_空间几何体的结构课件.ppt
合集下载
高一数学课件.ppt

(1)
(2)
(3)
2. 说出下列图形绕虚线旋转一周,可 以形成怎样的几何体?
(1)
(2)
(3)
(4)
课堂小结:
这节课我们学习了圆台,棱 台,球等立体图形,这些图形在 日常生活中随处可见,希望同学 们平时留心观察事物,认识它们, 正确画出这些基本立体图形.
第一章: 空间几何体
1.1空间几何体的结构
棱台与圆台的结构特征
(1) 棱台的结构特征:如下图,用一个平行于 棱锥底 面的平面去截棱锥,底面与截面之 间的部分,这样的几何体叫做棱台
o
D/
C/
A/
B/
D
C
A
B
想一想:仿照棱锥中关于侧面,侧棱,底面,顶
点的定义,在下图中标出棱台的侧面,侧棱,底
面,顶点.
顶点 S
侧棱
侧面
底面 A
D
C
顶点
B
上底面
侧面
D/
C/
A/Leabharlann B/侧棱DC
A
B 下底面
由三棱锥,四棱锥,五棱锥…..截得的棱 台分别叫做三棱台,四棱台,五棱台….与棱 柱的表示一样,下图的棱台表示为棱台
ABC-A/B/C/……
C/
A/
B/
C
……
A
B
三棱台
四棱台
五棱台
(2) 圆台的结构特征:如下图,用一
个平行于圆锥底 面的平面去截圆锥, 底面与截面之间的部分,这样的几何体 叫做圆台
母线
O/
侧面
O
轴
底面
球的结构特征
以半圆的直径所在直线为旋转轴,半圆面旋 转一周形成的几何体叫做球体,简称球.
高中数学1.1空间几何体的结构 优秀课件1

2
①
当 0 9 0 时 , S 1 l2 sin
2
S0
1 2
l2
sin
② 当 90180时 , P
S0
1 l2 sin
2
1 2
l2
sin 90
即 S0
1 2
l2.
l
P
l
综上选 B.
A
O
BA
O
B
C
C
作业
1. 《导学精练》1.1.1 活页+蓝皮〔分层要求〕 2.预习教材“简单组合体的结构特征〞
简单组合体
圆柱、圆锥、圆台的轴截面问题 通常我们称过旋转体旋转轴的截面为轴截面.
圆柱、圆锥、圆台轴截面分别是矩形、等腰三角形、 等腰梯形,这些轴截面集中反映了旋转体的各主要元 素,处理旋转体的有关问题一般要作出轴截面.
练习. 以下命题中错误的选项是〔 〕 A.圆柱的轴截面是过母线的截面中面积最大的一个. B.圆锥的轴截面是所有过顶点的截面中面积最大的一个. C.圆台的所有平行于底面的截面都是圆. D.圆锥的所有轴截面都是全等的等腰三角形.
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.空 间几何体是几何学的重要组成局部,它在土木建筑、机械设计、航海测绘等 大量实际问题中都有广泛的应用.
观察与思考
空间我几们何周体围的存定在义着:各种各样的物体,它们都占 据着空如间果的只一考局虑部物. 体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体.
第一章 空间几何体
本节我们从空间几何体的整体观察入手,研 究空间几何体的结构特征.
观察与思考
由假观设察干以平下面物多体边的形形围状成和的大几小何,体试叫给做出多相面体. 应的空间几何体,说说有它们的共同特征。
空间几何体的结构_王素华.ppt

三棱柱
四棱柱
五棱柱
四、棱柱的表示
用底面各顶点的字母表示棱柱。
三棱柱ABC-A'B'C' 四棱柱ABCD-A'B'C'D'
六棱柱ABCDEF-A'B'C'D'E'F
常见的棱柱
长方体:侧面和底面都是矩形的棱柱. 正方体:侧面和底面都是正方形的棱柱.
棱柱的结构特征
思考:你能举出关于棱柱的生活实例吗?
么四边形?
平行四边形
理论迁移
例1、过BC的截面截长方体的一角,使 EF∥B’C’所得的几何体是不是棱柱,为 什么?
D' F C'
D' D C
A' D
E
B' C
A
F
C'
B
A
B
A'
E
B'
思考:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 思考:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
底 面
E
侧棱 F
D
C
A
侧面
B
顶点
思考:棱柱上、下两个底面的形状大小 如何?各侧面的形状如何?
两底面是全等的多边形, 各侧面都是平行四边形
三、棱柱的分类
思考:各种各样的棱柱,主要有什么不 同?你认为棱柱的三 角形、四边形、五边形、 …… 我们把这 样的棱柱分别叫做三棱柱、四棱柱、五棱 柱、……
二、棱柱的有关概念
两个互相平行的面 棱柱的底面:
H/
空间几何体的结构

棱锥的分类: 棱锥的分类: 按底面多边形的边数, 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、 棱锥、四棱锥、五棱锥、…… S A B D C
什么叫棱台 棱台的分类: 棱台的分类: 由三棱锥、四棱锥、五棱锥…截 由三棱锥、四棱锥、五棱锥 截 得的棱台,分别叫做三棱台 四棱台, 三棱台, 得的棱台,分别叫做三棱台,四棱台, 五棱台… 五棱台
我们把由一个平面图形绕它所在平面内的一条 旋转体。 定直线旋转所形成的封闭几何体叫做旋转体 定直线旋转所形成的封闭几何体叫做旋转体。 这条定直线叫做旋转体的轴 这条定直线叫做旋转体的轴。
A' O'
轴
A O
棱柱的分类:棱柱的底面可以是三角形、 棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱 四棱柱、五棱柱、 三棱柱、 分别叫做三棱柱、四棱柱、五棱柱、……
观察下面的几何体,哪些是棱柱? 观察下面的几何体,哪些是棱柱?
练习: 练习:<1> P9 1(2) ( ) B:有两个面互相平行,其余各面都是平 有两个面互相平行, 行四边形的几何体是棱柱吗? 行四边形的几何体是棱柱吗? 不一定是. 答:不一定是. 如图所示,不是棱柱. 如图所示,不是棱柱.
什么叫棱锥
空间几何体的结构
1.空间几何体
如果我们只考虑物体的形状和大小, 如果我们只考虑物体的形状和大小,而不考 形状 虑其它因素, 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。 间图形就叫做空间几何体。 空间几何体
一般地, 一般地,我们把由若干个平面 多面体。 多边形围成的几何体叫做多面体 多边形围成的几何体叫做多面体。
母 线
高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征

探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究四
探究一棱柱、棱锥、棱台的结构特征
棱柱、棱锥、棱台的定义是识别和区分多面体结构特征的关键.因此,在涉
及多面体的结构特征问题时,先看是否满足定义,再看它们是否具备各自的
第一章
空间几何体
-1-
1.1
空间几何体的结构
-2-
第1课时
棱柱、棱锥、棱台的结构特征
-3-
首 页
学习目标
1.了解空间几何体的分类及其相关
概念.
2.了解棱柱、棱锥、棱台的定义,知道这
三种几何体的结构特征,能够识别和区
分这些几何体.
J 基础知识 Z 重点难点
ICHU ZHISHI
思维脉络
HONGDIAN NANDIAN
解析:当截得棱台的棱锥的侧棱不相等时,棱台的侧棱不相等.
答案:C
3
S 随堂练习
UITANG LIANXI
4
5
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
2
3
S 随堂练习
UITANG LIANXI
4
5
3.如果一个棱锥的侧面都是正三角形,则该棱锥最多是
棱锥.
度最短为多少?
首 页
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
第一讲+空间几何体的结构特征和直观图课件-2025届高三数学一轮复习

【题后反思】 (1)画几何体的直观图一般采用斜二测画法,其规则可以用 “斜”(两坐标轴成 45°或 135°)和“二测”(平行于 y 轴的线段 长度减半,平行于 x 轴和 z 轴的线段长度不变)来掌握. (2)按照斜二测画法得到的平面图形的直观图,其面积与原图 形的面积的关系:S = 直观图 42S 原图形.
答案:C
⊙立体图形的展开图 [例 3]已知圆锥的母线长为 1,其侧面展开图是一个圆心角为 120°的扇形.过该圆锥的轴作截面,截面的面积为( )
25 A. 9
22 B. 9
5 C. 9
2 D. 9
解析:因为圆锥的母线长为 1,其侧面展开图是一个圆心角为 120°的扇形,所以圆锥的底面周长为 2π×1×132600°°=23π,所以底面 半径为13,圆锥的高为 12-132=2 3 2,所以轴截面的面积为12× 23×2 3 2=2 9 2.故选 B.
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
解析:①不一定,只有当这两点的连线平行于轴时才是母线; ②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的
面所围成的几何体不是圆锥,如图 6-1-3 所示,它是由两个同底圆 锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平 行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.
第六章 立体几何
第一讲 空间几何体的结构 特征和直观图
2025年高考一轮总复习
1.多面体的结构特征
名称
棱柱
图形
棱锥
棱台
(续表) 名称 底面
侧棱
侧面 形状
棱柱
棱锥
互相平行且全等
空间几何体的结构、三视图、直观图课件

用一个平行于棱锥 底面的平面去截棱 棱台 锥,底面与截面之 间的部分叫作棱台 (1) (1)上下两个底面 互相平行; 互相平行; (2) (2)侧棱的延长线 相交于一点; 相交于一点;
1 V Sh 3
旋转体
圆柱 圆锥 圆台 球
分别以矩形、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋
柱、锥、台、球的结构特征
空间几何体的结构 识 图 空 间 几 何 体
画 图
简单几何体的结构特征
柱、锥、台、球的三视图 三视图 简单几何体的三视图 平面图形 平行投影 中心投影
直观图
斜二测画法 空间几何体
柱、锥、台、球的表面积与体积
概念 棱柱
多面体
柱 锥 台 球 旋转体
棱锥
性质 侧面积
棱台
体积
圆柱 圆锥 圆台 概念 结构特征 侧面积
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
我们把在一束平行光线照射下形成的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直观性强,在作图 中只是作为一种辅助图样.
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
O
Z
y
Q
x
M
D
O
C
A
N
1 V Sh 3
旋转体
圆柱 圆锥 圆台 球
分别以矩形、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋
柱、锥、台、球的结构特征
空间几何体的结构 识 图 空 间 几 何 体
画 图
简单几何体的结构特征
柱、锥、台、球的三视图 三视图 简单几何体的三视图 平面图形 平行投影 中心投影
直观图
斜二测画法 空间几何体
柱、锥、台、球的表面积与体积
概念 棱柱
多面体
柱 锥 台 球 旋转体
棱锥
性质 侧面积
棱台
体积
圆柱 圆锥 圆台 概念 结构特征 侧面积
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
我们把在一束平行光线照射下形成的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直观性强,在作图 中只是作为一种辅助图样.
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
O
Z
y
Q
x
M
D
O
C
A
N
高一数学人教版必修二空间几何体的结构ppt课件

如图所示的组合体,其结构特征是
( D)
A.两个圆锥
B.两个圆柱
C.一个棱锥和一个棱柱
D.一个圆锥和一个圆柱
[解析] 如图所示的几何体是由一个圆锥和一个圆柱构成的组合体.
15
4.关于圆台,下列说法正确的是___②__③__④___. ①两个底面平行且全等; ②圆台的母线有无数条; ③圆台的母线长大于高; ④两底面圆心的连线是高.
个圆锥.如下图④所示.
26
命题方向3 ⇨旋转体中的计算问题
典例 3 如图所示,用一个平行于圆锥 SO 底面的平面截 这个圆锥,截得圆台上、下底面的面积之比为 1∶16,截去的圆 锥的母线长是 3 cm,求圆台 O′O 的母线长.
[思路分析] 旋转体的轴截面中有母线、底面半径、高等 主要元素,因而,在涉及这些元素的计算时,通常利用轴 截面求解.在圆台的轴截面中,将等腰梯形的两腰延长, 在三角形中可借助相似求解.这种立体问题平面化是解答 旋转体中计算问题最常用的方法.
( B)
[解析] 圆台的母线延长线交于一点,则A项不正确;圆 台的母线大于高,则C项不正确;圆台的母线与底面相交, 则D项不正确;很明显B项正确.
36
4.已知圆锥 SO 的母线长为 5,底面直径为 8,则圆锥 SO 的高 h=__3___. [解析] 如图 ∵圆锥的底面直径 AB=8 ∴圆锥的底面半径 R=OA=4 又∵SA=5 ∴圆锥的高 h=SO= 52-42=3.
[解析] 沿 BC 剪开,将圆柱体的侧面的一半展开得到矩形 BADC.则 AD=4,
AB=3π·π=3. ∴AC= 32+42=5,即最短绳长为 5.
『规律方法』 1.一般地,沿多面体或旋转体的表面最短距离(路程)问题, 用侧面展开解决.
( D)
A.两个圆锥
B.两个圆柱
C.一个棱锥和一个棱柱
D.一个圆锥和一个圆柱
[解析] 如图所示的几何体是由一个圆锥和一个圆柱构成的组合体.
15
4.关于圆台,下列说法正确的是___②__③__④___. ①两个底面平行且全等; ②圆台的母线有无数条; ③圆台的母线长大于高; ④两底面圆心的连线是高.
个圆锥.如下图④所示.
26
命题方向3 ⇨旋转体中的计算问题
典例 3 如图所示,用一个平行于圆锥 SO 底面的平面截 这个圆锥,截得圆台上、下底面的面积之比为 1∶16,截去的圆 锥的母线长是 3 cm,求圆台 O′O 的母线长.
[思路分析] 旋转体的轴截面中有母线、底面半径、高等 主要元素,因而,在涉及这些元素的计算时,通常利用轴 截面求解.在圆台的轴截面中,将等腰梯形的两腰延长, 在三角形中可借助相似求解.这种立体问题平面化是解答 旋转体中计算问题最常用的方法.
( B)
[解析] 圆台的母线延长线交于一点,则A项不正确;圆 台的母线大于高,则C项不正确;圆台的母线与底面相交, 则D项不正确;很明显B项正确.
36
4.已知圆锥 SO 的母线长为 5,底面直径为 8,则圆锥 SO 的高 h=__3___. [解析] 如图 ∵圆锥的底面直径 AB=8 ∴圆锥的底面半径 R=OA=4 又∵SA=5 ∴圆锥的高 h=SO= 52-42=3.
[解析] 沿 BC 剪开,将圆柱体的侧面的一半展开得到矩形 BADC.则 AD=4,
AB=3π·π=3. ∴AC= 32+42=5,即最短绳长为 5.
『规律方法』 1.一般地,沿多面体或旋转体的表面最短距离(路程)问题, 用侧面展开解决.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题选讲
例2、如图,截面BCEF将长方体分割成 两部分,这两部分是否为棱柱?
D1
E
C1
A1
F
D
A
B1 C
B
练习 1、下列关于多面体的说法中: (1)底面是矩形的直棱柱是长方体; (2)底面是正方形的棱锥是正四棱锥; (3)两底面都是正方形的棱台是正棱台; (4)正四棱柱就是正方体;
其中正确的是__(_1_)_____
练习
2、能将一个三棱柱分割成几 个三棱锥吗?
C1
B1 C1
B1
A1
A1
C
BC
B
A
A
练习
3. 一个多边形沿不平行于矩形所在平
面的方向平移一段距离可以形成(B )
A.棱锥
B.棱柱
C.平面
D.长方体
4. 棱台不具有的性质是( C ).
A.两底面相似 B.侧面都是梯形
C.侧棱都相等 D.侧棱延长后都交于一点
四、 棱锥的结构特征
征
思考:下列多面体都是棱锥吗?如何在名 称上区分这些棱锥?如何用符号表示?
S
C
A
D
S
C B
B
A
S
D C
E
F
B
A
四、 棱锥的结构特征
思考:一个棱锥至少有几个面?一个N棱锥 有分别有多少个底面和侧面?有多少条侧 棱?有多少个顶点?
描述不对的是( C ).
A.是底面半径3的圆锥 B.是底面半径为4的圆锥 C.是底面半径5的圆锥 D.是母线长为5的圆锥
练习
3. 下列命题中正确的是( C ).
A.直角三角形绕一边旋转得到的旋 转体是圆锥
B.夹在圆柱的两个平行截面间的几 何体是旋转体
C.圆锥截去一个小圆锥后剩余部分 是圆台 D.通过圆台侧面上一点,有无数条母线
思考:经过圆锥任意两条母线的截面 是什么图形?
思考:经过圆锥的轴的截面称为轴截面,你 能说出圆锥的轴截面有哪些基本特征吗?
八、圆台的结构特征
思考:用一个平行于圆锥底面的平面去截 圆锥,截面与底面之间的部分叫做圆台. 圆台可以由什么平面图形旋转而形成?
八、圆台的结构特征
思考:与圆柱和圆锥一样,圆台也有轴、底 面、侧面、母线,它们的含义分别如何?
球面上的点到 球心的距离
半径 O
直径
球心
九、球的结构特征
思考:用一个平面去截一个球, 截面是什么图形?
O
练习
1、下列命题正确的是( D)
A、圆台是直角梯形绕其一边旋转而成的 B、圆锥是直角三角形绕其一边旋转而成的 C、圆柱不是旋转体 D、圆台可以看作是平行于底面的平面截一 个圆锥而得到的
练习
2. 直角三边长分别为3、4、5,绕着 其中一边旋转得到圆锥,对所有可能
十、简单组合体的结构特征
思考:现实世界中几何体的形状各种各样, 除了柱体、锥体、台体和球体等简单几何 体外,还有大量的几何体是由这些简单几 何体组合而成的,这些几何体叫做简单组 合体.你能说出周围物体所示的几何体是由 哪些简单几何体组合而成的吗?
十、简单组合体的结构特征
课后练习 课本P8:1(1)--(3),5
六、圆柱的结构特征
思考:如图所示的空间几何体叫做圆柱, 那么圆柱是怎样形成的呢?
以矩形的一边所在直线为旋转轴,其余 三边旋转形成的面所围成的旋转体.
各部分名称
轴 母线
侧面 母线 底面
六、圆柱的结构特征
思考:平行于圆柱底面的截面,经过圆柱任 意两条母线的截面分别是什么图形?
有两个面互相平行,其余各面都是四边形, 每相邻两个四边形的公共边都互相平行,由 这些面围成的多面体叫做棱柱.
三、棱柱的结构特征
各部分名称
顶点 侧棱
底面 侧面
表示法:棱柱ABCDEF-A’B’C’D’E’F’
三、棱柱的结构特征
思考:下列多面体都是 棱柱吗?如何在名称上 区分这些棱柱?如何用 符号表示?
C1 B1
C B
D1 C1
A1
A
E1
A1
D
C
B1 D1
D1
C1
A1
C1
B1
A1
B1
C
E
D
B
D
C
A
B
A
A
B
三、棱柱的结构特征
思考:棱柱上、下两个底面的形状 大小如何?各侧面的形状如何?
两底面是全等的多边形, 各侧面都是平行四边形
四、 棱锥的结构特征
有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面 围成的多面体叫做棱锥.
至少有4个面;1个 底面,N个侧面,N 条侧棱,1个顶点.
四、 棱锥的结构特征
思考:用一个平行于棱锥底面的平面去截 棱锥,截面与底面的形状关系如何?
相似多边形
五、棱台的结构特征
思考:用一个平行于棱锥底面的平面去截 棱锥,截面与底面之间的部分形成另一个 多面体,这样的多面体叫做棱台.那么棱 台有哪些结构特征?
思考4:经过圆柱的轴的截面称为轴截面, 你能说出圆柱的轴截面有哪些基本特征吗?
七、圆锥的结构特征
思考:将一个直角三角形以它的一条直角边 为轴旋转一周,那么其余两边旋转形成的面所 围成的旋转体是一个什么样的空间图形?
圆锥
如何定义圆锥的轴、底面、侧面、母线?
轴 母线 底面
顶点 侧面 母线
七、圆锥的结构特征
有两个面是互相平行的 相似多边形,其余各面 都是梯形,每相邻两个 梯形的公共腰的延长线 共点.
各部分名称
上底面
侧棱
顶点 侧面 下底面
五、棱台的结构特征
思考:下列多面体一定是 棱台吗?如何判断?
思考:三棱台、四棱台、五棱台、 ……分别是什么含义?
例题选讲
例1、由棱柱的定义你能得到 棱柱下列的几何性质吗? ①侧棱都相等,侧面都是 平行四边形; ②两个底面与平行于底面 的截面是全等的多边形; ③过不相邻的两条侧棱的 截面是平行四边形.
侧面 轴
上底面 母线 下底面
八、圆台的结构特征
思考:经过圆台任意两条母线的截面是什 么图形?轴截面有哪些基本特征?
九、球的结构特征
思考:从旋转的角度分析,球是由什 么图形绕哪条直线旋转而成的?
以半圆的直径所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做 球体,简称球.
九、球的结构特征
思考:半圆的圆心、半径、直径,在球体 中分别叫做球的球心、球的半径、球的直 径,球的外表面叫做球面.那么球的半径 还可怎样理解?
1.1 空间几何体的结构
一、空间几何体及其基本元素
构成几何体的基本元素——点、线、面
长方体的面
长方体的棱
长方体的顶点
二、空间几何体的类型
由若干个平面多边形围成 的几何体叫做多面体 .
顶点
面
棱
二、空间几何体的类型
由一个平面图形绕它所在平面 内的一条定直线旋转所形成的封闭 几何体叫做旋转体
轴
三、棱柱的结构特征