word版15浙江高职数学真题(含详解)
浙江省金华市十校2022-2023学年高二上学期期末调研考试数学试题 Word版含解析

浙江省金华十校2018-2019学年第一学期期末调研考试高二数学试题一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.在空间直角坐标系中,点与点()A. 有关平面对称B. 有关平面对称C. 有关平面对称D. 有关轴对称【结果】C【思路】【思路】利用“有关哪个对称,哪个坐标就相同”,得出正确选项.【详解】两个点和,两个坐标相同,坐标相反,故有关平面对称,故选C.【点睛】本小题主要考查空间点对称关系,考查理解和记忆能力,属于基础题.2.圆与圆地位置关系是()A. 相交B. 内切C. 外切D. 相离【结果】A【思路】【思路】计算两个圆地圆心距以及,比较大小后得出正确选项.【详解】两个圆地圆心分别为,圆心距,两个圆半径均为,故,所以两个圆相交.故选A.【点睛】本小题主要考查圆与圆地位置关系,考查圆地圆心和半径以及圆心距地计算,属于基础题.3.“”是“”地()A. 充分不必要款件B. 必要不充分款件C. 充要款件D. 既不充分也不必要款件【结果】B【思路】【思路】将两个款件相互推导,依据能否推导地情况选出正确选项.【详解】当“”时,如,,故不能推出“” .当“”时,必然有“”.故“”是“”地必要不充分款件.【点睛】本小题主要考查充分,必要款件地判断,考查含有绝对值地不等式,属于基础题.4.给定①②两个命题:①为“若,则”地逆否命题。
②为“若,则”地否命题,则以下判断正确地是()A. ①为真命题,②为真命题B. ①为假命题,②为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题【结果】C【思路】【思路】判断①原命题地真假性,得出其逆否命题地真假性.写出②地否命题,并判断真假性.由此得出正确选项.【详解】对于①原命题显然为真命题,故其逆否命题也为真命题.对②其否命题是“若,则”,由于时,,故否命题是假命题.所以①为真命题,②为假命题,故选C.【点睛】本小题主要考查四种命题及其相互关系,考查命题真假性地判断,属于基础题.5.设是两款异面直线,下面命题中正确地是()A. 存在与都垂直地直线,存在与都平行地平面B. 存在与都垂直地直线,不存在与都平行地平面C. 不存在与都垂直地直线,存在与都平行地平面D. 不存在与都垂直地直线,不存在与都平行地平面【结果】A【思路】【思路】画出一个正方体,依据正方体地结构特征,结合线,面平行和垂直地定理,判断出正确选项.【详解】画出一个正方体如下图所示,分别是地中点.由图可知,,平面,平面.由此判断A选项正确,本题选A.【点睛】本小题主要考查空间异面直线地位置关系,考查线面平行等知识,属于基础题.6.已知,则()A. B. C. D.【结果】D【思路】【思路】先求得函数地导数,然后令求出正确选项.【详解】依题意有,故,所以选D.【点睛】本小题主要考查基本初等函数地导数,考查复合函数地导数计算,考查函数除法地导数计算,属于中档题.7.如图,在空间四边形中,,,,,则异面直线与所成角地大小是()A. B. C. D.【结果】B【思路】【思路】通过计算出地数量积,然后利用夹角公式计算出与所成角地余弦值,进而得出所成角地大小.【详解】依题意可知,.设直线与所成角为,则,故.所以本小题选B.【点睛】本小题主要考查利用空间向量地数量积,计算空间两款异面直线所成角地大小,考查化归与转化地数学思想方式,考查数形结合地数学思想方式,属于中档题.要求两款异面直线所成地角,可以通过向量地方式,通过向量地夹角公式先计算出夹角地余弦值,再由此得出所成角地大小.8.经过坐标原点地直线与曲线相切于点.若,则A. B. C. D.【结果】D【思路】【思路】先求得函数在上地表达式,利用导数求得切线地斜率,写出切线方程,利用切线方程过原点求出切点地坐标满足地等式,由此得出正确选项.【详解】当时,故,.所以切点为,切线地斜率为,由点斜式得,将原点坐标代入得,即,故选D.【点睛】本小题主要考查经过某点地曲线切线方程地求解方式,考查含有绝对值地函数地思路式,考查利用导数求曲线地切线方程,考查同角三角函数地基本关系式,属于中档题.本题地关键点有两个:一个是函数在上地表达式,另一个是设出切点,求出切线方程后,将原点坐标代入化简.9.已知椭圆地右焦点是,为坐标原点,若椭圆上存在一点,使是等腰直角三角形,则椭圆地离心率不可能为()A. B. C. D.【结果】C【思路】【思路】分别依据为直角时,椭圆地离心率,由此得出正确地选项.【详解】当时,代入椭圆方程并化简得,解得.当时,,,故.当时,,即,,,解得.综上所述,C选项不可能,故选C.【点睛】本小题主要考查等腰直角三角形地性质,考查椭圆离心率地求解方式,属于中档题.10.在正方体中,分别为线段,上地动点,设直线与平面,平面所成角分别是,则()A. B.C. D.【结果】B【思路】【思路】在图中分别作出直线与平面,平面所成地角,依据边长判断出,求出地表达式,并依据表达式求得地最小值,也即是地最大值.【详解】设正方体边长为.过作,而,故平面,故.同理过作,得到.由于,故,所以,即.而,当得到最小值时,得到最小值为,即得到最大值为.故选B.【点睛】本小题主要考查直线和平面所成地角,考查三角函数最值地判断与求解,属于中档题.二,填空题(每题4分,满分20分,将结果填在答题纸上)11.已知直线:,若地倾斜角为,则实数_______。
2023年高考真题——数学(新高考II卷) Word版含解析

程,解出即可.
y xm
【详解】将直线
y
x
m
与椭圆联立
x2 3
y2
,消去
1
y
可得
4x2
6mx
3m2
3
0
,
因为直线与椭圆相交于 A, B 点,则 36m2 4 4 3m2 3 0 ,解得 2 m 2 ,
设 F1 到 AB 的距离 d1,F2 到 AB 距离 d2 ,易知 F1 2, 0 , F2 2, 0 ,
5.
已知椭圆 C :
x2 3
y2
1 的左、右焦点分别为 F1 ,F2 ,直线
y
x m 与 C 交于 A,B 两点,若 △F1AB
面积是 △F2 AB 面积的 2 倍,则 m ( ).
2 A. 3
B. 2 3
C. 2 3
D. 2 3
【答案】C
【解析】
【分析】首先联立直线方程与椭圆方程,利用 0 ,求出 m 范围,再根据三角形面积比得到关于 m 的方
综上所述: a 1 .
故选:B.
3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高 中部两层共抽取 60 名学生,已知该校初中部和高中部分别有 400 名和 200 名学生,则不同的抽样结果共有 ( ).
A.
C45 400
C15 200
种
.C
C30 400
C40 400
C20 200
种.
故选:D.
4.
若
f
x
x
a
ln
2x 2x
1 1
为偶函数,则
a
(
).
A. 1
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2019年浙江省高考数学(含解析版)

【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
3.若实数 满足约束条件 ,则 的最大值是( )
A. B.1
C.10D.12
【答案】C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.
13.在二项式 的展开式中,常数项是________;系数为有理数的项的个数是_______.
C. 先增大后减小D. 先减小后增大
8.设三棱锥 底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A. B.
C. D.
9.已知 ,函数 ,若函数 恰有三个零点,则( )
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)Word版含解析

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
浙江省杭州第二中学2024-2025学年高二上学期11月期中考试数学试题B卷 Word版含

浙江省杭州第二中学2024-2025学年高二上学期11月期中考试数学试题B卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.【答案】C2.【答案】A3.【答案】D4.【答案】D5.【答案】A6.【答案】A7.【答案】B8.【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.【答案】AC10.【答案】BCD11.【答案】ABD第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.13.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【答案】(1),(2)【解析】【分析】(1)根据向量的线性运算直接表示各向量;(2)利用转化法可得向量数量积.【小问1详解】,;【小问2详解】由题意易知,则,,则.16.【解析】【分析】(1)由频率分布直方图的矩形面积和为1求出的值;(2)由每日人均业务量的平均值分别求出方案(1)和(2)的人均日收入;比较大小后再做选择;122DM a b c =--+ 12BE b c =+ 2()111222DM DE EF FM AB AB AF AA a b c =++=--++=--+ ()111122BE BA AF FE EE AB AF AB AF AA AF AA b c =+++=-++++=+=+ 2a b c === 2π1cos 22232a b a b ⎛⎫⋅=⨯=⨯⨯-=- ⎪⎝⎭0a c ⋅= ()11222DM BE a b c b c ⎛⎫⋅=--+⋅+ ⎪⎝⎭ 2214222a b a c b b c b c c =-⋅-⋅--⋅+⋅+ 2214222a b a c b c =-⋅-⋅-+ ()2214222222=-⨯--⨯+⨯=a(3)用40除以400得到,该员工收入需要进入公司群体人员收入的前10%,即超过90%,分析90%是否在前5组频率和以及前6组频率和之间,设对应销为,由频率分布直方图的百分位数的公式得到对应的值.【小问1详解】∵,∴【小问2详解】每日人均业务量的平均值为:,方案(1)人均日收入为:元,方案(2)人均日收入为:元,∵248元>224元,所以选择方案(2)【小问3详解】∵,即设该销售员收入超过了90%的公司销售人员.由频率分布直方表可知:前5组的频率和为前6组的频率和为∵,设该销售的每日的平均业务量为,则,∴,又∵∴最小取82,故他每日的平均业务量至少应达82单.17.【解析】【分析】(1)设P (x,y ),由,得动点的轨迹方程;(2)利用圆心到直线的距离等于半径,求切线方程.【小问1详解】x x ()()0.005320.030.01535251a ⨯+++⨯-=0.02a =()300.005400.005500.02600.03700.02800.015900.0051062⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=100622224+⨯=()20062504248+-⨯=404000.1÷=()0.00520.020.030.02100.8⨯+++⨯=()0.00520.020.030.020.015100.95⨯++++⨯=0.80.90.95<<x ()750.0150.80.9x -⨯+>81.7x >N x *∈x 4PA PB ⋅=- P设P (x,y ),则,,由,得,所以曲线的标准方程为.【小问2详解】曲线是以为圆心,1为半径的圆,过点的直线若斜率不存在,直线方程这,满足与圆相切;过点的切线若斜率存在,设切线方程为,即,有圆心到直线距离,解得,则方程为.过点且与曲线相切直线的方程为或.18.【解析】【分析】(1)利用面面垂直的性质定理得平面,从而可证得结论;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值.(3)求出平面的法向量和平面的法向量,利用向量法能求出线段上是存在点,使得平面平面,进而可求得的值.【小问1详解】证明:正方形与梯形所在的平面互相垂直,交线为,又,平面,所以平面,因为平面,所以;【小问2详解】的(1,2)PA x y =-- (3,6)PB x y =-- ()()()()13264PA PB x x y y ⋅=--+--=- ()()22241x y -+-=C ()()22241x y -+-=C ()2,4(1,2)A 1x =C (1,2)A ()21y k x -=-20kx y k -+-=1d 34k =3450x y -+=(1,2)A C 1x =3450x y -+=DE ⊥ABCD D DA x DC y DE z BDF CDE BDM BDF EC M BDM ⊥BDF EM ECADEF ABCD AD AD DE ⊥DE ⊂ADEF DE ⊥ABCD CD ⊂ABCD CD ED ⊥由(1)可得,,又,如图,以原点,,,所在直线分别为轴,轴,轴,建立空间直角坐标系.设,则,0,,,1,,,0,,,2,,,0,,取平面的一个法向量,设平面的一个法向量,,,因为,则,令,则,所以,,.设平面与平面所成角的大小为,则.所以平面与平面【小问3详解】若与重合,则平面的一个法向量,由(2)知平面的一个法向量,,,则,则此时平面与平面不垂直.若与不重合,如图设,则,,,设平面的一个法向量,,,则,为AD DE ⊥CD DE ⊥AD CD ⊥D DA DC DE x y z D xyz -1AD =(0D 0)(1B 0)(1F 1)(0C 0)(0E 1)CDE (1,0,0)DA = BDF (n x = y )z ()()1,1,0,1,0,1DB DF == 00n DB x y y x z x n DF x z ⎧⋅=+==-⎧⎪⇒⎨⎨=-⋅=+=⎩⎪⎩ 1x =1y z ==-(1n = 1-1)-BDF CDE θcos cos ,DA n θ=== BDF CDE M C BDM ()00,0,1m = BDF (1n = 1-1)-010m n ⋅=-≠ BDF BDM M C (01)EM ECλλ=<<(0M 2λ1)λ-BDM 0(m x = 0y 0)z 00m BD m DM ⎧⋅=⎪⎨⋅=⎪⎩即,令,则,,所以,平面平面等价于,即,所以.所以,线段上存在点使平面平面,且.19.【解析】【分析】(1)根据题意列出方程,求得 ,即得答案;(2)确定,求出直线方程,联立椭圆方程求得,表示出直线的方程,进而求得坐标,结合直线斜率关系,可证明结论.【小问1详解】由题意可得 ,解得故椭圆E 的方程为.【小问2详解】证明:由(1)可知,,则直线的方程为联立方程组,整理得,解得或,则,设,直线的方程为,直线的方程为,设,的000002(1)0x y y z λλ+=⎧⎨+-=⎩01x =01y =-021z λλ=-21,1,1m λλ⎛⎫=- ⎪-⎝⎭BDM ⊥BDF 0m n ⋅=r r 21101λλ+-=-1[0,1]2λ=∈EC M ⊥BDFBDM 12EM EC =,a b ()()0,1,1,0A F AF 41,33B ⎛⎫-⎪⎝⎭,AP BP ,C D 2222121423144a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩1a b ⎧=⎪⎨=⎪⎩2212x y +=()()0,1,1,0A F AF 1y x =-+22121x y y x ⎧+=⎪⎨⎪=-+⎩224400x x -=0x =43x =41,33B ⎛⎫- ⎪⎝⎭()2,P t AP 112t y x -=+BP 31212t y x t +=--()()1122,,,C x y D x y联立方程组,整理得,可得,联立方程组,整理得,则,得从而.因为,,即,所以三点共线,所以直线经过点F .2212112x y t y x ⎧+=⎪⎪⎨-⎪=+⎪⎩()()2223410t t x t x -++-=2224421,2323t t t C t t t t ⎛⎫-+-++ ⎪-+-+⎝⎭221231212x y t y x t ⎧+=⎪⎪⎨+⎪=--⎪⎩()()22229632422416160t t x t t x t t ++-++++=222416163963x t t t t +=++22244321t t x t t +=++22224421,321321t t t t D t t t t ⎛⎫+-- ⎪++++⎝⎭2222222210212123442121123CF t t t t t t t t k t t t t t t t -++--++---+===-+--++---+22222222210021321441211321DF t t y t t t t k t t x t t t t ------++===+-+--++CF DF k k =,,C D F CD。
(Word版)2021年全国高考数学试题真卷(含答案详解)全国乙卷文科
绝密★启用前2021年普通高等学校招生全国统一考试全国乙卷/文科数 学注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应答案的答案标 号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时, 将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回.1. 已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则Cu (MUN )=A. {5}B. {1,2}C. {3,4}D. {1,2,3,4}2.设iz=4+3i ,则z 等于A. -3-4iB. -3+4iC. 3-4i D .3+4i3. 已知命题, , sinx<1,命题 e|x|≥1,则下列命题中为真命题的是 A. p Λ q B. p ﹁Λq C. p Λ﹁q D. (﹁p νq)4. 函数f (x )=sin x3 +cos x3 的最小正周期和最大值分别是A.3π和√2B. 3π和2C. 6π和√2D. 6π和25.若x ,y 满足约束条件, 则z=3x+y 的最小值为A.18B.10C.6D.4 6.A . 12B. √33C. √22D. √327.在区间(0, 12)随机取1个数,则取到的数小于132的概率为A. 34B. 23C. 13D .168.下列函数中最小值为4的是 A.BCD9. 设函数,,则下列函数中为奇函数的是ABCD10. 在正方体ABCD-A1B1C1D1,P为B1D1的重点,则直线PB与AD1所成的角为A. π2B. π3C. 4D. π611.设B是椭圆C:的上顶点,点P在C上,则|PB|的最大值为A.π2B.√6C.√5D.212. 设a≠0, 若x = a为函数f(x)= 的极大值点,则A. a<bB. a>bC.ab<a2D. ab>a2二、填空题,本题共4小题,媒体5分,共20分。
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
2022年高考真题——数学(浙江卷) Word版含解析
令 ,即 ,
∴ ,
故答案为: ; .
13.若 ,则 __________, _________.
【答案】①. ②.
【解析】
【分析】先通过诱导公式变形,得到 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出 ,接下来再求 .
【详解】 ,∴ ,即 ,
即 ,令 , ,
则 ,∴ ,即 ,
, , ,
所以 ,
故选:A.
9.已知 ,若对任意 ,则()
A B. C. D.
【答案】D
【解析】
【分析】将问题转换为 ,再结合画图求解.
【详解】由题意有:对任意的 ,有 恒成立.
设 , ,
即 的图象恒在 的上方(可重合),如下图所示:
由图可知, , ,或 , ,
故选:D.
10.已知数列 满足 ,则()
球的表面积公式
台体的体积公式
球的体积公式
其中 表示台体的上、下底面积,
h表示台体ห้องสมุดไป่ตู้高其中R表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】利用并集的定义可得正确的选项.
【答案】D
【解析】
【分析】根据三角函数图象的变换法则即可求出.
【详解】因为 ,所以把函数 图象上的所有点向右平移 个单位长度即可得到函数 的图象.
故选:D.
7.已知 ,则 ()
A.25B.5C. D.
【答案】C
【解析】
【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.
2024年荆州市中考数学试卷(含答案解析)
2024年荆州市中考数学试卷(含答案解析).doc某书签分享赚钱赏收藏原创保护版权申诉/ 16 立即下载加入VIP,备课更划算当前位置:首页> 初中 > 初中数学 > 数学中考 > 中考真题> 2024年荆州市中考数学试卷(含答案解析).docx 2024年荆州市中考数学试卷(含答案解析).docx文档编号:上传时间:2024-06-23 类型:DOCX 级别:精品资源页数:16 大小:1.82MB 价格:61.00积分(10积分=1元)《2024年荆州市中考数学试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2024年荆州市中考数学试卷(含答案解析).docx(16页珍藏版)》请在七彩学科网上搜索。
1、2024年荆州市初中学业水平考试数学(本试卷共6页,满分120分,考试时间120分钟)祝考试顺利注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将本试卷和答题卡一并交回._一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中2、,只有一项符合题目要求)1. -15的相反数为 A. 15 B. -15 C. 5 D. -52. 据统计,2024 年国内全年出游人次为48.9亿,则数据4 890 000 000用科学记数法表示为 A.4.8910 B.48.910 C. 4.8910 D. 48.9103.某几何体的三视图如图所示,则该几何体可能是4.下列计算正确的是 A. 2a-a=1 B.aa=a C.a-1=a-1 D.a=a5.如图,将一块含60角的直角三角板斜边的两个顶点分别放在直尺的两条边上.若1=140,则2的度数为 A. 20 B. 25 C. 30 D. 35数学第1页(共6页)6.下列调查中,最适合3、采用全面调查(普查)方式的是A.调查某市初中学生每天课外锻炼的时间B.调查春节期间全国居民的花销情况C.调查某批次新能源汽车的续航能力D.调查乘坐飞机的乘客随身携带物品的安全性7. 如图,O是ABC的外接圆,ABC 的平分线交O于点D,连接AD,CD,若ADC=120,则tanACD= A. 33 B. 1 C. 3 D. 138.某同学在物理实验课上做“小孔成像”实验时,将一支长约3cm的蜡烛(包括火焰高度)立在小孔前,蜡烛所立位置离小孔的水平距离为6cm,此时蜡烛火焰通过小孔刚好在小孔另一侧距小孔2cm处的投影屏上形成了一个“像”,若以小孔为坐标原点,构建如图所示的平面直角坐标系xOy,记蜡4、烛火焰顶端A点处的坐标为(-6,3),则A点对应的“像”的坐标为 A. (3,-1) B. (2,-1) C. (2,-2) D. (3,-2)9. 如图,在菱形ABCD中,B=60,E,F分别是边AB,BC的中点,连接EF,DF,若 EF=2,则DF 的长为A. 2 2B. 23C. 2 5D.2 710. 如图1,在矩形ABCD中(AD2AB),P,Q分别为边AB,BC上的动点,点 P 沿折线B-A-D-C以每秒2个单位长度的速度运动,同时点Q以每秒1个单位长度的速度从点 B沿着 BC运动,当点Q到达点C时,点P随之停止运动.连接PQ,若BPQ的面积与运动时间t之间的函数图象如图2所示.下列结论中:AB边的长度为4;四边形ABCD的面积为20;当t=3时,点P与点D的距离为4;当t=4时,PQAB.正确的序号为 A. B. C. D. 数学第2页(共6页)二、填空题(共5题,每题3分,共15分)11. 计算: 3-8+|-3|=_.12.藤球是一项古老而独特的体育运动项目,有着悠久的历史,又叫“脚踢的排球”.下表是学校藤球队中三名学生五次传踢球成绩的平均数及方差统计表,若要从这三名学生中选择一名成绩好且稳定的学生作为校藤球队的队长,则应选择学生 . 甲乙丙平均数方差1.20.50.513.端午节是中国首个入选世界非物质文化遗产的节文档加载中……请稍候!如果长时间未打开,您也可以点击刷新试试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年浙江省高等职业技术教育招生考试数学试卷本试题卷共三大题.全卷共4页.满分120分,考试时间120分钟. 注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效.2.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作答,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分.1.已知集合M ={}x |x 2+x +3=0,则下列结论正确的是( ) A .集合M 中共有2个元素 B .集合M 中共有2个相同元素 C .集合M 中共有1个元素 D .集合M 为空集 2.命题甲“a <b ”是命题乙“a -b <0”成立的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件3.函数f (x )=lg (x -2)x的定义域是( ) A.[)3,+∞ B.()3,+∞ C.()2,+∞ D.[)2,+∞4.下列函数在定义域上为单调递减的函数是( ) A .f (x )=(32)x B .f (x )=ln xC .f (x )=2-xD .f (x )=sin x5.已知角α=π4,将其终边绕着端点按顺时针方向旋转2周得到角β,则β=( )A.9π4B.17π4C .-15π4D .-17π46.已知直线x +y -4=0与圆(x -2)2+(y +4)2=17,则直线与圆的位置关系是( )A .相切B .相离C .相交且不过圆心D .相交且过圆心7.若β∈(0,π),则方程x 2+y 2sin β=1所表示的曲线是( ) A .圆 B .椭圆C .双曲线D .椭圆或圆 8.在下列命题中,真命题的个数是( )①a ∥α,b ⊥α⇒a ⊥b ②a ∥α,b ∥α⇒a ∥b ③a ⊥α,b ⊥α⇒a ∥b ④a ⊥b ,b ⊂α⇒a ⊥α A .0个 B .1个 C .2个 D .3个 9.若cos(π4-θ)cos(π4+θ)=26,则cos2θ=( )A.23 B.73 C.76 D.34610.在等比数列{}a n 中,若a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =( )A .(2n -1)2 B.13()2n-12C .4n -1 D.13()4n-111.下列计算结果不正确的....是( ) A .C 410-C 49=C 39 B .P 1010=P 910C .0!=1D .C 58=P 588!12.直线3x +y +2015=0的倾斜角为( ) A.π6 B.π3 C.2π3 D.5π613.二次函数f (x )=ax 2+4x -3的最大值为5,则f (3)=( ) A .2 B .-2 C.92 D .-9214.已知sin α=35,且α∈(π2,π),则tan(α+π4)=( )A .-7B .7C .-17 D.1715.在△ABC 中,若三角之比A ∶B ∶C =1∶1∶4,则sin A ∶sin B ∶sin C =( ) A .1∶1∶4 B .1∶1∶ 3C .1∶1∶2D .1∶1∶316.已知(x -2)(x +2)+y 2=0,则3xy 的最小值为( ) A .-2 B .2C .-6 D. -6 217.下列各点中与点M (-1,0)关于点H (2,3)中心对称的是( ) A .(0,1) B .(5,6) C .(-1,1) D .(-5,6)18.焦点在x 轴上,焦距为8的双曲线,其离心率e =2.则双曲线的标准方程为( ) A.x 24-y 212=1 B.x 212-y 24=1C.y 24-x 212=1D.y 212-x 24=1二、填空题(本大题共8小题,每小题3分,共24分)19.不等式||2x -7>7的解集为________.(用区间表示)20.若tan α=ba(a ≠0),则a cos2α+b sin2α=________.21.已知AB =(0,-7),则3AB BA=________.22.当且仅当x ∈________时,三个数4,x -1,9成等比数列.23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P =________.24.二项式(3x 2+2x3)12展开式的中间一项为________.25.体对角线为3cm 的正方体,其体积V =________.26.如图所示,在所给的直角坐标系中,半径为2,且与两坐标轴相切的圆的标准方程为________.第26题图三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤27.(本题满分7分)平面内,过点A (-1,n ), B (n ,6)的直线与直线x +2y -1=0垂直,求n 的值.28.(本题满分7分)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1, x ≥03-2x , x <0,求值:(1)f (-12); (2分)(2)f (2-0.5); (3分) (3)f (t -1); (2分)29.(本题满分7分)某班数学课外兴趣小组共有15人,9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数.(1)要求组长必须参加;(2分)(2)要求选出的3人中至少有1名女生;(2分)(3)要求选出的3人中至少有1名女生和1名男生. (3分)30.(本题满分9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列. 求:(1)a, b, c的值;(3分)(2)按要求填满其余各空格中的数;(3分)(3)表格中各数之和.(3分)第30题图31.(本题满分6分)已知f (x )=3sin(ax -π)+4cos(ax -3π)+2(a ≠0)的最小正周期为23.(1)求a 的值; (4分) (2)求f (x )的值域. (2分)32.(本题满分7分)在△ABC 中,若BC =1,∠B =π3,S △ABC =32,求角C .33.(本题满分7分)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,平面AD1C把正方体分成两部分. 求:(1)直线C1B与平面AD1C所成的角;(2分)(2)平面C1D与平面AD1C所成二面角的平面角的余弦值;(3分)(3)两部分中体积大的部分的体积.(2分)第33题图34.(本题满分10分)已知抛物线x2=4y,斜率为k的直线L, 过其焦点F且与抛物线相交于点A(x1,y1),B(x2,y2).(1)求直线L的一般式方程;(3分)(2)求△AOB的面积S;(4分)(3)由(2)判断,当直线斜率k为何值时△AOB的面积S有最大值;当直线斜率k为何值时△AOB的面积S有最小值.(3分)第34题图2015年浙江省高等职业技术教育招生考试数学试卷参考答案及评分标准一、单项选择题(本大题共18小题,每小题2分,共36分)1.【答案】 D 【解析】 x 2+x +3=0,其中Δ=1-4×1×3=-11<0从而方程无解,即集合M 为空集.∴答案选D.2.【答案】 C 【解析】 一方面,由a <b 得a -b <0;另一方面,由a -b <0可得a <b ,故甲是乙的充分且必要条件.∴答案选C.3.【答案】 A 【解析】 由⎩⎪⎨⎪⎧x ≠0,lg (x -2)≥0,x -2>0.得x ≥3,答案选A.4.【答案】 C 【解析】 A ,B 为单调递增函数,D 项中sin x 为周期函数.∴答案选C.5.【答案】 C 【解析】 由题意β=α-2×2π=π4-4π=-154π,答案选C.6.【答案】 B 【解析】 圆心到直线的距离d =||2-4-412+12=32>17=半径,∴直线与圆相离,故选B.7.【答案】 D 【解析】 ∵β∈(0,π),∴sin β∈(0,1],当sin β=1时,得x 2+y 2=1它表示圆;当sin β≠1时,由sin β>0∴此时它表示的是椭圆.答案选D.8.【答案】 C 【解析】 ②a ,b 有可能相交,④a 有可能在α内,①③正确.答案选C.9.【答案】 A 【解析】 ∵cos(π4-θ)cos(π4+θ)=(cos π4cos θ+sin π4sin θ)·(cosπ4cos θ-sin π4sin θ)=12cos 2θ-12sin 2θ=12(cos 2θ-sin 2θ)=12cos2θ=26,∴cos2θ=23.故答案选A.10.【答案】 D 【解析】 ∵a 1+a 2+…+a n =a 1(1-q n )1-q =2n-1,∴q =2,a 1=1,又a 21+a 22+…+a 2n 是以a 21=1为首项,q 2=4为公比的等比数列,∴a 21+a 22+…+a 2n =13()4n -1,故选D.11.【答案】 D 【解析】C 58=P 58P 55=P 585!,∴答案选D.12.【答案】 C 【解析】 直线3x +y +2015=0转化为y =-3x -2015,k =tanθ =-3,∴θ=2π3.13.【答案】 C 【解析】 函数f (x )的最大值为4×a ×(-3)-424×a =5,解得a =-12,即f (x )=-12x 2+4x -3∴f (3)=92.答案选C.14.【答案】 D 【解析】 ∵sin α=35,且α∈(π2,π)∴cos α=-45,tan α=-34,tan(α+π4)=tan α+tanπ41-tan α·tanπ4=17.答案选D.15.【答案】 B 【解析】 ∵三角之比A ∶B ∶C =1∶1∶4,且A +B +C =π,∴A =B =π6,C =2π3.故sin A ∶sin B ∶sin C =1∶1∶ 3.答案选B.16.【答案】 C 【解析】 ∵4=(x -2)(x +2)+y 2=x 2+y 2≥2||xy ,即2||xy ≤4,3||xy ≤6,得3xy ≤-6或3xy ≥6,故3xy 的最小值为-6,答案选C.17.【答案】 B 【解析】 设P (x ,y )与点M (-1,0)关于点H (2,3)中心对称,则x -12=2,y +02=3.∴x =5,y =6.答案选B.18.【答案】 A 【解析】 ∵双曲线的焦距为8,∴c =4,又离心率为e =ca =2,∴a=2,即得b 2=c 2-a 2=12,故双曲线的标准方程为x 24-y 212=1,答案选A.二、填空题(本大题共8小题,每小题3分,共24分)19.【答案】 (-∞,0)∪(7,+∞) 【解析】 ∵||2x -7>7∴2x -7>7或2x -7<-7,即x <0或x >7,故解集为(-∞,0)∪(7,+∞)20.【答案】 a 【解析】 ∵tan α=b a ,∴sin α=b a 2+b 2,cos α=aa 2+b 2,代入即可解得a cos2α+b sin2α=a (cos 2α-sin 2α)+2b sin αcos α=a .21.【答案】 28 【解析】 ∵BA →=-AB →=(0,7),∴||AB →-3BA →=||(0,-28)=28.22.【答案】 {}-5,7 【解析】 ∵三个数4,x -1,9成等比数列,∴有(x -1)2=4×9=36,解得x =-5或x =7.23.【答案】29【解析】 两个人分别出“石头”与“剪刀”有两种可能,且各自出“石头”与“剪刀”的概率为13,P =2×13×13=29.24.【答案】 26C 612x -5【解析】 ∵展开式的中间一项为第7项,∴中间一项为26C 612x -5.25.【答案】 332cm 3 【解析】 设正方体的边长为a ,∵体对角线为3cm ,∴(2a )2+a 2=32,得a =3,∴体积V =332cm 3.26.【答案】 (x +2)2+(y +2)2=4 【解析】 因为圆与第三象限的x ,y 轴相切,所以圆心为(-2,-2),半径为2,故圆的标准方程为(x +2)2+(y +2)2=4.三、解答题(本大题共8小题,共60分)27.【解】因为直线x +2y -1=0的斜率K 1=-12(1分)所以由题意得过点A 、B 的直线斜率为2(2分) 由斜率公式得:2=6-nn -(-1)(2分)解得n =43(2分)28.【解】(1)∵-12<0,f (-12)=3-2×(-12)=4(2分)(2)∵2-0.5=2-12=12=22>0(1分)∴f (2-0.5)=(2-0.5)2-1=2-1-1=12-1=-12(2分)(3)当t -1≥0时,即t ≥1时,f (t -1)=(t -1)2-1=t 2-2t (1分)当t -1<0时,即t <1时,f (t -1)=3-2(t -1)=5-2t (1分)29.【解】(1)组长必须参加,只要从剩下的14人中任取2人即可完成事件,选法总数为 C 214=14×132×1=91种 (2分)(2)3人中至少有1名女生分为三类选法:1女2男,2女1男,3女0男,选法总数为:C 16C 29+C 26C 19+C 36=216+135+20=371种(2分)(3)3人中至少有1名女生和1名男生分为2类选法:1女2男,2女1男,选法总数为:C 16C 29+C 26C 19=216+135=351 种(3分)30.【解】(1)因为每列的数成等比数列,即 2,1,a 成等比数列,所以a =12(1分)又因为每行的数成等差数列,即可求出第二列第五行的数字为32,同理可求出第二列第四行的数字为34,依次可求得b =516(1分)c =316 (1分)(2)(答全对得3 (3)由(1)(2)可得:第一行各数和为:116+332+18+532+316=2032=58,第二行各数和为:18+316+14+516+38=54,同样的方法可分别求得第三行各数之和为52,第四行各数之和为5,第五行各数之和为10. 所以各数之和为 10+5+52+54+58=1158(3分)31.【解】(1)f (x )=3sin(ax -π)+4cos(ax -3π)+2 =-3sin ax -4cos ax +2 =5sin(ax +β)+2 (2分) 由题意有23=⎪⎪⎪⎪2πa (1分)解得:a =±3π(1分)(2)因为sin(ax +β)∈[-1,1](1分)所以f (x )的值域为:f (x )∈[-3,7](1分)32.【解】∵ S △ABC =12BC ×AB ×sin B ⇒AB =2(1分)由余弦定理:AC 2=AB 2+BC 2-2BC ×AB ×cos B (1分)∴ AC = 3 (1分)∵BC 2+AC 2=AB 2(1分)∴△ABC 是直角三角形 (1分) ∴ ∠C =90°(2分)33.【解】(1)因为直线C 1B ∥AD 1,且AD 1⊂平面AD 1C ,推知直线C 1B ∥平面AD 1C (1分) 所以直线C 1B 与平面AD 1C 所成的角为0°(1分)(2)连接C 1D ,交C 1D 于E, 连接AE, 因为E 是对角线交点,三角形ACD 1是等边三角形,所以DE ⊥CD 1,AE ⊥CD 1,所以∠AED 是平面C 1D 与平面AD 1C 所成二面角的平面角(1分)在三角形ADE 中,DE =22a ,AE =62a , 所以 cos ∠AED =DE AE =22a62a =33. (2分)(3)设两部分中体积大的部分体积为V 1, 体积小的部分的体积为V 2, 正方体体积为V ,则有V =a 3,V 2=VA -D 1DC =a 36(1分)所以所求部分的体积V 1=V -V 2=a 3-a 36=56a 3(1分)第33题图34.【解】(1)由题意抛物线x 2=4y 的焦点F (0,1),因为直线L 的斜率为k, 所以直线L 的方程为y -1=kx 化为一般式即为:kx -y +1=0(3分)(2)联立方程得:⎩⎪⎨⎪⎧x 2=4y ①kx -y +1=0 ②, 将②代入①得:x 2-4kx -4=0,x 1+x 2=4k , x 1x 2=-4,||AB =1+k 2||x 1-x 2=1+k 2(x 1+x 2)2-4x 1x 2 =1+k 2(4k )2+16=1+k 216k 2+16 =4(1+k 2) (2分)又因为原点(0,0) 到直线kx -y +1=0的距离为:d =11+k 2(1分) 所以△AOB 的面积S =12d ||AB =12×11+k 2×4(1+k 2)=21+k 2(1分) (3)由(2)得x 2-4kx -4=0, Δ=16k 2+16>0, ∴k ∈R (1分) 因为S =21+k 2,所以无论k 取何值,面积S 无最大值(1分) k =0时,S =2为最小值 (1分)。