协同通信与AF和DF中继协议详情
协作通信系统中的选择AF中继协议研究

协作通信系统中的选择AF中继协议研究协作通信系统中的选择AF中继协议研究协议书甲方:(公司/个人名称)地址:联系电话:乙方:(公司/个人名称)地址:联系电话:鉴于,为了确保协作通信系统在数据传输上的稳定性,双方同意选择AF中继协议进行数据中转传输,并制定本《协作通信系统中的选择AF中继协议研究协议书》(下简称“本协议”)。
本协议内容如下:一、双方的基本信息甲方:(公司/个人名称)地址:联系电话:乙方:(公司/个人名称)地址:联系电话:二、各方身份、权利、义务、履行方式、期限、违约责任1. 甲方:作为本协议的服务提供方,负责提供协作通信系统中的AF中继协议。
2. 乙方:作为本协议的服务使用方,负责按照合同约定进行中转数据传输。
3. 甲方有权采用技术手段对乙方提供的数据进行监控、过滤、分析和归档,并保证所采取的技术手段符合中国相关法律法规的要求。
4. 乙方需按照约定通过甲方提供的AF中继协议进行数据传输,不得采用其他方式进行传输,且需确保数据传输内容不违反中国相关法律法规。
5. 甲方承诺在合同期内为乙方提供稳定、安全的数据中转服务。
乙方应在规定的时间和方式内支付服务费用。
6. 本协议签订之日起生效,服务期限为(具体时间)。
双方如需变更协议内容需通过书面形式进行协商并签署书面协议。
7. 若乙方未按约定履行本协议规定的义务,甲方有权要求乙方依照约定承担违约责任,并要求乙方赔偿因违约给甲方造成的全部损失。
8. 若甲方未按约定履行本协议规定的义务,乙方有权要求甲方依照约定承担违约责任,并要求甲方赔偿因违约给乙方造成的全部损失。
三、需遵守中国的相关法律法规1. 双方应遵守中国有关通信管理的相关法律法规,严格遵守《中华人民共和国网络安全法》等相关法律法规和规定。
2. 双方在使用和提供AF中继协议的过程中,不得从事危害国家安全、泄露国家秘密、颠覆国家政权,破坏国家统一和社会稳定等活动,以免违反中国相关法律法规。
3. 如发现协作通信系统中的部分数据内容违规,双方应立即停止传输,并及时报告相关部门进行处理,不得隐瞒。
单AF、DF协作通信

摘要协作通信思想通过用户间彼此共享天线,互为通信中继,实现虚拟发射分集,从而为MIMO 的实用提供了一个可行的思路。
协作通信的核心问题是中继节点的协作协议。
有两种最基本的中继协作方式放大转发(AF)与解码重传(DF),其它各种协作协议的研究,几乎均是建立在这两个固定中继协议之上。
本文通过MATLAB仿真,来验证协作对通信的改善,并分析不同信道情况下的AF与DF表现,研究二者的实际性能与所面临的主要问题。
关键字:协作通信固定中继放大转发AF任务与要求任务:本项题目旨在研究多中继环境下采用固定中继的协作系统在采用不同中继结构时的系统性能增益,分析BER及分集增益并通过仿真验证理论分析的正确性。
要求:1)在学习中继系统的基础上,了解实际系统中所采用的不同的中继结构。
2)使用MATLAB工具建立搭建采用不同中继协议下的固定中继通信系统(可以采用简单的调制方式),通过信号发射与接收来验证中继选择的性能。
ABSTRACTCooperative communication provides a feasible way of realizing MIMO. It achieves this by sharing antenna and regarding each other as communication relay between users, so as to implement dummy launch diversity. The core problem of cooperative communication is the cooperative protocols for relay node. There are two basic relay cooperative ways, which are Amplify-and-Forward (AF) and Decode-and-Forward (DF). Other researches in cooperative protocols are all based on the two fixed relay protocols. This thesis validates the improvement in communication by stimulating MATLAB. It also analyzes the performance about AF and DF in different channels, so as to study the actual performance and the main problems of the two methods.Keywords: Cooperative Communication Fixed Relaying AF DF目录第一章绪论 11.1 MIMO及协作通信产生背景 11.2 本文的主要内容及组织结构 2第二章协作通信技术基础及其实现 52.1 MIMO技术概述 52.1.1 MIMO系统原理62.1.2 MIMO研究现状及其局限性72.2 协作通信系统概述82.2.1 协作通信系统模型92.2.2 协作中继方式102.3 分集技术102.3.1 分集方式122.3.2 显分集合并方式142.3.3 分集增益16第三章AF与DF原理及性能173.1 放大转发模式(AF)173.1.1 AF模式基本原理及性能173.1.2 单中继AF协作通信过程183.2 解码重传模式(DF)193.2.1 DF模式基本原理及性能193.2.2 单中继DF协作通信过程203.3 理论误码率性能21第四章系统性能仿真234.1 程序流程、结构及变量说明234.2 程序模块实现说明254.2.1 信道模型254.2.2 MRC实现264.2.3 BER实现274.2.4 AF实现284.2.5 DF实现294.3 仿真结果分析31第五章总结35致谢36参考文献37绪论1.1 MIMO及协作通信产生背景1.2 本文的主要内容及组织结构本文旨在研究多中继环境下采用固定中继的协作系统在采用不同中继结构时的系统性能,通过对AF模式和DF模式进行MATLAB仿真,分析其BER及分集增益验证协作通信在恶劣环境中的有效性和高效性。
协作通信系统中的选择AF中继协议研究

结果比较与讨论
结果比较
将选择af中继协议与其他协议或现有方案进 行了比较,从性能、复杂度、资源消耗等方 面进行了分中继协议的优势和不足之处,并探讨 了可能的改进方向和优化空间。
选择af中继协议性能分析
系统模型与性能指标
系统模型
协作通信系统由多个中继节点和一个接收节点组成。中继节点之间相互协作,选择最佳的中继节点传 输信息以增强系统性能。
性能指标
包括误码率(BER)、频谱效率、能量效率等。
仿真结果与分析
仿真设置
假设所有中继节点具有相同的信道 条件,并且每个节点具有半双工特
性。
仿真结果
随着信噪比(SNR)的增加,选择 AF中继协议的误码率逐渐降低,频
谱效率和能量效率逐渐提高。
结果分析
选择AF中继协议利用了多个中继节 点的优势,有效地提高了系统的频
谱效率和能量效率。
结果比较与讨论
01
02
03
比较:与其他协作通信协议相比,选 择AF中继协议具有较高的性能增益 。
讨论:该协议的性能受到多种因素的 影响,如信道条件、中继节点数量、 信噪比等。进一步优化该协议需要考 虑这些因素。
研究成果对于推动协作通信系统的发展和应用 具有一定的指导意义,为相关领域的研究提供 了新的思路和方法。
研究成果已经发表在国内外知名学术期刊和会 议上,受到了同行的关注和认可。
工作不足与展望
研究工作中仍存在一些不足之处,例 如在分析选择af中继协议的性能时, 忽略了某些复杂情况和影响因素,需 要进行更为精确的分析和仿真。
协作通信系统的运行机制
中继端接收来自发送端的信号,进行处理后再转发到接收端。
协作通信系统中的AF中继协议研究

协作通信系统中的AF中继协议研究协作通信系统中的AF中继协议研究一、协议双方的基本信息甲方:(公司/机构/个人名称):地址:联系人:电话:电子邮箱:乙方:(公司/机构/个人名称):地址:联系人:电话:电子邮箱:二、各方身份、权利、义务、履行方式、期限、违约责任甲方:身份:协作通信系统中的AF中继服务提供方。
权利:未经乙方许可,甲方不得泄露乙方的任何资料。
义务:甲方应确保提供的AF中继服务合法、安全、有效,并按照合同约定的时间和标准履行义务。
履行方式:在约定时间内为乙方提供AF中继服务。
期限:双方约定的时间。
违约责任:如甲方未履行义务,需向乙方支付违约金,违约金的具体数额由双方协商确定。
乙方:身份:协作通信系统中的AF中继服务接受方。
权利:乙方享有由甲方提供的AF中继服务,并可以根据协议要求使用这些服务。
义务:乙方应在其使用AF中继服务时遵守中国相关法律法规,并确保所提供的信息准确、真实、完整、及时。
履行方式:按照协议规定的方式使用AF中继服务。
期限:双方约定的时间。
违约责任:如乙方未履行义务,将承担相应的责任及赔偿费用,违约金的具体数额由双方协商确定。
三、需遵守中国的相关法律法规双方确认,在执行本协议期间,将遵守中华人民共和国相关法律法规,包括但不限于《中华人民共和国合同法》、《网络安全法》等相关行业规定。
四、明确各方的权力和义务1.甲方有权要求乙方提供必要的信息,以便履行此协议。
2.乙方有权要求甲方提供符合合同约定的AF中继服务。
3.甲方应确保其提供的AF中继服务完全符合协议约定的时间、质量和其他要求。
4.乙方应按照协议约定的时间和标准使用甲方提供的AF 中继服务。
5、甲方和乙方均需保证自己使用的技术和设备符合中国国家安全标准。
五、明确法律效力和可执行性双方确认,在执行本协议期间,本协议的内容是合法、有效的,并对双方具有法律效力。
如若发生任何违规行为或产生争议,各方均须自愿协商解决,双方未能协商解决的,可向甲方所在地有管辖权的法院提起诉讼。
协作通信系统中的AF中继协议研究

协作通信系统中的AF中继协议研究AF中继协议是一种在协作通信系统中常用的协议,用于提高协作通信系统的性能和可靠性。
AF中继协议的研究主要包括其基本原理、性能评估和在不同场景下的应用等方面。
首先,AF中继协议的基本原理是通过选择中继节点来提高系统的性能和可靠性。
在协作通信系统中,通信节点之间会相互合作,利用中继节点传输信号。
中继节点可以收集到从其他节点发送的信号,并通过合适的转发机制将这些信号转发到目的节点。
中继节点的选择是基于一定的准则,如信号质量、能量消耗等。
通过选择合适的中继节点,可以提高系统的传输速率和信号质量,减少能量消耗。
其次,AF中继协议的性能评估是研究的重点之一、性能评估主要包括系统容量、传输速率、能量消耗等指标。
通过对这些指标的评估,可以了解系统在不同条件下的性能表现,找出可能存在的问题,并提出相应的改进方法。
常用的评估方法包括理论分析、仿真实验和实际部署等。
通过这些评估方法的比较和分析,可以得出更加准确和可靠的评估结果,并为系统的优化和改进提供参考。
最后,AF中继协议在不同场景下的应用也是研究的重要内容之一、协作通信系统广泛应用于无线通信、传感器网络、物联网等领域。
在不同的应用场景下,中继节点的选择和转发机制可能存在差异。
如在无线通信中,中继节点的选择可能主要基于信号质量;而在传感器网络中,中继节点的选择可能还需要考虑能量消耗等因素。
因此,在不同的场景下,对AF中继协议的研究需要结合实际应用需求,提出相应的改进方法和算法。
总之,AF中继协议在协作通信系统中起着重要的作用,对其进行研究可以提高系统的性能和可靠性。
研究包括对其基本原理的深入理解、性能评估的准确和可靠、不同场景下的应用等方面。
通过对AF中继协议的研究,可以为协作通信系统的优化和改进提供参考,并推动相关技术的发展。
协同通信系统中放大转发与解码转发方式的比较

协同通信系统中放大转发与解码转发方式的比较刘斌【摘要】放大转发(AF)与解码转发(DF)作为协同通信中最基本的方法受到广泛关注.本文从复杂度、误码率性能与功率分配方案三个方面针对没有采用循环冗余检验(CRC)的DF、有CRC的DF、AF方式进行比较.指出:AF方式的复杂度低于DF 方式;在优化系统误码率(sER)性能方面,二者具有基本类似的功率分配方案;DF方式易受源--中继端信道传输特性影响,因此没有CRC的DF方式SER性能最差,有CRC的DF可以克服这一缺点,取得比AF略好的性能.【期刊名称】《山东轻工业学院学报(自然科学版)》【年(卷),期】2010(024)003【总页数】4页(P48-51)【关键词】协同通信;放大转发;解码转发;功率分配【作者】刘斌【作者单位】山东省劳动和社会保障信息中心,山东,济南,250001【正文语种】中文【中图分类】TN929.50 引言协同通信技术近年来得到快速发展,其基本思想是无线网络中的各单天线用户彼此为对方转发信息以此获得空域分集,这种技术的传输方式不仅仅是传统意义下的基站和移动用户间的直接通信,它融合了分集方案与中继传输的技术优势,在传统通信网络中实现了多天线与多跳传输的性能增益。
众多研究表明,解码转发 (DF)[1-2]与放大转发 (AF)[1,3]作为协同通信最基本简单的方法受到广泛关注。
Lanman在其经典文献[1]中指出 DF方式得不到满分集,其性能要差于 AF,这说明DF方式下由中继端解调解码错误引起的差错累积传播的危害要大于AF方式下的噪声传播。
因此,很多文献从中引申出DF比AF差的结论[4],事实上该结论是片面的,例如文献[5]就认为实际系统中二者具有基本等价的性能。
若在发送信息中加入CRC的话,中继端可以判断是否解调解码成功,如果成功则转发信息,否则不发送。
这种简单的处理可以使得 DF方式下的协同通信系统亦获得满分集[2]。
那么加入CRC的DF方式下的系统性能与AF比较如何?是否仍然差于AF?若以优化系统误码率(Symbol error rate,SER)性能为目标,二者之间的功率分配方案又有何区别? 因此,本文将从理论与仿真两个层面同时解答以上问题。
协作通信系统中的AF中继协议
协作通信系统中的AF中继协议汇报人:2023-12-15•协作通信系统概述•AF中继协议的基本原理•AF中继协议在协作通信系统中的应用目录•AF中继协议的性能分析•AF中继协议的优化与改进•AF中继协议的未来研究方向01协作通信系统概述协作通信系统是一种通过多用户之间相互协作,实现信息传输的系统。
定义协作通信系统具有提高系统容量、改善信号质量、增强抗干扰能力等优点。
特点定义与特点通过多用户协作,可以充分利用系统资源,提高系统容量。
扩展系统容量改善信号质量增强抗干扰能力协作通信可以通过多用户之间的信号叠加,提高接收端信号质量。
协作通信可以通过多用户之间的干扰消除,提高系统抗干扰能力。
030201协作通信系统的重要性早期的协作通信系统主要集中在理论研究和模拟实验方面。
早期研究随着技术的发展,协作通信系统的标准化进程逐渐加快,推动了该领域的发展。
标准化进程未来,协作通信系统将进一步向高速、宽带、移动等方向发展,为通信领域带来更多的创新和突破。
未来发展协作通信系统的历史与发展02AF中继协议的基本原理AF中继协议是一种适用于协作通信系统的中继传输协议,其中AF表示“放大转发”。
AF中继协议的主要特点是通过中继节点对接收到的信号进行放大和转发,以增强信号的覆盖范围和传输质量。
AF中继协议的定义与特点特点定义在AF中继协议中,中继节点首先接收来自源节点的信号,然后对该信号进行放大处理,并将放大的信号转发给目的节点。
工作流程AF中继协议采用协作方式进行传输,即多个中继节点与源节点和目的节点之间建立通信连接,并通过相互协作实现信号的传输。
协作方式AF中继协议的工作原理AF中继协议的优势与局限性优势AF中继协议具有简单易行、实现难度低、适用范围广等优势,能够在多种通信环境中实现信号的有效传输。
局限性然而,AF中继协议也存在一些局限性,如容易受到噪声干扰、可能出现信号失真等问题,这些问题可能会影响传输质量和系统性能。
协作通信系统中的AF中继协议研究
本科毕业设计论文题目协作通信系统中的AF中继协议研究专业名称通信工程学生姓名XXX指导教师李冬毕业时间2012.6目录摘要 (I)ABSTRACT (II)第一章引言 ....................................... 错误!未定义书签。
1.1研究背景 (1)1.2研究意义 (2)1.3论文结构 (3)第二章无线信道及分集技术 (5)2.1无线通信的概念和发展史 (5)2.2无线信道 (6)2.2.1无线信道的定义 (6)2.2.2影响无线信道的因素 (6)2.2.3无线信道的分集 (7)2.3空间分集技术的产生及研究 (8)2.4MIMO系统 (11)2.4.1 MIMO技术的概念及原理 (11)2.4.2 MIMO的优势 (12)2.5MIMO技术及其分类 (14)2.6MIMO的研究状况及应用 (15)2.6.1MIMO的研究状况 (15)2.6.2 MIMO的应用 (17)2.7协作分集 (18)2.7.1协作分集的定义和产生 (19)2.7.2 协作分集的原理 (19)2.7.3 协作分集的优点及问题 (20)第三章协作通信及其协议 (23)3.1协作通信 (23)3.2.1固定协作策略 (25)3.2.2自适应协作策略 (27)第四章AF中继协议研究 (28)4.1固定放大转发协议 (28)4.2单中继协作通信 (30)4.2.1系统模型 (31)4.2.2 AF协议的SER分析 (32)4.2.3 调和平均值的简单MGF表达 (34)4.2.4渐进紧的近似解 (37)4.2.5最优功率分配 (39)4.3AF与DF协作增益的比较 (40)第五章总结与展望 (45)5.1全文总结 (45)5.2展望下一步 (45)致谢 (47)参考文献 (48)毕业设计小结 (49)摘要近年来,随着无线通信技术的高速发展,MIMO技术被认为是对通信技术有着巨大推动作用的。
协作通信系统中的选择df中继协议
在相同的仿真条件下,选择df中 继协议的性能优于无中继节点的
传输方式。
通过仿真实验验证了选择df中继 协议在协作通信系统中的优越性
。
06
结论与展望
研究成果与贡献
选择df中继协议在协作通信系 统中具有显著的优势,提高了 系统的吞吐量和可靠性。
选择df中继协议能够有效地抵 抗噪声和干扰,降低了误码率 ,提高了通信质量。
按应用场景分类
协作通信系统可以分为固定中继、移动中继和分布式中继等类型。其中,分布 式中继是近年来备受关注的一种协作通信系统。
协作通信系统的关键技术
信道估计与补偿技术
在协作通信系统中,由于用户之间的信道状态信息不共享 ,因此需要通过信道估计与补偿技术来估计和补偿信道的 影响,以保证信息的准确传输。
仿真实验设计与参数设置
仿真场景
包括两个源节点和一个目 标节点,节点间通过无线 信道进行通信。
仿真参数
信道模型采用Rayleigh模 型,每个节点的发射功率 为1W,噪声功率为0.1W ,信道增益为1。
仿真实验设计
每个场景进行1000次仿真 ,统计每个场景的成功传 输次数和总传输次数。
仿真实验结果与分析
选择df中继协议的优越性
01
02
03
频谱效率
选择df中继协议通过选择 性转发,避免了在不良信 道上的无效传输,从而提 高了频谱效率。
能量效率
由于选择df中继协议仅在 信道质量好的情况下进行 转发,因此可以降低能耗 。
鲁棒性
选择df中继协议对信道质 量的变化具有自适应性, 因此具有较强的鲁棒性。
选择df中继协议的应用场景
选择df中继协议能够灵活地适 应不同的信道条件,实现了高 效的资源利用。
协同通信和AF和DF中继协议样本
协同通信和AF和DF中继协议样本协同通信和F AF和和F DF中继协议本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。
文档如有不当之处,请联系本人或网站删除。
Abstract Nowadays,there is a trendfor munication system that the wholework systemis beingdynamic so that there are alwayshaving devicesshould beembeddedandremoved.Conventional wiredmunication,due to the plexityof cabling,does notadapt to the modernmunicationsystem.Wireless techniquehas beenused widelybecause devicescan beconnected by electromagism wavewithout cabling.However,low transmittingreliablity becauseof inter--interference betweenele ctromagismwaves is the keyproblem ofwireless munication.Based onthis,this thesisinvestigates one of thetechnique calledcooperative munication and itcooperative protocols.Cooperative munication is avirtual multiple--input multiple--ou tput(MIMO)system.To increase the reliabilityof signal transmitted without increasing theamount ofmunication devices,this technologytries tomake each antennas haveone ormore partnersthat assist them to transmit the signal.In wirelesswork,the devicesnot onlytransmit theirown signalbut alsoassist their“partner”to transmittheir signalfor savingthecost of installationof additional antennas atboth receiverand senderIn this thesis,we focuson introducingthree mainprotocols incooperative munication:Amplify--and–Forward(AF),Decode--and--Forward(DF)and CodedCooperation(CC).The performanceand mathematicalequations of AF and DF areanalysed,and thenMATLAB programswere createdto simulate the performance of thesetwo protocols.About thethree protocols,the mainprocedures arealso introduced.The performance parison forAF and DF in differentsignal--to--noise(SNR)are本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AbstractNowadays, there is a trend for communication system that the whole network system is becoming dynamic so that there are always having devices should be embedded and removed. Conventional wired communication, due to the complexity of cabling, does not adapt to the modern communication system. Wireless technique has been used widely because devices can be connected by electromagnetism wave without cabling. However, low transmitting reliablity because of inter-interference between electromagnetism waves is the key problem of wireless communication. Based on this, this thesis investigates one of the technique called cooperative communication and it cooperative protocols.Cooperative communication is a virtual multiple-input multiple-output(MIMO) system. To increase the reliability of signal transmitted without increasing the amount of communication devices, this technology tries to make each antennas have one or more partners that assist them to transmit the signal. In wireless network, the devices not only transmit their own signal but also assist their “partner” to transmit their signal for saving the cost of installation of additional antennas at both receiver and senderIn this thesis, we focus on introducing three main protocols in cooperative communication: Amplify-and –Forward(AF), Decode-and-Forward(DF) and Coded Cooperation(CC). The performance and mathematical equations of AF and DF are analysed , and then MATLAB programs were created to simulate the performance of these two protocols.About the three protocols, the main procedures are also introduced. The performance comparison for AF and DF in different signal-to-noise(SNR) aredemonstrated. The result presents that the DF protocols has better performance than AF. Finally, some recommendations and future work are mentioned at the end of the thesis.Table of ContentsAbstractTable of containsList of figuresList of abbreviations and Symbols1 Introduction.................................................................... .. (9)1.1Background.............................................................. (9)1.2Objectives.............................................................. (9)1.3Approaches.............................................................. (9)1.4Thesisoutline................................................................. (10)2LiteratureReview....................................................................... (12)2.1Overview................................................................ (12)2.2Spatial diversitytechnology.............................................................. (13)2.3Basic Model forWireless................................................................ (13)2.3.1SISOsystem.......................................................... (13)2.3.2MIMOsystem.......................................................... (14)2.3.3Cooperativemodel........................................................... (14)2.4Cooperativeschemes................................................................. (15)2.4.1Amplify-and-forwardmethod.......................................................... (16)2.4.2Decode-and-forwardmethod.......................................................... (16)2.4.3Codedcooperation..................................................... (17)3Simulation and Analyses ofAF........................................................................... (21)3.1Overview................................................................ (21)3.2Maximum likelihoodmethod.................................................................. (21)3.3Simulation andAnalysis................................................................ (21)3.3.1The whole procedure andanalysis........................................................ (21)3.3.2Simulation...................................................... (24)3.4Summary................................................................. (26)4Simulation and Analysis ofDF........................................................................... (27)4.1Overview................................................................ (27)4.2Quantizationmethod.................................................................. (27)4.3Convolutional Code and Viterbidecode.................................................................. (27)4.3.1Convolutionalcode............................................................ (28)4.3.2Viterbidecode.......................................................... (28)4.4Simulation andanalysis................................................................ (28)4.4.1The whole procedure andanalysis........................................................ (29)4.4.2Simulation...................................................... (30)4.5Performance comparison between AF andDF (31)4.6Mainchallenges.............................................................. (32)4.7Summary................................................................. (33)5Conclusions and futurework......................................................................... (34)5.1Conclusion.............................................................. (34)5.2Prospect................................................................ (34)5.3Futurework.................................................................... (35)Reference.............................................................. (36)Appendix A Thesisspecification.......................................................... (37)Appendix B Logbook SummarySignature.............................................................. (40)Appendix C MATLABprograms............................................................... (41)C.1 Amplify-and-ForwardProtocol (41)C.2 Decode-and –Forwardprotocol……………………………………………………..................……42C.3 Rayleighchannel………………………………………………………...................... (45)List of FiguresFigure 2.1 virtual MIMOsystem (13)Figure 2.2 Cooperativecommunication ………………………………………………………………………….....……14Figure 2.3 MIMO system............................................................................................................. .. (15)Figure 2.4 Cooperative model (16)Figure 2.5 Relay amplify model………………………………………………………………………………………...……..17Figure 2.6 Decoded and forward model (18)Figure 2.7 Coded cooperative model (19)Figure 2.8 Coded cooperation data allocation (20)Figure 2.9 Four cases in coded cooperative (20)Figure 3.1 first time slot in AF method (23)Figure 3.2 Second time slot in AFmethod (24)Figure 3.3 AF protocol BERdiagram (26)Figure 4.1 (n,k,m) convolutional encoder (29)Figure 4.2 first time slot of DF (3)Figure 4.3 Second time slot (30)Figure 4.4 DF protocol BER diagram (32)Figure 4.5 DF whole procedures (32)Figure 4.6 performance compared between AF and DF (33)List of Abbreviations and SymbolsMIMO Multiple input multiple outputSISO Single input single outputAF Amplify-and-ForwardDF Decode-and-ForwardCC Coded CooperationBER Bit error rateQPSK Quadrature phase-shift keyingi.i.d independently and identically distribution ML Maximum likelihoodSNR Signal –noise-ratio1 Introduction1.1 BackgroundWireless communication is, recently, the fastest improving segment and most widely used way of the communication industry. For utilizing the broadcast property of electromagnetism wave, the information can be transmitted in wireless environment, which saves much cost for cabling and makes the change of network structure easily. On the other hand, as wireless technique is used more widely, there are also many problems appearing. For example, the wireless signal can be affected a lot by the transmitting medium and interfered with other signal and the destination will receive not only the direct wave but also some extra waves. These sorts of wave signal will generate and form the received signal at the destination, which will result in sharply differing with the original signal so that decreases the quality of signal and reliability. This is called multipath fading[11]. To solve these problems, cooperative communication is one of the methods.Cooperative communication technique is a method based on MIMO(multiple-input multiple-output)system. MIMO system is a model that installing more than one antennas in both the sender and receiver, which achieve one signal is transmitted by different channels. In practical, due to the limitation of size, power waste and hardware, it is hard to install a lot of antennas in one communication device so that MIMO technique is hard to utilize in practical directly. Thus, cooperative communication is a model that builds a virtual MIMO system among existing antennas instead of building additional antennas but achieves the gain of MIMO system[8].Compared with traditional transmitting method, cooperative communication builds a cooperative work relationship between each antenna which means each antenna will have a helper to assist them to transmit signal and these helper antennas will take some measures to optimize the quality of signal. Therefore, at the destination, lots of signals will be received so that receiver can have gain of diversity. Some protocols describe what functions these antennas apply for optimizing signal. In this report, some explanations and literature reviews focused on amplify and forward protocol, decoded and forward protocol and coded cooperative protocol are demonstrated. Otherwise, simulation result for amplify and forward and decoded and forward protocol is made.1.2 ObjectivesThe purpose of this project is to analyse the advantages of cooperative communication by analysis of three main cooperative protocols. In this half year, this project can have a conclusion about three objectives:1.Trying to understand the concept of cooperative communication and itsworking system models. Research for how the signal delivered through nodes.2.Finding the three cooperative protocols that antennas obey—AF( amplify—and-- forward), DF (decode- and- forward) and CC (coded cooperation) protocols and how they works.e the MATLAB to simulate the performance of AF and DF and do acomparison about them.1.3 ApproachesFirstly, analyzing the concept of cooperative communication and finding the fundamental protocols about it. Secondly, finding the important described equations and the used coefficients. Finally, use MATLAB to simulate the procedures of AF and DF and try to get the BER( bit errorrate)-SNR(signal-Noise ratio) diagram and compare the their performance.1.4 Thesis outlineThis report includes five parts: first part introduce the background of cooperative communication. Second part explains several literature reviews about wireless, diversity technology, MIMO and cooperative protocols. Third and forth parts demonstrate the simulation about AF and DF and get the result diagram. Additional, the forth part also includes the performance comparison between AF and DF. Last part makes a conclusion and the future work about the project.2 Literature Review2.1 OverviewTo overcome the lack of multiple antennas limited by size or hardware complexity, cooperative communication is proposed. Cooperative communication can be understood a virtual multiple input multipleoutput(MIMO) system between source and destination.In another words, the cooperative communication build a cooperative relationship among existing antennas. For utilizing the broadcast property of electromagnetism wave, not only the destination, there are also some other antennas receive the source signal. Instead of discarding this signal, this relationship asks these antennas to take some measures to process this signal and retransmit it to the appointed destination.Figure 2.1 virtual MIMO systemTo decrease the bit error rate and recover the source signal well, there are three common protocols for the helper antennas applying: amplify and forward(AF) protocol, decoded and forward (DF) protocol and coded cooperative(CC) protocol.Figure 2.2 Cooperative communication2.2 Spatial diversity technologyCooperative communication utilizes the spatial diversity technology. Diversity is an idea that transmitting a signal through many independent channels, it is described in [1]. When source sends one signal in different independent channels, the destination will receive many formats about this signal. In this way, it can increase the signal-to-noise ratio(SNR) at the receiver which result in recovering the source signal better. There are three common diversity technologies: time diversity, frequency diversity and spatial diversity. Spatial technology is to build many relays to retransmit the signal which creates additional channels in space. The cooperative communication applies the spatial diversity technology mainly[4].2.3 Basic Model for Wireless2.3.1 Single input and single output (SISO) systemSingle input and single output is the tradition model which both transmitter and receiver have one antenna to send or receive signal. In this way, the information is transmitted by electromagnetism wave in the air. Due to the effect of multiple path fading, the destination is hard to recover the source signal from receiver signal.2.3.2 Multiple input and multiple output(MIMO) systemAs the name said, MIMO allows both the source and destination to have multiple antennas to send and receive signal[9]. Due to the effect of multiple path fading, the quality of signal will be decreased. However, by buildingadditional ways between source and destination, more information will be transmitted at the same time and for the destination many formats of source signal will be received so that MIMO can greatly improve the spectrum utilization and channel capacity without increasing the bandwidth. But more antennas mean more communication devices in both source and destination. It has to cost a lot to build enormous system to support the multiplexing technology[9].Figure 2.3 MIMO system2.3.3 Cooperative modelThe basic cooperative model is the source-relay-destination model. Here we defined the cooperative antenna as relay. This model is naturally represented by the graph below [3]. Here we set the source-to-relay channel gain to H1, noise is N1; the gain of source-to-destination to H2, noise is N2; the gain of relay-to-destination to H3, noise is N3. At the first time slot, the source sent the source signal X1 to the relay and destination:Y2=H1*X1+N1Y3=H2*X1+N2At the second time slot, the relay takes some measures to process the received signal Y2, we set the process to C: X2=C*Y2. Then, the relay retransmitted the X2 to the destination: Y4=H3*X2+N3. As a result, at the destination Y4 and Y3 are received:Y3=H2*X1+N2Y4=C*H3*H1*X1+C*H3*N1+N2The destination’s task is recovering X1 from Y3 and Y4.2.4 Cooperative schemesAlthough the spatial diversity technology can increase the rate of successful packet receipt and the receiver SNR, during the signal transmitting through the channel (Rayleigh fading channel), the signal still suffer from the fading like noise. Due to the negative effect of Rayleigh fading, the signal density and phase will be changed. To weakened this effect, the relay node need to take some cooperative coding strategies.2.4.1 Amplify-and-forward method (AF)In practical, during the signal transmitted in channel, one of the fading problems is amplitude fading, which may lead to packets loss and power efficiency decreasing [4].Amplify-and-forward method is quite simple. After the relay received the signal from source, the relay just amplifies the signal and retransmits it to the destination. Although the noise part is amplified as well, the destination can have gain of diversity[8]. However, the amplify coefficient should meet the constraint of power. Here, we set the power of source sending signal to P, the power of noise between source and relay is n1. The power of retransmitting is P1. We can get(the energy is amplified, not the power): sqrt*P1=B*sqrt*(P+n1) B=sqrt*(P1/(P+n1))Figure 2.5 Relay amplify model2.4.2 Decoded-and-forward (DF) methodThere is another method for the relay to process the received signal. Compared to the AF, this method is more complex.In this method the relay attempts to detect the received signal from source. At the first time slot, the source sends the signal to relay and source in 50% of total power respectively. At the second time slot, after the relay received the signal from source, it will decode it and detect if error happens during source-to-relay channel. If there are errors, the relay will stay silent and the source will send the signal to the destination in 50% of total power again. If no errors, the relay will encode the signal and retransmit it to the destination. In this way, because the relay only retransmits the right signal the error bits will be decreased. However, it should notice that DF is limited by the quality of source-to-relay channel[8].Figure 2.6 Decoded and forward model2.4.3 Coded cooperationInstead of simple processing signal by relay in the AF or DF method, coded cooperation is a combination of channel coding and cooperative communication[6]. Coded cooperation is a idea that by two independently and identically distribution channels transmitting one host’s different parts of data bits. Its basic idea is that each hosts transmit their incremental redundancy to their partner. If the quality of channel between hosts is bad, it will change to non-cooperative model.Figure 2.7 Coded cooperative modelThe communication among users is with no feedback for the transmission operated automatically through the code design. The signal to be transmitted will be divided into blocks and each block will be sent in two frames[6].Figure 2.8 Coded cooperation data allocationIn the first frame, each user tries to decode partner’s data. If decoded successfully, it will send partner’s second part data. If not, send the second part data of its own. Due to no feedback among users, each user does not know if partner decoded its first data part successfully or not so there are four possible situations. Each user decoded partner’s data successfully, no user decoded successfully. One of users decoded successfully.Figure 2.9 Four cases in coded cooperative[6]For recovering the original signal from the corresponding users, the destination needs to know which case is occurred. One of the methods is that destination thinks about and checks every case according to their emergence possibilities until the CRC bits present correct result. The other method is each user attaches an additional information bits in their second part codeword that includes which case is occurred [6]. The first method takes too much time and the second method makes the whole process complex.3 Simulations and Analyses of AF3.1 OverviewAmplify and forward method is a simple method to decrease the bit error rate at receiver based on diversity technology. Its main idea is to amplify the signal and noise. Then this signal is retransmitted to the destination. The challenge is how to recover the original signal at the receiver. The Maximum Likelihood method (ML) can meet the requirement.3.2 Maximum likelihood methodAs the destination receives much signal with noise, it is the destination’s responsibility for recovering the original signal from received signal. Maximum likelihood method is just an estimation method instead of getting accurate signal, which is described in [7]. The data set and the statistical model are known. The task is to estimate the model's parameters. Always, the maximum likelihood makes a approximate model with some selected parameters to forecast the wanted value. Here we consider QPSK signal. For a discrete time block and the signal is transmitted through Rayleigh fading channel. The received signal can be: y=Hx+n, where H is a known channel matrix and n is the noise. The fading coefficients are i.i.d. To recover the original signal x, where xis one of (1, -1, -i, i), then minimizes |y-Hx|2 [10].i3.3 Simulation and Analysis3.3.1 The whole procedure and analysisBefore source broadcasting the signal, the source will modulate the digital signal into Quadrature Phase Shift Keying(QPSK) signal Xs (1, -1, i, -i). The whole procedure is divided into two time slot. At the first time slot, the source sent the signal to the relay and destination respectively. The mathematical equation can be present as below:Source to relay: Y1=sqrt(P*1/2)*h1*S+n1 (3.1)Source to destination: Y2=sqrt(P*1/2)*h2*S+n2 (3.2)Where P means the signal power, h1 and h2 is the Rayleigh channel gain of source to relay and destination respectively. n1 and n2 are the additive Gaussian noise during each channel. The figure below describes the behaviourof the source at the first time slot.At the second time slot, the relay receive the noisy signal Y1 from sourceand amplifies it by amplify coefficient B. For efficient B, there are someconstraints for it. It is impossible that the signal will not be amplifiedinfinite. To ensure the power of the relay is limited, B needs to satisfythe condition:)) (3.3)B=sqrt(P/(P*|h1|2+NWhere Nis the power of the noise.After amplified, the signal will be:))* (sqrt(P*1/2)*h1*S+n1)Y3=b*Y1= sqrt(P/(P*|h1|2+N(3.4)The Y3 is transmitted to destination through Rayleigh channelY4=sqrt(P)*h3*Y3+n3))* (sqrt(P)*h1*S+n1)+n3=sqrt(P)*h3* sqrt(P/(P*|h1|2+N))* sqrt(P)*h1*S+=sqrt(P)*h3* sqrt(P/(P*|h1|2+Nsqrt(P)*h3* sqrt(P/(P*|h1|2+N))*n1+n3(3.5)So far, the destination received Y4 and Y3 two signal. The destination’sresponsibility here is to recover “S” by Y4 and Y3 used Maximum Likelihood(ML)method. After the digital signal transmitted to QPSK signal, every symbolof the signal has four different valuesdh=[1 -1 i -i] (3.6)By selecting the value of “S(i)” from the dh that minimums the D3, constitutea string of signal which is likely to the original signal.D1=|Y4- sqrt(P)*h3* sqrt(P/(P*|h1|2+N))* sqrt(P)*h1*S|2(3.7)D2=|Y2- sqrt(P)*h2*S|2 (3.8)D3=D1+D2 (3.9)(which S selected fromdh)Using this method, we can get the processed signal “S’“. Finally, thedestination will use the QPSK demodulation method to get the original signal“s’“.To judge the performance of AF protocol, a parameter “bit error rate(BER)”is used.BER=E/N (3.10) Which E is the error bits of processed signal compared with the original,N is the number bits of original signal. The BER is changed in different numberof signal-to-noise ratio (SNR) due to the noise amplitude.SNR=Ps /Pn(3.11)Where Ps stands for the signal power and Pn means the noise power. As the increasing of the SNR, it can be seen that the noise is decreasing in the channel which leads to the decreasing of BER.3.3.2 SimulationTo make the result more accurate, it is a good idea to use the as much as symbols signal. The signal length is set to 100000. Otherwise, due the signal power is calculated by SNR, we set the range of SNR to 0 to 30 . Before transform the signal, the source will modulate the binary signal to QPSK signal.Build the QPSK modulator:x=randint(1,N);X=modulate(modem.pskmod(4),x)For simple the program , we assume that the transmitting channel is Rayleigh channel which the signal magnitude is random distribution. This channel can be simulated as:For example:function H=Rayleigh(signal_size)H=sqrt(1/2)*(randn(1,signal_size)+j*randn(1,signal_size)); Apart for that, during signal transmitted in Rayleigh channel, it will be affected by noise. Here, we assume the noise is additive white Gaussion noise(AWGN). Using the MATLAB we can simulate the noise below:For example:N=sqrt(1/2)*(randn+j*randn);After destination received two signals from relay and source, it will use ML method to recover the original signal. The ML method can be simulated below:For example:dh = [1 -1 j -j];l=1:4;D2=abs(Ysd-sqrt(R*sig)*Hsd*dh(l)).^2;D1=abs(Yrd-Hrd*(sqrt(R*sig)*Hsr*dh(l)+Nsr)*B).^2; D3=D1+D2;[minScale1 positionmin1]=min(D3); Xd=[Xd dh(positionmin1)]Xd is the signal that has recovered. Then, as Xd is QPSK signal it is needed to demodulate Xd to binary signal xd. By comparing xd with the original x, it easy to find the error bits and its number. Recording the error number and the corresponding SNR value, the diagram that show the relationship between SNR and BER can be obtained. The simulation result is illustrated below:5101520253010-310-210-110t h e a v e r a g e B E RSNR(db)AF protocolFigure 3.3 AF protocol BER diagram3.4 SummaryEven though it is successful to simulate AF use MATLAB, but it seems that the line is shown with many curves and it is not smooth. By increasing the number of symbols and the times of repeating the experiment, the line became more smooth.4 Simulations and Analysis of DF4.1 OverviewThe decoded and forward (DF) method is more complex than AF. The source will use not only QPSK modulation method but also convolution coding and viterbi decoding method to process the signal. Otherwise, to adapt the data to the fading channel, the quantization method is used.4.2 Quantization methodWhen the data signal is transmitted in the format of beamforming, the performance can be improved[5]. But the quantization is needed. Quantization is a method that mapping several data bits to a symbol and assigning level to each symbols. For using these continuous symbol levels to make a databeamforming. For example, a bits flow [00 10 11 01 01 10 11]. Because we use the QPSK signal, there are four symbols and assigning two bits to a symbol. 00=0*21+0*20=0, 01=0*21+1*20=1, 10=1*21+0*20=2, 11=1*21+1*20=3.So the bits flow can be described as a beamforming like:4.3 Convolutional Code and Viterbi decodeConvolutional code is a method of error correction coding and viterbi decode is the corresponding decoding method. The main reason to apply error correction coding in a wireless system is to decrease the effects of fading channel and reduce the probability of bit error. The bit error probability for a coded system is the probability that a bit is decoded in error.4.3.1 Convolutional codeConvolutional code is an idea that adding redundancy after a code flow. The common pattern of convolutional code is like this:Figure 4.1 (n,k,m) convolutional encoderIt means that every k input symbols have n output symbols. The n-k is the redundancy code. The redundancy code plays a role of supervising. The n output symbols are called a group. The redundancy code has a relationship with n group’s input symbols before it. Plus the input symbol in its own group, there are n+1 correlation symbols. We called n+1 traceback length[2].4.3.2 Viterbi decodeViterbi decode is a common decoding method for convolutional code. It applies the correlation property between redundancy codes to recover the original symbols. Otherwise, it should note that the decoding operation causes a delay in bits that equal to the traceback length[2].4.4 Simulation and analysis4.4.1 The whole procedure and analysisThe whole procedure of DF is divided into 3 time slot. In the first time slot, the source acts same as AF source dose that broadcast the signal to the relay。