2006年中考数学专题复习-不等式
中考数学专题复习《代数推理题》知识点梳理及典例讲解课件

号).
1
2
3
4
5
6
7
8
9
10
11
(填序
重要依据.利用不等式的性质进行推理、判断时,应充分利用已知条
件,将已知条件转化为与选项相似的结论,进而判断出题中的各选
项 是 否 符 合 题 意 . 利 用 不 等 式 的 性 质 解 题 时, 不 仅 要 注 意 “ 两 都 一
同”及除数不为零,还应注意不等式的两边都除以同一个负数时,
要改变不等号的方向.
D. 2a+2b-3d=21
典例3 已知实数a,b,c满足a2+b2=3ab=c,则下列结论中,错误的是
(C)
A. 若c=0,则a=b=c
B. 若a=b=c,则c=0
C. 若c=3,则a+b= 5
D.
若c≠0,则 + =3
类型2 利用不等式的性质推理
方法指导:不等式的性质是进行不等式变形的基础,是解不等式的
典例4 若a<b,x<y,则下列判断中,正确的是( D )
A. ax<by
B. ax>by
C. ax+by<ay+bx
D. ax+by>ay+bx
典例5 已知实数a,b满足2a+b=-3,a-3b≤0,则下列不等式中,一
定成立的是( D )
A.
≥3
C.
1
≥
3
B.
≤3
D.
1
≤
3
C. 若b=c,则a=1
D. 若a=1,则b2-4c≥0
1
2
3
4
5
6
7
8
9
10
11
9. (2023·无为三模)已知三个实数a,b,c满足a-3b+c=0,a2-c2>
【中考数学12年】江苏省扬州市中考数学试题分类 专题3 方程(组)和不等式(组)

【中考数学12年】江苏省扬州市中考数学试题分类专题3 方程(组)和不等式(组)一、选择题1. (2004年江苏扬州3分)用换元法解方程212x 2x 3x x+-+=()(),则原方程可化为【 】 A .2y 2y 30+-= B .2y 2y 30-+= C .2y 2y 30--= D .2y 2y 30++=3. (2005年江苏扬州大纲卷3分)关于x 的方程2kx 3x 10+-=有实数根,则k 的取值范围是【 】.A .9k 4≤- B .9k k 04≥-≠且 C .49k -≥ D .0k 49k ≠->且 【答案】C 。
【考点】一元二次方程根的判别式,分类思想的应用。
4. (2005年江苏扬州大纲卷3分)若方程()()6m1x 1x 1x 1-=+--有增根,则它的增根是【 】.A .0B .1C .-1D .1和-15. (2007年江苏扬州3分)不等式组x 2x 1<⎧⎨>-⎩的解集为【 】A.x 1>-B.x 2<C.1x 2-<<D.x 1<-【答案】C 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,不等式组x 2x 1<⎧⎨>-⎩的解集为1x 2-<<。
故选C 。
二、填空题1. (2003年江苏扬州3分)x=-2是方程2x k 1=0+-的根,则k= ▲3. (2005年江苏扬州大纲卷3分)用换元法解方程213(x )3x 60x x--+-=时,若设1x y x-=,则原方程变形为关于y 的方程是 ▲ 。
4. (2006年江苏扬州4分)方程2x 4x=0-的解为 ▲ . 【答案】12x =0x =4,。
【考点】因式分解法解一元二次方程。
【分析】应用因式分解解方程:()212x 4x=0x x 4=0x=0x 4=0x =0x =4-⇒-⇒-⇒,,。
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
中考数学 一元一次不等式易错压轴解答题(含答案)100

中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。
中考数学总复习考点知识专题练习07 不等式(组)(解析版)

中考数学总复习考点知识专题练习专题07 不等式组一、单选题(共10小题,每小题3分,共计30分)1.(2021·广东中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解B .1x ≤C .1x ≥-D .11x -≤≤【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2021·新疆中考真题)不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是()A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组,掌握解不等式组的方法是解题的关键.3.(2021·贵州贵阳市·中考真题)已知a b <,下列式子不一定成立的是()A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D【分析】根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项不符合题意;B 、不等式a <b 的两边同时乘以-2,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a <b 的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b +<+,故本选项不符合题意; D 、不等式a <b 的两边同时乘以m ,当m>0,不等式仍成立,即ma mb <;当m<0,不等号方向改变,即ma mb >;当m=0时,ma mb =;故ma mb >不一定成立,故本选项符合题意,故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.4.(2021·江苏苏州市·中考真题)不等式213x -≤的解集在数轴上表示正确的是() A .B .C .D . 【答案】C【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:移项得,2x ≤3+1,合并同类项得,2x ≤4,系数化为1得,x ≤2,在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键.5.(2021·四川广元市·中考真题)关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个,则m 的取值范围是()A .21m -<≤-B .21m -≤≤-C .21m -≤<-D .32m -<≤-【答案】C【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩, 解集为m <x <3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1,故选:C .【点睛】本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到-2≤m<-1是解此题的关键.6.(2021·山东潍坊市·中考真题)若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是()A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<【答案】C【分析】先求出不等式组的解集(含有字母a ),利用不等式组有三个整数解,逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥,解不等式28x a -<得:82a x +<, ∴不等式组的解集为:822a x +≤<, ∵不等式组35128x x a -⎧⎨-<⎩有三个整数解, ∴三个整数解为:2,3,4, ∴8452a +<≤, 解得:02a <≤,故选:C .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.(2021·四川宜宾市·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种【答案】B【分析】设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x)个由题意得:500550631006x xx+-≤⎧⎨≤⎩(),解得4≤x≤6则x可取4、5、6,即有三种不同的购买方式.故答案为B.【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.(2021·广西中考真题)不等式组1051xx->⎧⎨-≥⎩的整数解共有()A.1个B.2个C.3个D.4个【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【详解】解:解不等式x ﹣1>0,得:x >1,解不等式5﹣x ≥1,得:x ≤4,则不等式组的解集为1<x ≤4,所以不等式组的整数解有2、3、4这3个,故选:C .【点睛】此题考查求不等式组的整数解,正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(2021·山东聊城市·中考真题)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得.【详解】 解不等式1132x x +<-,得:x >8, ∵不等式组无解,∴4m≤8,解得m≤2,故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2021·四川广安市·中考真题)若m n >,下列不等式不一定成立的是( ) A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n > 【答案】D【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.二、填空题(共5小题,每小题4分,共计20分)11.(2021·四川凉山彝族自治州·中考真题)关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是________________.【答案】-114≤a <-52【分析】 解不等式组求得不等式组的解集,根据不等式组有四个整数解,进而求出a 的范围.【详解】()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得,x >8;解不等式②得,x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解,∴12<2-4a ≤13,∴-114≤a <-5212.(2021·四川遂宁市·中考真题)若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m 的取值范围是______.【答案】1≤m <4【分析】 解不等式组得出其解集为﹣2<x ≤23m +,根据不等式组有且只有三个整数解得出1≤23m +<2,解之可得答案. 【详解】解不等式2143x x --<,得:x >﹣2,解不等式2x﹣m≤2﹣x,得:x≤23m+,则不等式组的解集为﹣2<x≤23m+,∵不等式组有且只有三个整数解,∴1≤23m+<2,解得:1≤m<4,故答案为:1≤m<4.13.(2021·四川绵阳市·中考真题)若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.【答案】236≤m≤6【分析】解不等式52x+>﹣x﹣72得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>216mm+-,∵x>﹣4都能使x>216mm+-成立,∴﹣4≥216mm+-,∴﹣4m+24≤2m+1,∴m≥236,综上所述,m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.(2021·四川攀枝花市·中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.【答案】33【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.【详解】解:设x人进公园,若购满40张票则需要:40×(5-1)=40×4=160(元),故5x>160时,解得:x>32,∴当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.15.(2021·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.【答案】6【分析】根据题中给出阅读过《三国演义》的人数,则先代入条件(3)可得出阅读过《西游记》的人数的取值范围,然后再根据条件(1)和(2)再列出两个不等式,得出阅读过《水浒传》的人数的取值范围,即可得出答案.【详解】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是b ,(,a b 均为整数) 依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<,b ∴最大可以取6;故答案为6.三、解答题(共5小题,每小题10分,共计50分)16.(2021·江苏苏州市·中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤【分析】(1)根据等量关系“围栏的长度为50”可以列出代数式,再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式,用含有b 的式子表示a,再结合1826a ≤≤,列出关于b 的不等式组,接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意,得250a b +=,当20a =时,20250b +=.解得15b =.(2)∵1826a ≤≤,502a b =-,∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组,得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式,正确理解题意得出关系式是解题关键.还考查了解不等式组,难度不大.17.(2021·甘肃金昌市·中考真题)解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.【答案】-2≤x<3,解集在数轴上表示见解析.【分析】先求出两个不等式的解集,再求其公共解.【详解】解:3512(21)34 x xx x-<+⎧⎨--⎩①②解不等式①,得x<3.解不等式②,得x≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(2021·贵州贵阳市·中考真题)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【答案】(1)方程见解析,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)可能是2元或者6元【分析】(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支, 根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了(2)设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-, 整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<,∵x 取整数, ∴20,21x =.当20x 时,420782a =⨯-=,当21x =时,421786a =⨯-=,所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.(2021·江苏淮安市·中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤: (2)解题回顾:本题“去分母”这一步的变形依据是(填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .【分析】(1)按照去括号、移项、合并同类项的步骤进行补充即可;(2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母,得2(21)31x x ->- 去括号,得4231x x ->-移项,得4312x x ->-+ 合并同类项,得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数,不等号的方向不变 31212x x -->两边同乘以正数2,不等号的方向不变,即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质,熟练掌握一元一次不等式的解法是解题关键.20.(2021·江苏常州市·中考真题)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果【分析】(1)设每千克苹果售价x元,每千克梨y千克,由题意列出x、y的方程组,解之即可;(2)设购买苹果a千克,则购买梨(15-a)千克,由题意列出a的不等式,解之即可解答.【详解】(1)设每千克苹果售价x元,每千克梨y千克,由题意,得:326 222x yx y+=⎧⎨+=⎩,解得:86xy=⎧⎨=⎩,答:每千克苹果售价8元,每千克梨6千克,(2)设购买苹果a千克,则购买梨(15-a)千克,由题意,得:8a+6(15-a)≤100,解得:a≤5,∴a最大值为5,答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.。
中考数学压轴题方程和不等式综合问题解答题解析版

26.如图1,数轴上,O点与C点对应的数分别是0,单位:单位长度,将一根质地均匀的直尺AB放在数轴上在B的左边,若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.请直接写出直尺的长为______个单位长度;如图2,直尺AB在数轴上移动,有,求此时A点所对应的数;如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处看不到直尺的任何部分,A在B的左边,将直尺AB沿数轴以4个单位长度秒的速度分别向左、右移动,直到完全看到直尺,所经历的时间分别为、,若秒,求直尺放入篷内时,A点所对应的数为多少?【答案】(1)20;(2)或10;(3)A点在蓬内所对应的数为38.当直尺AB在数轴上移动时,符合的情况如下所示:设BO为x:,所对应的数为设OA为x:,所对应的数为10综上所述,A在数轴上所对应的数分别为或10.设,如下图,根据题意,解得所以A点在蓬内所对应的数为38【关键点拨】本题通过直尺两端相对固定的两个点在数轴上移动时和数轴上固定的点之间长度关系的变化来确定移动点的位置,根据已知条件来分析移动点的可能性是解题的关键.月使用费主叫限定时间(分钟) 主叫超时费(元/分钟) 被叫方式一65 160 0.20 免费方式二100 380 0.25 免费被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____ 元;李华某月按方式二计费需107元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间(分钟),按方式一和方式二的计费相等?若存在,请求出的值;若不存在,请说明理由。
(3)直接写出当月主叫通话时间(分钟)满足什么条件时,选择方式一省钱。
【答案】(1)73,100,408;(2)存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)当每月通话时间大于560分钟时,选择方式一省钱.(2)①当t≤160时,不存在;②当160<t≤380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100,解得t=335,符合题意;③当t>380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100+0.25(t-380),解得t=560,符合题意.故存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)由(2)可得,当每月通话时间大于560分钟时,选择方式一省钱.【关键点拨】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.同学们,今天我们来学习一个新知识,形如的式子叫做二阶行列式,它的运算法则用公式表示为:利用此法则解决以下问题:(1)仿照上面的解释,计算出的结果;(2)依此法则化简的结果;(3)如果那么的值为多少?【答案】(1)11;(2)5a−b−ab;(3).(3)∴5x-3(x+1)=4∴5x−3x−3=4∴2x=7∴x=【关键点拨】[来源:]此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键. 29.阅读探索知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_____________.【答案】(1)(2)解得:,故答案为:【关键点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 30.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足,B两点对应的数分别为______,______;若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;若点A、B分别以4个单位秒和3个单位秒的速度相向而行,则几秒后A、B两点相距1个单位长度?若点A、B以中的速度同时向右运动,点P从原点O以7个单位秒的速度向右运动,是否存在常数m,使得为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.【答案】(1)-10;5; (2)-5;(3)2或秒;(4)存在,当m=3时,4AP+3OB-mOP为定值55.(2)∵|AB|=5-(-10)=15,=7.5,∴点A、点B距离折叠点都是7.5个单位所以折叠点上的数为-2.5.所以与点O重合的点表示的数为:-2.5×2=-5.即原点O与数-5表示的点重合.故答案为:-5.(3)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15-1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=答:2或秒后A、B相距1个单位长度;【关键点拨】本题考查一元一次方程的应用,非负数的性质及数轴上两点间的距离.题目综合性较强,难度较大.解决(1)需利用非负数的性质,解决(3)注意分类思想的运用,解决(4)利用数轴上两点间的距离公式.31.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.(问题情境)在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,、两点相遇,且动点、运动的速度之比是(速度单位:单位长度/秒).备用图(综合运用)(1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;(2)当时,求运动时间;(3)若点、在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点、的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从、相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.【答案】(1)动点P运动的速度为4.5单位长度/秒,动点Q运动的速度为3单位长度/秒;(2)运动时间为或秒;(3)点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为,理由见解析(2)设运动时间为t秒.由题意知:点P表示的数为-20+4.5t,点Q表示的数为10-3t,根据题意得:|(-20+4.5t)-(10-3t)|=×|(-20)-10|整理得:|7.5t-30|=107.5t-30=10或7.5t-30=-10解得:t=或t=.答:运动时间为或秒.(3)P、Q相遇点表示的数为-20+4×4.5=-2(注:当P、Q两点重合时,线段PQ的中点M也与P、Q两点重合)设从P、Q相遇起经过的运动时间为t秒时,点M与原点重合.①点P、Q均沿数轴正方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷=(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:解得:t=-(舍去).此时点M不能与原点重合;④点P沿数轴负方向运动,点Q沿数轴负方向运动,则:解得:t=-(舍去).此时点M不能与原点重合.综上所述:点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为.【关键点拨】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.32.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标时段8:00~9:00 10:00~11:00 12:00~13:0014:00~15:0016:00~17:00客流量(人)-21 +33 -12 +21 +54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?【答案】(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【关键点拨】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位.33.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.【答案】(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【关键点拨】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.34.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【关键点拨】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金35.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA和CDA 均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.【答案】(1)①4,800;②24,3;(2)情况一所用时间比较少,理由详见解析;(3)①D到A的路程为800 米;②丙应该选择乘坐1 号车所需时间最少.412分钟,第三次相遇时间为1220分钟,第四次相遇时间为2028分钟,∴这一段时间内1号车与2号车相遇了3次.故答案为:24,3;(2)情况一所用时间比较少,设CK=x米,由题意知,情况一需要时间为:16,情况二需要的时间为:16,∴情况一所用时间比较少;(3)①设P到A的路程为a米,则2号车从C→B→A→P的时间为分钟,∴D到P的路程为50,由题意知,,解得:a=320,∴D到P的路程为50=480米,∴D到A的路程为320+480=800米;②若丙选择乘坐1号车,所需时间为13分钟,若丙选择乘坐2号车,所需时间为21分钟,若丙选择步行到出口A,所需时间为32分钟,所以丙应该选择乘坐1号车所需时间最少.【关键点拨】本题考查了一元一次方程的应用,理解题意仔细剖析每种情形下路程的变化是解题的关键.36.已知一个四位自然数M的千、百、十、个位上的数字分别是、、、,若,且,则称自然数M是“关联数”,且规定.例如5326,因为,所以5326是“关联数”,且现已知式子(、、都是整数,,,)的值表示四位自然数,且是“关联数”,的各位数字之和是8的倍数.(1)当时,求;(2)当时,求的和.【答案】(1)3544,(2)-72.∴,,.∴.(2)当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3562.[来源]∴,.当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3984.∴,.∴.∴的和是-72.【关键点拨】此题主要考察不等式的应用,正确理解题意,再列出相应的式子,但是要注意分开来求解. 37.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.(2)解:设小亮准备购买A甲内存卡a个,则购买乙内存卡(10﹣a)个,则解得5≤a≤6,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低[来源:(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【关键点拨】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.38.三亚市某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生(2)如果该工厂生产一件A产品可获利80元,生产一件B产品可获利120元,那么该工厂应该怎样安排生产可获得最大利润?【答案】(1)见解析;(2)见解析.(2)方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大【关键点拨】本题主要考查一元一次不等式组的应用.39.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x[来源]=-0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【关键点拨】本题考查了用一元二次方程组的实际应用,一次函数的实际应用问题,建立函数模型是解题关键.40.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.【答案】(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=OF•AE=(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=OH•DH﹣(BG+DH)•GH﹣OG•BG,【关键点拨】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
2024年中考数学总复习:不等式(附答案解析)
第1页(共19页) 2024年中考数学总复习:不等式一.选择题(共25小题)1.a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a +x >b +xB .﹣a +1<﹣b +1C .3a >3bD .−a 2>−b 22.在数轴上表示不等式﹣1≤x <2,其中正确的是( )A .B .C .D .3.若m >n ,则下列不等式中正确的是( )A .m +2<n +2B .−12m >−12nC .n ﹣m >0D .﹣2m +1<﹣2n +14.对于多项式x 2﹣xy ﹣2y 2记为f (x ,y ),即f (x ,y )=x 2﹣xy ﹣2y 2;若令x =1,y =2,即f (1,2)=12﹣1×2﹣2×22=﹣9;下面几个结论正确的个数有( )个.(1)存在实数x 使f (x ,1)=k 成立,则k 的取值范围是k ≥−94;(2)若f (3,y )<0,则﹣3<y <32;(3)若f (x ,y )=0,则2x−y x+2y =−3或34; (4)存在整数x 、y ,使f (x ,y )=3xy +4x ﹣6y 2﹣8y +4成立.A .1B .2C .3D .45.高斯函数[x ],也称为取整函数,即[x ]表示不超过x 的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3:②[x ]+[﹣x ]=0;③若[x ﹣1]=1,则x 的取值范围是2<x <3;④当﹣1<x <1时,[x +1]+[﹣x +1]的值为0,1,2.其中正确结论的个数是( )A .1B .2C .3D .46.若关于x 的不等式组{x −(4a −2)≤23x−12<x+23的解集为x ≤4a ,且关于y 、z 的二元一次方程组{y +2z =4a +52y +z =2a +4的解满足y +z ≥﹣1,则满足条件的所有整数a 的和为( ) A .﹣3B .﹣2C .0D .3。
专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)
专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.﹣.所以m最小值=故本题答案为:﹣.变式1.3已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1C.,a﹣1D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式4.3按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y a x x++=--的解为正数,且使关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案】B.【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a ,∵关于x 的分式方程+=4的解为正数,∴6-4a >0,∴a<6.y 123)02(2①y ②y a ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.学*科网考点:1.分式方程的解;2.解一元一次不等式组.2.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值A.98m >B.89m >C.98m =D.89m =【答案】98m =考点:根的判别式.3.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为()A.1-或2B.1或2- C.2-D.1【答案】D.【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m﹣1=0的两个根,∴x 1+x 2=2m,x 1•x 2=m 2﹣m﹣1.∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m﹣1),即m 2+m﹣2=(m+2)(m﹣1)=0,解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m 2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B.2个 C.3个D.4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A.5m ≥B.5m > C.5m ≤D.5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是【答案】k≤5且k≠1.考点:根的判别式.7.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是.【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.10.(2017四川泸州第15题)关于x的分式方程2322x m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2.【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m--,因方程的解为正实数,且x-2≠0,所以62m-->0且m≠2,即m<6且m≠2.11.(2017江苏宿迁第14题)若关于x的分式方程1322m xx x-=---有增根,则实数m的值是.【答案】1.【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于的一元二次方程的一个根式,则的值是_______.【答案】0.【解析】试题分析:把x=0代入,得,解得k=1(舍去),或k=0;。
中考数学【方程、不等式中的含参问题】专题复习练及解析
方程、不等式中的含参问题例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.同类题型1.1已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.同类题型1.24x+3m=28x-3y=m的解x,y满足x>y,则m的取值范围是()A.m>910B.m>109C.m>1910D.m>1019例2.关于x的方程x2+mx-9=0和x2-3x+m2+6m=0有公共根,则m的值为________.同类题型2.1已知a是一元二次方程x2-2018x+1=0的一个根,则代数式a2-2017a+2018a2+1的值是___.同类题型2.2已知关于x的方程(k2-1)x2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.同类题型2.3已知α、β是方程x2-2x-4=0的两个实数根,则α3+8β+6的值为()A.-1B.2C.22D.30例3.已知方程x+1x=a+1a的两根分别为a,1a,则方程x+1x-1=a+1a-1的根是()A.a,1a-1B.1a-1,a-1C.1a,a-1D.a,aa-1同类题型3.1若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.同类题型3.2观察分析下列方程:①x+2x=3;②x+6x=5;③x+12x=7.请利用它们所蕴含的规律,求关于x的方程x+n2+nx-4=2n+5(n为正整数)的根,你的答案是_________________.同类题型3.3已知关于x的方程2x-1-a+1x+2=3a(x-1)(x+2)只有整数解,则整数a的值为_____________.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2B.0.5<x<1.5或1.5<x<2C .0.5<x <1.5D .1.5<x <2同类题型4.2规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.同类题型4.3如果关于x 的不等式(a +b )x +2a -b >0的解集是x <52,那么关于x 的不等式(b -a )x +a +2b ≤0的解集是____________.同类题型4.4若关于x x +43>x2+1x -a <0解集为x <2,则a 的取值范围是___________.同类题型4.5按如图的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有___________.参考答案例1.已知三个非负实数a ,b ,c 满足:3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为__________.3a +2b +c =52a +b -3c =1m =3a +b -7c ,解得a =7﹒(m +2)3-3,b =7-11﹒(m +2)3,c =m +23,由于a ,b ,c 是三个非负实数,∴a ≥0,b ≥0,c ≥0,∴-111≥m ≥-57.所以m _(最小值)=-57.故本题答案为:-57.同类题型1.1已知x +2y -3z =0,2x +3y +5z =0,则x +y +zx -y +z=________.解:由题意得:x +2y -3z =0①2x +3y +5z =0②,①×2-②得y =11z ,代入①得x =-19z ,原式=x +y +z x -y +z =-19z +11z +z -19z -11z +z =729.同类题型1.24x +3m =28x -3y =m 的解x ,y 满足x >y ,则m 的取值范围是()A .m >910B .m >109C .m >1910D .m >10194x +3m =2①8x -3y =m ②由①得x =2-3m 4,代入②得,8×2-3m 4-3y =m ,y =4-7m3.∵x >y ,即2-3m 4>4-7m 3,解得m >1019.选D .例2.关于x 的方程x 2+mx -9=0和x 2-3x +m 2+6m =0有公共根,则m 的值为________.解:设这个公共根为α.则方程x 2+mx -9=0的两根为α、-m -α;方程x 2-3x +m 2+6m =0的两根为α、3-α,由根与系数的关系有:α(-m -α)=-9,α(3-α)=m 2+6m ,整理得,α2+mα=9①,α2-3α+m 2+6m =0②,②-①得,m 2+6m -3α-mα=-9,即(m +3)2-α(m +3)=0,(m +3)(m +3-α)=0,所以m +3=0或m +3-α=0,解得m =-3或α=m +3,把α=m +3代入①得,(m +3)2+m (m +3)=9,m 2+6m +9+m 2+3m =9,m (2m +9)=0,所以m =0或2m +9=0,解得m =0或m =-4.5,综上所述,m 的值为-3,0,-4.5.同类题型2.1已知a 是一元二次方程x 2-2018x +1=0的一个根,则代数式a 2-2017a +2018a 2+1的值是___.解:由题意,把根a 代入x 2-2018x +1=0,可得:a 2-2018a +1=0,∴a 2-2017a -a +1=0,a 2+1=2018a ;∴a 2-2017a =a -1,∴a 2-2017a +2018a 2+1=a -1+20182018a =a +1a -1=a 2+1a -1=2018aa -1=2018-1,=2017.同类题型2.2已知关于x 的方程(k 2-1)x 2+(2k -1)x +1=0有两个不相等的实数根,那么实数k 的取值范围为_____________.解:由题意知,k ≠±1,△=(2k -1)2-4(k 2-1)=5-4k >0∴k <54且k ≠±1.同类题型2.3已知α、β是方程x 2-2x -4=0的两个实数根,则α3+8β+6的值为()A .-1B .2C .22D .30解:∵α、β是方程x 2-2x -4=0的两个实数根,∴α+β=2,α2-2α-4=0,∴α2=2α+4∴α3+8β+6=α﹒α2+8β+6=α﹒(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D .例3.已知方程x +1x =a +1a 的两根分别为a ,1a ,则方程x +1x -1=a +1a -1的根是()A .a ,1a -1B .1a -1,a -1C .1a,a -1D .a ,aa -1解:方程x +1x -1=a +1a -1可以写成x -1+1x -1=a -1+1a -1的形式,∵方程x +1x =a +1a 的两根分别为a ,1a,∴方程x -1+1x -1=a -1+1a -1的两根的关系式为x -1=a -1,x -1=1a -1,即方程的根为x =a 或aa -1,∴方程x +1x -1=a +1a -1的根是a ,a a -1.选D .同类题型3.1若关于x 的方程2x -bx -1=3的解是非负数,则b 的取值范围是________.解:去分母得,2x -b =3x -3∴x =3-b∵x ≥0∴3-b ≥0解得,b ≤3又∵x -1≠0∴x ≠1即3-b ≠1,b ≠2则b 的取值范围是b ≤3且b ≠2.同类题型3.2观察分析下列方程:①x +2x =3;②x +6x =5;③x +12x=7.请利用它们所蕴含的规律,求关于x 的方程x +n 2+nx -4=2n +5(n 为正整数)的根,你的答案是_________________.解:x +1×2x =3,解得:x =2或x =1;x +2×3x =5,解得:x =2或x =3;x +3×4x=7,解得:x =3或x =4,得到规律x +mnx =m +n 的解为:x =m 或x =n ,所求方程整理得:x -4+n (n +1)x -4=2n +1,根据规律得:x -4=n 或x -4=n +1,解得:x =n +4或x =n +5.同类题型3.3已知关于x 的方程2x -1-a +1x +2=3a(x -1)(x +2)只有整数解,则整数a 的值为_____________.解:方程两边同乘以(x -1)(x +2),得:2(x +2)-(a +1)(x -1)=3a ,解得:x =2a -51-a=-2-31-a ,∵方程只有整数解,∴1-a =3或1或-3或-1,当1-a =3,即a =-2时,x =-2-1=-3,检验,将x =-3代入(x -1)(x +2)=4≠0,故x =-3是原分式方程的解;当1-a =1,即a =0时,x =-2-3=-5,检验,将x =-5代入(x -1)(x +2)=18≠0,故x =-7是原分式方程的解;当1-a =-3,即a =4时,x =-2+1=-1,检验,将x =-1代入(x -1)(x +2)=-2≠0,故x =-1是原分式方程的解;当1-a =-1,即a =2时,x =1,检验,将x =1代入(x -1)(x +2)=0,故x =1不是原分式方程的解;∴整数a 的值为:-2,0或4.例4.[x ]表示不超过x 的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x ]=-[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1;③当-1<x <1时,[1+x ]+[1-x ]的值为1或2;④x =-2.75是方程4x -2[x ]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x =-3.5时,[-3.5]=-4,-[x ]=-3,不相等,故原来的说法错误;②若[x ]=n ,则x 的取值范围是n ≤x <n +1是正确的;③当-1<x <0时,[1+x ]+[1-x ]=0+1=1;当x =0时,[1+x ]+[1-x ]=1+1=2;当0<x <1时,[1+x ]+[1-x ]=1+0=1;故当-1<x <1时,[1+x ]+[1-x ]的值为1或2是正确的;④x -[x ]的范围为0~1,4x -2[x ]+5=0,-5≤2x <-7,即-2.5≤x <-3.5,x =-2.75或x =-3.25都是方程4x -2[x ]+5=0,故原来的说法错误.故答案为:②③.同类题型4.1设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,(x )表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x +[x ]+3{x }+4(x )≤14的解为()A .0.5≤x ≤2B .0.5<x <1.5或1.5<x <2C .0.5<x <1.5D .1.5<x <2解:根据题意得:x >0,若x ≥2,则2x ≥4,[x ]≥2,3{x }≥6,4(x )≥8,不等式不成立.故只需分析0<x <2时的情形即可,①0<x ≤0.5时,不等式可化为:8≤2x +0+3+0≤14,解得:2.5≤x ≤5.5,不符合不等式;②当0.5<x ≤1时,不等式可化为:8≤2x +0+3+4≤14,解得:0.5≤x ≤3,因此0.5<x ≤1,符合不等式;③当1<x <1.5时,不等式可化为:8≤2x +1+6+4≤14,解得:-1.5≤x ≤1.5,因此1<x <1.5,符合不等式;④当1.5<x <2时,不等式可化为:8≤2x +1+6+8≤14,解得:-3.5≤x ≤-0.5,不符合不等式.故原不等式的解集为:0.5<x <1.5.故选C .同类题型4.2规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.解:①当x =1.7时,[x ]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x =-2.1时,[x ]+(x )+[x )=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确;③4[x ]+3(x )+[x )=11,7[x ]+3+[x )=11,7[x ]+[x )=8,1<x <1.5,故③正确;④∵-1<x <1时,∴当-1<x <-0.5时,y =[x ]+(x )+x =-1+0+x =x -1,当-0.5<x <0时,y =[x ]+(x )+x =-1+0+x =x -1,当x =0时,y =[x ]+(x )+x =0+0+0=0,当0<x <0.5时,y =[x ]+(x )+x =0+1+x =x +1,当0.5<x <1时,y =[x ]+(x )+x =0+1+x =x +1,∵y =4x ,则x -1=4x 时,得x =-13;x +1=4x 时,得x =13;当x =0时,y =4x =0,∴当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有三个交点,故④错误,故答案为:②③.同类题型4.3如果关于x的不等式(a+b)x+2a-b>0的解集是x<52,那么关于x的不等式(b-a)x+a+2b≤0的解集是____________.解:∵关于x的不等式(a+b)x+2a-b>0的解集是x<52,∴x<b-2aa+b,∴b-2aa+b=52,且a+b<0,即b=-3a,a+b<0,∴a-3a<0,即a>0,∴b-a=-4a<0,∴关于x的不等式(b-a)x+a+2b≤0的解集是x≥-a-2bb-a,∵-a-2bb-a=-a+6a-3a-a=-54,∴关于x的不等式(b-a)x+a+2b≤0的解集是x≥-54.同类题型4.4若关于x x+43>x2+1x-a<0解集为x<2,则a的取值范围是___________.解:由x+43>x2+1,得2x+8>3x+6,解得x<2,由x-a<0,得x<a,又因关于x x+43>x2+1x-a<0解集为x<2,所以a≥2.同类题型4.5按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=-0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.。
2025年中考数学考点分类专题归纳之不等式与不等式组
2025年中考数学考点分类专题归纳不等式与不等式组知识点一、不等式的概念1.不等式:用不等号表示不相等关系的式子,叫做不等式.2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”.知识点二、不等式基本性质基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,并且0c <,那么ac bc <(或a b c c<) 如果a b <,并且0c <,那么ac bc >(或ax b >)不等式的互逆性:如果a b >,那么b a <;如果b a <,那么a b >.不等式的传递性:如果a b >,b c >,那么a c >.易错点:①不等式两边都乘(或除以)同一个负数,不等号的方向改变.②在计算的时候符号方向容易忘记改变.知识点三、不等式的解集1.不等式的解:使不等式成立的每一个未知数的值叫做不等式的解.例如:4-,2-,0,1,2都是不等式2x ≤的解,当然它的解还有许多.2.不等式的解集: 能使不等式成立的所有未知数的集合,叫做不等式的解集.不等式的解集是一个范围,在这个范围内的每一个值都是不等式的解.不等式的解集可以用数轴来表示.3.不等式的解与不等式的解集是两个不同的概念,不等式的解是指使这个不等式成立的未知数的某个值,而不等式的解集,是指使这个不等式成立的未知数的所有的值;不等式的所有解组成了解集,解集包括了每一个解.4.在数轴上表示不等式的解集(示意图):知识点四、一元一次不等式的解法1.一元一次不等式:经过去分母、去括号、移项、合并同类项等变形后,能化为ax b<或ax b>的形式,其中x是未知数,,a b 是已知数,并且0a≠,这样的不等式叫一元一次不等式.ax b<或ax b>(0a≠)叫做一元一次不等式的标准形式.2.解一元一次不等式:去分母→去括号→移项→合并同类项(化成ax b<或ax b>形式)→系数化一(化成bxa>或bxa<的形式)知识点五、一元一次不等式组的解法1.一元一次不等式组和它的解法一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集2.解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集:②利用数轴求出这些不等式的解集的公共部分,即可求出这个不等式组的解集注意:①利用数轴表示不等式的解集时,要注意表示数的点的位置上是空心圆圈,还是实心圆点;②若不等式组中各个不等式的解集没有公共部分,则这个不等式组无解3.由两个一元一次不等式组成的不等式组的解集的情况有如下四种:1.(2024•广西)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n2.(2024•湘西州)不等式组的解集在数轴上表示正确的是()A.B.C.D.3.(2024•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.4.(2024•巴彦淖尔)若关于x,y的方程组的解满足x﹣y,则m的最小整数解为()A.﹣3 B.﹣2 C.﹣1 D.05.(2024•济南)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m B.m C.m D.m6.(2024•东莞市)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(2024•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.8.(2024•沙坪坝区)若不等式(a+1)x>a+1的解集为x<1,则a必须满足()A.a<0 B.a≤﹣1 C.a<1 D.a<﹣19.(2024•荆门)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤710.(2024•毕节市)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(2024•益阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.12.(2024•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥313.(2024•襄阳)不等式组的解集为()A.x B.x>1 C.x<1 D.空集14.(2024•广元)一元一次不等式组的最大整数解是()A.﹣1 B.0 C.1 D.215.(2024•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.216.(2024•临沂)不等式组的正整数解的个数是()A.5 B.4 C.3 D.217.(2024•泰安)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣518.(2024•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.a<1 B.a≤1 C.a≤1 D.a<119.(2024•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是______.20.(2024•本溪)不等式组的解集是________.21.(2024•兰州)不等式组的解集为________.22.(2024•盘锦)不等式组的解集是_______.23.(2024•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是______.24.(2024•黑龙江)不等式组有3个整数解,则a的取值范围是_________.25.(2024•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是_______.26.(2024•沙坪坝区)关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是___.27.(2024•桂林)解不等式x+1,并把它的解集在数轴上表示出来.28.(2024•盐城)解不等式:3x﹣1≥2(x﹣1),并把它的解集在数轴上表示出来.29.(2024•济南)解不等式组:30.(2024•宁夏)解不等式组:31.(2024•怀化)解不等式组,并把它的解集在数轴上表示出来.32.(2024•永州)解不等式组,并把解集在数轴上表示出来.33.(2024•万州区)藏族小伙小游到批发市场购买牛肉,已知牦牛肉和黄牛肉的单价之和为每千克44元,小游准备购买牦牛肉和黄牛肉总共不超过120千克,其中黄牛肉至少购买30千克,牦牛肉的数量不少于黄牛肉的2倍,粗心的小游在做预算时将牦牛肉和黄牛肉的价格弄对换了,结果实际购买两种牛肉的总价比预算多了224元,若牦牛肉、黄牛肉的单价和数量均为整数,则小游实际购买这两种牛肉最多需要花费______元.34.(2024•山西)2024年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为____cm.35.(2024•辽阳)青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.(1)求每袋大米和面粉各多少元?(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?36.(2024•广元)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?37.(2024•锦州)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?38.(2024•南通)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次 2 1 55第二次 1 3 65 根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.39.(2024•贺州)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?40.(2024•阜新)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?41.(2024•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?42.(2024•葫芦岛)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?43.(2024•苏州)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?44.(2024•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?45.(2024•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?46.(2024•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?47.(2024•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、不 等 式 1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.乘某城市的一种出租汽车起步价都是10元(即行驶路程在5km以内都需付10元),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计)。现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少? 3.某旅社某天有空房10间,当天接待了一个旅游团,当每个房间只能住3人时,有一个房间住宿的情况是不空也不满。若旅游团的人数为偶数。求旅游团共有多少人? 4.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温就下降0.55℃,现测出山脚下的平均气温为22℃,问该植物种在海拔多少米的地方最适宜? 5.某次数学测验,共有16道选择题,评分办法是:答对一道给6分,答错一道倒扣2分,不答则不给分,某学生有一道题末答,那么这位学生至少答对多少道题,成绩才能在60分以上? 6.某单位计划10月份组织员工到杭州旅游,人数估计在10—25人之间。甲、乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游费总费用较少? 7.某公司计划明年生产一种新型环保电视机,下面是公司各部门提供的数据信息: 人事部:明年生产工人不多于80人,每人每年工作时间按2400小时计算; 营销部:预测明年销量至少是10000台; 技术部:生产一台电视机,平均用12个工时,每台机器需要安装5个某种主要部件; 供应部:今年年终将库存主要部件2000件,明年能采购到这种主要部件为80000件。 根据上述信息,明年生产新型电视机的台数应控制在什么范围内? 8.甲、乙两车间各有若干名工人生产同一种零件,甲车间有一人每天生产6件,其余每人每天生产11件;乙车间有一人每天生产7件,其余每人每天生产10件。已知两车间每天生产的零件总数相等,且每个车间每天生产的零件总数不少于100件也不超过200件,求甲、乙两车间分别有多少人? 9.某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年可创造产值a元,现欲从中分流出一些人去从事服务性行业。假设分清流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元,如果保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半。试确定分流后从事服务性行业的人数。 10.某工厂现有甲种原料360千克,乙种原料290千克。计划利用这两种材料生产A、B两种产品共50件。已知生产一件A种产品用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。 (1)按要求安排A、B两种产品的生产件数,有哪几种方案,请你设计出来。 (2)设生产A、B两种产品总利润为y(元),其中一种的生产件数为x,试用含x的代数式表示y,并说明(1)中哪种生产方案获总利润最大,最大总利润是多少? 11.某园林的门票每张10元,一次使用。考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A、B、C三类:A类年票每张120元,持票者进入该园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需要再购买门票,每次3元。 (1)如果你只选择一种购买门票的方式,并且你计划一年中用80元花在购买该园林的门票上,试通过计算,找出可进入该园林的次数最多的购买方式; (2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算? 12.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站。检票开始后,仍有旅客继续前来排队检票进站。设旅客按固定的速度增加,检票口检票的速度也是固定的。若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候的旅客全部检票完毕。如果要在5分钟内将排队等候的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口? 13.某生产小组展开劳动竞赛后,每人每天多做10个零件,这样8个人一天做的零件超过了200个。后来改进技术,每人每天又多做27个零件,这样4个人一天所做零件就超过劳动竞赛中8个人做的零件,问改进劳动技术后的生产效率是劳动竞赛前的几倍? 14.某电子产品的市场占有率处于饱和状态,政府通过征收附加税率的方法来减少生产,已知这种产品的价格是60元,不收附加税时,每年生产100万件,若附加税率为x%,则产量减少10x万件。欲使此项税金不少于96元,问该产品的生产量至少可以减少多少万件? 15.某水库建有10个泄洪闸,现在水库的水位已经超过安全线,上游河水还在按一不变的速度增加,为了防洪,需调节泄洪速度,假设每个闸门泄的速度相同。经测算,若打开一个泄洪闸,30个小时水位可降至安全线。现在抗洪指挥部要求在3个小时内使水位降至安全线以下,问至少要同时打开几个闸门? 16.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格(元)的一次函数。 (1)根据下表提供的数据,求y与x的函数关系式;当水价为10元/吨时,1吨水生产出的饮料所获的利润是多少元? 1吨水的价格为x(元) 4 6 用1吨水生产的饮料所获利润y(元) 200 198
(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为4元/吨;日用水量超过20吨时,超过部分按40元/吨收费。已知该厂日用水量不少于20吨,设该厂日用水量为a吨,当日所获利润为w元。求w与a的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围。 17.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土? 18.把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个,则学生数和苹果数分别是多少? 19.某宾馆底楼房间比二楼少5间。某旅游团有48人,若安排在底楼,每间4人,房间不够;每间5人,有房间没有住满5人。又若全安排在二楼,每间3人,房间不够;每间4人,有房间没有住满4人,该宾馆底楼有客房多少间? 20.将若干只鸡放入若干个笼中,如果每个笼里放4只鸡,则剩下一只鸡无笼可放;如果每个笼里放5只鸡,则有一笼无鸡可放,那么至少有只 鸡, 个笼 21.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。 22.夏令营中,营员们要拍照合影留念。若一张彩色底片需0.57元,冲印一张需0.35元,每人预订一张,出钱不超过0.45元,问参加合影的同学至少应有几人? 23.某中学举行数学竞赛,甲、乙两班共有a人参加,其中甲班平均每人得70分,乙班平均每人得60分,两班得分总和为740分,则甲、乙两班参加的人数分别是多少人? 24.某人拿100元人民币先到商场买了一些饮料,用去60元,后来,他又买了4千克香蕉,每千克3元,买了5千克苹果,付钱后尚有结余,如果他买6千克香蕉和6千克苹果,则所带款就不够用了,求苹果的价格是多少元? 25.黑球与白球共m只装入箱中,首次取出的40只球中有31只是黑球,以后每取出的6只球中就有5只是黑球,若已取出的球中至少有80%是黑球,问m的最小值是多少? 26.如果一辆汽车每天行驶的路程比原来多19千米,那么8天内它的行程就超过2200千米;如果它每天的行程比原来少12千米,那么它行驶同样的行程就得花9天多一点的时间,问这辆汽车原来每天的行程是多少千米? 27.三人分糖,每人都得整数块,乙比丙多得13块,甲所得的是乙的2倍。已知糖的总块数是一个小于50的素数,且它的各位数字之和为11,试求每人得糖的块数。 28.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务? 29.某厂生产一种机械零件,固定成本为2万元,每个零件成本为3元,其售价为5元,应缴纳的税金为总销售额的10%,要使纯利润超过固定成本,该零件至少要生产销售多少个? 30.一种灭虫药粉40千克,含药率是15%,现在用含药率较高的同样的灭虫药粉50千克和它混合,使混合后的含药率在25%与30%之间(不包括25%和30%),求所用的药粉的含药率的范围。 31.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟? 32.一人有红、白两种颜色的小球各若干个,已知白球的个数比红球的个数少,但白球的个数的2倍比红球多,若给每个白球都写上数字“2”,给每个红球都写上数字“3”(每个小球上只能写一个数字),结果所有小球上的数字总和为60,那么白球有多少个?红球有多少个? 33.将两筐苹果分给甲、乙两个班级,甲班有一人分到6只,其余的人每人都分到13只,乙班有一人分到5只,其余的人每人都分到10只。如果两筐苹果数目相同,并且大于100只不超过200只,求甲、乙两班分别有多少人? 34.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元。现要求乙种工种的人数不少于甲种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少? 35.根据下面一首古诗,解决其中问题: