选配:一般均采取上瓦依据缸体主轴承孔的实际加工尺寸,下瓦按曲轴主轴颈尺寸,2组数据通过计算机运算后把应选轴瓦号码通过装配线设定的方式送到装瓦工位,同时送到带有指令信号的轴瓦智能料架,指示操作者应取的各轴瓦(轴瓦生产厂家已按主轴孔和曲轴颈的加工公差带分成若干组)。由于零部件的制造往往是通过协作网和不同厂家提供, 不可忽视的是孔和轴颈加工数据真实与准确和传送代码的有效。如果不真实,将失去选装效果。相对发动机档次较高的生产厂家,为了提高准确性,在装配线上设置了对主轴孔和曲轴颈复检(如一汽的马自达6发动机装配线)连杆瓦通常上瓦依据曲轴连杆颈,下瓦依据连杆大头孔尺寸选配,具体方法和可能出现的问题与解决办法同主轴瓦的选配。

活塞连杆的选装:活塞基本上按缸孔尺寸分组,连杆按重量分组。活塞连杆合件基本上都在主装线外的分装线上完成。活塞连杆合件要依据缸体的数据组合,需在主线上适当的工位将缸体上带码的缸孔数据(或分组标记)及时送到活塞连杆分装线,活塞连杆分装线据此提供活塞连杆合件和连杆大头孔数据给连杆瓦选瓦工位。需设置主装线与活塞连杆线数据通讯和活塞连杆分装线一组活塞连杆下线(通常用托盘装载一组活塞连杆合件)的积放与主装线取料环节和主装线对这组活塞连杆的识别确认对连杆数据取值装置。

选装气门垫片时的气门高度测量与凸轮轴基圆测量:以上两项测量均应采用相对测量,即测量一组缸孔上的4个气门高度应以这个缸孔位置的凸轮轴主轴孔中心为基准。这样可以排除机械加工时的误差引起测量时的假象,如凸轮轴加工总有些弯曲,但装入缸盖后,弯曲度可以得到校正。

一般上述两项测量机多采用一次测量,即每个缸孔采用6个测量头(即4个测进排气门,2个定本缸孔的凸轮轴孔或凸轮轴颈的中心线)。4缸机即需24个测量头和相应的转接箱或测量柱。它的优点是测量时间短,缺点是造价高。如果采用正体校正件一次校正,即每个

缸每组测量头单独用自己校正部位校正,4个校正部位之间存在差异,都会影响测量精度。我们建议在生产节拍大于60秒时,采用逐缸测量,即用一组6个测量头。在伺服滑台驱动下,逐缸测量。相对测量精度高,设备小巧造价也低。一汽马自达6发动机装配线即用此种测量,经过两年满负荷生产,精度性能均比较稳定,节拍达到54秒。

平衡器齿侧间隙测量:带有平衡器的发动机一般都属档次较高的发动机,对综合性能与振动等要求较高,曲轴上的齿圈与平衡器上的齿轮啮合间隙不能超出设定范围。一般通过平衡器与缸体连接的垫片厚度来调整。测量方法分为静态测量和动态测量两种。

静态测量比较简单,测量数据的重复性也比较稳定,但不是发动机工作时的真实情况。

动态测量是曲轴齿圈带动平衡器齿轮运行回转中测量,并在轴向和侧向加设定载荷。由于啮合的是斜齿轮,曲轴带动活塞连杆回转在不同的相位角,曲轴扭矩是变化的,造成载荷变化重复精度易飘移。据我们了解,目前有法国雪铁龙、日本马自达和斯凯公司做过此种设备,三家的设计方案和结构不谋而合非常相似。测量的基本原理是采用2台伺服电机分别带动曲轴和平衡器轴,通过2台精度非常高的编码器和加载装置组成。都能测出数值并可以用于生产,但都没有一套科学的鉴定该设备的方法。

手动变速器装配线中的测量:手动变速器装配线中的测量基本上是高度测量,主要用于锥齿轮选垫片。只是差速器中半轴锥齿轮的垫片需在回转中测量,半轴锥齿轮的端面跳动量一般都较大,加上轴承轴向跳动误差累积起来误差较大。不能只做静态测量。

自动变速器与无级变速器装配线中的测量:这类装配线测量部位较多,但大多属高度测量。只是CVT变速器锥盘移动键多采用3排3组6个钢球,承载大,移动要灵活而且采用预加载荷,多采用预装后整体侧量球道尺寸,根据实测尺寸选择钢球,钢球分成若干组(有的分成18组)从中选取。产量大时,同时要求自动测量。

装配线中的在线检测

检测是在装配作业中的某些主要部位和选装作业的质量复检。

螺栓拧紧中的扭矩与角度的控制和检测:为了保证产品质量,在装配线中主要部位都采用多轴电动拧紧机或带有控制和检测功能单头的电动拧紧头。它们占有配套件中大部分资金,

相关文档
最新文档