长江大学董盛富吸收过程的设计型计算

合集下载

化工原理实验思考题答案

化工原理实验思考题答案

化工原理实验思考题实验一:柏努利方程实验1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这一现象说明了什么?这一高度的物理意义是什么?答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。

这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头022==u H 动,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。

这一液位高度的物理意义是总能量(总压头)。

(2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。

这一现象说明各测压管总能量相等。

2.当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回答以下问题: (1) 各H /值的物理意义是什么?答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。

(3) 为什么离水槽越远H 与H /差值越大?(4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出22u d l H f ⋅⋅=λ与管长l 呈正比。

3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H //并回答以下问题:(1) 与阀门半开时相比,为什么各测压管内的液柱高度H //出现了变化?答:从采集的数据可以看出,阀门全开时的静压头或冲压头与半开时相比,各对应点的压头均低于半开时的静压头或冲压头,因为直管阻力Hf 与流速呈平方比(公式3-1)。

年产6万吨2丙基庚醇车间合成工段工艺初步设计毕业设计

年产6万吨2丙基庚醇车间合成工段工艺初步设计毕业设计

齐齐哈尔大学毕业设计(论文)题目年产6万吨2-丙基庚醇车间合成工段工艺初步设计学院化学与化学工程专业班级学生姓名指导教师成绩2013 年 6 月日摘要本课题是年产6万吨2-丙基庚醇车间合成工段工艺的初步设计。

第一论述了二丙基庚醇合成的意义与作用、国内外研究现状及进展前景,并简要介绍了二丙基庚醇的性质及合成方式,第二介绍了课题的设计背景、厂址选择和原料产品规格;通过国内外几种相关工艺的比较肯定本设计的工艺流程,对整个生产进程进行了物料衡算、热量衡算和Aspen plus模拟;对反映釜等主要设备进行了设备计算与选型,而且对车间设备进行了布置,对自动控制、安全和环境保护和公用工程进行了概述。

最后按照毕业设计的要求利用AutoCAD绘制戊醛缩合反映釜装配图和合成工段设备平立面布置图,手绘了带控制点的工艺流程图,而且完成了20 000字的毕业设计说明书。

关键词:初步设计;合成工段;2-丙基庚醇;衡算AbstractThe preliminary design of workshop of the synthesis section of 60,000 tons annual production capacity of 2-propyl heptanol was completed. Firstly, the significance, the function of 2-propyl heptanol, the development of research on 2-propyl heptanol was stated. The nature of 2-propyl heptanol and synthetic methods were described briefly. Secondly, the design background, plant location and materials and product specification were introduced; comparion of the productive processed in the domestic and aboard, the design process was determined. Meanwhile the material balance, heat balance, and the simulation of process by Aspen plus were finished. The reactor equipment and other major equipments were calculated and selected. And the layout of the equipment for the workshop, safety, environmental protection and public works were outlined. Thirdly, the equipments arrangement diagram of the workshop and the pentanal condensation reactor equipment were drawn with Auto CAD, the process flow diagram with control points was drawn by hand. Finally, the design instruction of 20 thousand words was finished.Key words:Preliminary design; Synthesis section; 2 - propyl heptanol; Balance calculation目录摘要 (I)Abstract (II)第一章总论 (1)概述 (1)项目建设意义 (1)国内外现状及进展前景 (1)设计依据 (3)厂址选择 (4)厂址肯定 (4)厂址优势分析 (4)设计规模与生产制度 (5)设计规模 (5)生产制度 (5)原料和产品规格 (6)经济核算 (6)第2章工艺设计和计算 (7)工艺线路的选择 (7)2-丙基庚醇工艺介绍 (7)2-丙基庚醇工艺的肯定 (8)工艺流程简述 (8)物料衡算 (9)反映器R101的物料衡算 (9)分离罐V103的物料衡算 (10)换热器E101的物料衡算 (11)精馏塔T101的物料衡算 (12)换热器E104的物料衡算 (12)反映器R102的物料衡算 (13)换热器E105的物料衡算 (14)闪蒸罐V105的物料衡算 (15)热量衡算 (16)反映器R101的热量衡算 (16)换热器E101的热量衡算 (17)T101冷凝器E102的热量衡算 (18)T101再沸器E103的热量衡算 (19)精馏塔T101的热量衡算 (21)换热器E104的热量衡算 (22)反映器R102的热量衡算 (24)换热器E105的热量衡算 (25)全流程模拟 (26)总工艺的模拟 (26)反映器R101的模拟 (27)精馏塔T101的模拟 (28)反映器R102的模拟 (28)第3章设备计算及选型 (30)关键设备R101计算及选型 (30)R101筒体直径和高度的计算 (30)筒体壁厚的计算 (30)夹套的计算 (31)水压实验及强度校核 (32)换热计算 (33)釜体法兰的选择 (33)搅拌器的选择 (33)搅拌传动装置和密封装置的选择 (34)容器支座的选择 (35)人孔、视镜、温度计和工艺接管的选择 (35)其他设备计算与选型 (36)反映器R102的计算 (36)精馏塔T101的计算 (37)换热器的计算与选型 (40)泵计算与选型 (43)储罐和回流罐的计算与选型 (44)紧缩机C101的计算与选型 (46)第4章设备一览表 (47)第5章车间布置 (49)反映器和塔的布置 (49)换热器的布置 (50)泵和紧缩机的布置 (50)罐的布置 (51)第6章自动控制 (52)2-丙基庚醇合成工段自动控制 (52)泵P101的控制 (52)塔顶冷凝器E102的控制 (52)反映器R101的控制 (53)精馏塔T101的控制 (53)第7章公用工程 (55)供水 (55)供热 (55)供电 (56)第8章安全环境保护 (57)结束语 (58)参考文献 (59)致谢 (61)第一章总论概述项目建设意义分子总碳数为4~13的脂肪族伯醇,其全世界近50%产量用于生产增塑剂,所以国内外俗称其为增塑剂醇[1]。

流体输配管网习题

流体输配管网习题

《流体输配管网》习题集及部分参考答案主要编写人员龚光彩章劲文李孔清唐海兵龙舜心许淑惠等第一部分习题集第1章1-1 何谓零速点(零点)?1-2 闭合差是指什么?给出燃气管网各环闭合差的确定方法1-3 什么是枝状管网与环状管网,普通的通风系统在什么条件下可以理解成环状管网?1-4 补充完整例题[1-2]的水力计算表1-5 给出沿程均匀泄流管道阻力计算公式, 当无转输流量时阻力损失是多少?1-6 分析农村灶台或炕烟气流动驱动力?1-7 渠底坡度与分类1-8 明渠均匀流的条件与特性1-9 写出谢才公式和曼宁公式,并指出两个公式中各物理量的意义1-10 水力最优断面是什么?1-11 无压圆管在何时具有最大流速和流量?第2章(第8章水泵计算等部分习题入此)2-1 已知4—72—No6C型风机在转速为1250 r/min 时的实测参数如下表所列,求:各测点的全效率;绘制性能曲线图;定出该风机的铭牌参数(即最高效率点的性能参数);计算及图表均要求采用国际单位。

2-2 根据题2-1中已知数据,试求4-72-11系列风机的无因次量,从而绘制该系列风机的无因次性能曲线。

计算中定性叶轮直径D2=0.6m。

2-3 得用上题得到的无因次性能曲线求4-72-11No5A型风机在n=2900 r/min 时的最佳效率点各参数什,并计算该机的比转数值。

计算时D2=0.5m。

2-4 某一单吸单级泵,流量Q=45m3/s ,扬程H=33.5m ,转速n=2900r/min ,试求其比转数为多少?如该泵为双吸式,应以Q/2作为比转数中的流量计算,则其比转数应为多少,当该泵设计成八级泵,应以H/8作为比转数中的扬和计算值,则比转数为多少?2-5 某一单吸单级离心泵,Q=0.0375(m3/s) ,H=14.65m ,用电机由皮带拖动,测得n=1420r/min,N=3.3kW; 后因改为电机直接联动,n增大为1450r/min,试求此时泵的工作参数为多少?2-6 在n=2000的条件下实测一离心泵的结果为Q=0.17mⁿ/s,H=104m,N=184kW.如有一几何相似的水泵,其叶轮比上述泵的叶轮大一倍,在1500r/min之下运行,试求在相同的工况点的流量,扬程及效率各为多少?2-7 有一转速为1480r/min的水泵,理论流量Q=0.0833mⁿ/s ,叶轮外径D₂=360mm,叶轮出中有效面积A=0.023㎡,叶片出口安装角β₂=30°,试做出口速度三角形。

25581065_矿精粉中关键金属元素赋存状态研究方法流程的建立

25581065_矿精粉中关键金属元素赋存状态研究方法流程的建立

1000 0569/2021/037(09) 2791 04ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2021 09 12矿精粉中关键金属元素赋存状态研究方法流程的建立:以长江中下游成矿带富钴硫矿精粉为例张一帆1,2 范裕1,2 陈静1,2 刘兰海1,2 李梦梦1,2ZHANGYiFan1,2,FANYu1,2 ,CHENJing1,2,LIULanHai1,2andLIMengMeng1,21 合肥工业大学资源与环境工程学院,合肥工业大学矿床成因与勘查技术研究中心(ODEC),合肥 2300092 安徽省矿产资源与矿山环境工程技术研究中心,合肥 2300091 SchoolofResourcesandEnvironmentalEngineering,OreDepositandExplorationCentre(ODEC),HefeiUniversityofTechnology,Hefei230009,China2 AnhuiProvinceEngineeringResearchCenterforMineralResourcesandMineEnvironments,Hefei230009,China2021 06 11收稿,2021 08 25改回ZhangYF,FanY,ChenJ,LiuLHandLiMM 2021 Establishmentofaresearchworkflowforoccurrencestateofcriticalmetalinoreconcentratepowder:Acasestudyofthecobalt richsulfuroreconcentratepowderfromtheMiddle LowerYangtzeRiverValleyMetallogenicBelt,China ActaPetrologicaSinica,37(9):2791-2804,doi:10 18654/1000 0569/2021 09 12Abstract TheMiddle LowerYangtzeRiverValleyMetallogenicBeltisoneofthemetallogenicbeltswithwell studiedeconomicgeologyresearchandcomprehensivemineralutilizationtechnologyinChina Inadditionofthemainore formingelementsCu,Au,FeandS,mostdepositsareassociatedwithpotentiallyavailablecriticalelementresources,suchasCd,Co,Se,TeandRe Atpresent,theminesprocessedandrecoveredCu,Fe,S,Pb,Zn,Au,Agandothermajorproducts Withoutchangingthemineralprocess,thekeyproblemsintheutilizationofcriticalelementresourcesaretheunderstandingoftheoccurrenceofcriticalmetalsinoreconcentrations Wehaveconductedasystematicchemicalcompositionanalysisofthemineproducts(i e ,copperconcentratepowder,sulfurconcentratepowder,ironconcentratepowderandgoldconcentratepowder)ofsixtypesofdepositsinthemetallogenicbelt,includingapatite magnetiteFedeposit,skarnFedeposit,skarnFe Cudeposit,skarnCu Audeposit,porphyryCu Audepositandbreccia hostedAudeposit Itisfoundthatthecontentsofcriticalelements(Cd,Co,Se,TeandRe)inthosemineproductsaregenerallylow,exceptCoenrichedinsulfurconcentratepowderofLongqiaoskarnirondeposit,whichhasthepossibilityofrecoveryandutilizationofcobaltresources Inthisstudy,theoccurrenceofcobaltinCo richsulfurconcentratepowderwasanalyzedbyTescanIntegratedMineralAnalyzer(TIMA),ScanningElectronMicroscope(SEM)andLaserAblationInductivelyCoupledPlasmaMassSpectrometry(LA ICP MS).TheanalysesresultsshowthatthecobaltindependentmineralsinLongqiaosulfurconcentratepowderarecobaltite,glaueodotandcarrollite,whichaccountfor9 93%,0 64%and0 01%ofthetotalcobaltinsulfurconcentratepowder,respectively Theamountofcobaltoccursasisomorphicforminpyritelatticeaccountsfor81 97%ofthetotal Inaddition,7 46%ofcobaltexistsinotherunknownminerals Researchworkflowofcriticalelementsdeportmentsinoreconcentratepowderisestablishedinitially,whichprovidesatheoreticalbasisfortherecoveryandutilizationofcobaltinoreconcentratepowderKeywords Cobalt;Occurrence;TescanIntegratedMineralAnalyzer(TIMA);Oreconcentrationpowder摘 要 长江中下游成矿带作为我国矿床学研究程度和矿产利用技术水平最高的成矿带之一,大部分矿床中除了主要成矿元素铜、金、铁和硫等,还伴生潜在可利用的关键金属资源镉、钴、硒、碲和铼等。

围海工程堵口水力仿真计算中设计潮型插值方法

围海工程堵口水力仿真计算中设计潮型插值方法

抛物插值 ( ( ) 式 ( ) 下 同)和 3次样 条插值 式 4 , 5, ( () 式 6 )方 法对 同一 组堵 口典 型外 港 设计 潮 型 ( 见 表 1 进 行插 值拟 合 , 析两 者对堵 口水 力仿 真计算 ) 分
的影 响 ( 图 1 ~ 图 4 。 见 )
38 l
江 南 大 学 学 报 (自 然 科 学 版 )
( 5)
2 2 3次样 条插 值 .
周 期性 3次样 条 函数 S t 在 区间 [ , ] 的 () tt 上 计算 式 为
St ()
c ,
高潮 位相 应 的低潮 位 ;
3 )采用 相应 低 潮 位 中最 低一 次低 潮 位 作 为 设
计低 潮位 ;
+ 。
4 )牛顿 的 3次 插值 式为
() = t)+ t, ) t 0 t 0 0t ( —t)+ 1
t,1t) t 0 ( 0t, ( —t) t—t)+ 2 1
t, , , ) t—t) t 1 ( 0t t t ( I23 0 ( —t) t—t) ( ) 2 4 式 中
中图分 类号 : 4 文献标 识码 :A 文章 编号 :6 1—7 4 (0 2)3—0 1 P7 8 17 17 2 1 0 3 6—0 4
一~善 … . 一一 一 ~ . 一
显 间断 , 3次样 条插值 则 能较好 地模 拟 出堵 口设 计潮 型的连 续 波动过 程 , 高 了围海堵 口水 力仿 真 提
1 )前 3点 抛物插 值公 式 ( 待插点 t∈ [。t] t, )


( )= t)+ t, ) t 0 t 0 0 t ( —t)+ 1
t,lt) t o ( ot, ( —t) t—t) 2 1 () 1

化工原理实验(10个)

化工原理实验(10个)

实验一 流体流动阻力的测定一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法;2. 测定直管摩擦系数λ~R e 的关系,验证在一般湍流区内λ、R e 与ε/d 的函数关系;3. 测定流体流经阀门及突然扩大管时的局部阻力系数ζ;4.测定层流管的摩擦阻力。

二、实验原理流体流经直管时所造成机械能损失为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

(1) 直管阻力摩擦系数λ的测定:流体在水平等径直管中稳定流动时,阻力损失为:2122f p p l u h d λρ-== 即 1222()d p p lu λρ-= 层流时:λ=64/Re; 湍流时:λ是Re 和ε/d 的函数,须由实验测定。

(2)局部阻力系数的测定: 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

本实验采用阻力系数法进行测定。

22f u h ζ=三、实验装置与流程实验装置部分是由水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U 形压差计等所组成。

管路部分由五段并联的长直管,自上而下分别为用于测定层流阻力、局部阻力、光滑管直管阻力、粗糙管直管阻力和扩径管阻力。

测定阻力部分使用不锈钢管,其上装有待测管件(球阀或截止阀);光滑管直管阻力的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。

本装置的流量使用涡轮流量计测量。

管路和管件的阻力采用各自的倒U形压差计测量,同时差压变送器将差压信号传递给差压显示仪。

四、实验步骤1. 首先对水泵进行灌水,然后关闭出口阀门,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大;2. 同时打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应;3. 改变流量测量流体通过被测管的压降,每次改变流量(变化10L/min左右),待流动达到稳定后,分别仪表控制箱上的压降数值;4. 实验结束,关闭出口阀,停止水泵电机,清理装置。

河口海岸底部边界层和细颗粒泥沙过程

河口海岸底部边界层和细颗粒泥沙过程ΕΣΤΥΑΡΙΝΕΑΝ∆ΧΟΑΣΤΑΛΒΟΤΤΟΜΒΟΥΝ∆ΑΡΨΛΑΨΕΡΑΝ∆ΦΙΝΕΣΕ∆ΙΜΕΝΤΠΡΟΧΕΣΣΕΣ时钟上海交通大学港口与海岸工程系水动力!细颗粒泥沙过程是淤泥质河口海岸变化的重要物理过程 并具有这样的特征 强密度梯度!高度不稳定和非均匀流!高浓度泥沙!底床与流相互作用!难确定的底床 水界面∀淤泥质河口海岸水动力!细颗粒泥沙过程的研究主要起因于 海洋科学的基础理论研究 港口航道的建设!维持 整治!疏浚 !海岸防护工程实践等需要∀就淤泥质河口海岸水动力!细颗粒泥沙过程而言 水流最重要的部分是底部边界层∀为计算河口海岸水流中的底床切应力 必需考虑边界层∀在淤泥质国家自然科学基金资助 号和国家教育部跨世纪优秀人才培养计划基金资助教技函≈ 号∀收稿日期 2 2 修回日期 2 2原核微藻 从原核微藻到真核微藻叶绿体或线粒体 从真核微藻到真核微藻以及从真核生物到真核微藻 由于亲缘关系较近 实现基因转移和表达相对要容易得多∀因此 微藻转基因体系的建立将是开发海洋生物活性物质的重要技术手段之一∀有些微藻和细菌能合成° ƒ 一旦从中分离出° ƒ 合成基因体系 就能把它们转移到容易养殖的微藻中高效表达∀例如 人们已经把一种海洋细菌的° ƒ 合成酶基因群导入到蓝藻中并获得了表达≈ ∀参考文献陈颖!李文彬!孙勇如∀生物工程进展 ∗ 茅云翔!王高歌!张宝红等∀青岛海洋大学学报 30 ∗张士璀!马军英!范晓∀海洋生物技术原理和应用∀北京 海洋出版社 ∀ ∗张学成!魏东∀藻种改良及遗传工程∀见 陈峰!姜悦编∀微藻生物技术∀北京 中国轻工业出版社 ∀ ∗曾呈奎!相建海∀海洋生物技术∀济南 山东科学技术出版社 ∀ ∗∞ ° • ϑ.Πηψχολ., ∗ƒ ° 2° Μολ.Γεν.Γενετ., ∗≤ ÷ ∏ εταλ..≥ ∏ ≥ ≤ ° ≥ ∏° °≤ ° ∗⁄∏ × ƒ ƒ √ ≥ ≥ ⁄ εταλ..Αππλ.Βιοχηεµ.Βιοτεχηνολ., ∗ƒ∏ ° √ ⁄ ° • ΠλαντΠηψσιολ., ∗ΦΕΒΣΛεττερσ, ∗≥ √ ⁄ ≥ °∏ ϑ.Πηψχολ., ∗× ⁄ × ≠ εταλ.. ,Μιχροβιολογψ, ∗∂ ≥ Γενοµιχσ, ∗∂ Σπιρυλιναπλατενσισ(Αρτηροσπιρα).× ƒ ∗÷ • ≥ ∂ ∏ εταλ..Αππλ.Ενϖιρον.Μιχροβιολ., ∗≠ × ≥ ΠλαντΜολεχυλαρΒιολογψ, ∗本文编辑 张培新研究综述∞∂ ∞•≥海洋科学 年 第 卷 第 期河口海岸底部边界层内 强劲的潮流!波致流可以引起淤泥底床沉积物的侵蚀或再悬浮 产生悬沙浓度的垂直分层现象 反过来这又影响潮流!波致流∀海岸底部边界层和非黏性泥沙运动研究得相对深入 如 日本东京大学土木工程系 ≈ !澳大利亚±∏ 大学土木工程系 ≈ 曾对此进行了较为详细的总结∀南京水利科学研究院刘家驹 年也对波浪作用下泥沙 非黏性 运动进行了评述∀英国剑桥大学工程系≥ 年曾就海岸底部边界层和非黏性泥沙运动的研究作了详细的综述∀河口海岸底部边界层和细颗粒泥沙过程是海洋学家!港口航道与海岸工程师和环境流体力学共同感兴趣的研究课题∀粗略地讲 海洋学家主要是以现场实验研究为主 港口航道与海岸工程师主要是进行物理模型实验和数模研究 环境流体力学家以数学模拟为主∀本文就近年来国内外河口海岸底部边界层和细颗粒泥沙过程研究的进展作一简要评述∀国内进展情况河口底部边界层和细颗粒泥沙过程 现场实验主要是河口海岸学者在几个大河河口进行∀例如 沈焕庭等 年!时伟荣 年!贺松林!孙介民≈ ! 和 ≈ !时钟!陈伟民≈ 对长江口水动力!细颗粒泥沙过程进行了研究∀近年来 利用声学方法 ≥ 等≈ ∗ 对长江口北槽底部边界层细颗粒泥沙过程进行了研究∀标定的声学图像揭示了 高度层化的悬浮液 黏性淤泥底床的再悬浮 近底高含沙层的再携运 近底高含沙层内的高!低频率再悬浮过程∀与中国科学家一道 美国• 学院∂ 海洋研究所• 等 年 • 等 年利用声学等方法研究了黄河口的近底高浓度泥沙异重流的结构和动力机制 发现了大尺度内波∀ 等 年!⁄ 等≈ 利用光学测沙系统研究了浙江椒江口细颗粒泥沙输移过程 结果表明 大潮时 潮流不对称性产生了最大浑浊带 憩流时形成的过渡泥沙层在临界流速为 ∗ # 时被冲蚀∀ 数学模拟徐建益等 年考虑沿垂线方向的泥沙运动以及不同水流条件下床沙质之间的交换 根据实测资料得出的流速与底部含沙量的关系 通过求解垂向扩散方程给出长江口南支垂线上各分层的含沙量和悬沙级配∀周济福等≈ 对长江口泥沙运动进行了垂向二维数学模拟 认为径流和潮流对输沙率的作用是耦合在一起的 非恒定情况下泥沙底边界条件应考虑沉降效应∀利用一个垂向二维模型 ∏ 等≈ 对椒江口细颗粒泥沙输移过程进行了数学模拟∀≤ 等≈ 对珠江口细颗粒泥沙运动进行了三维数学模拟∀但是 他们并没有对底部边界层进行数学模拟∀基于 √ 2≥ 方程 考虑波流相互作用 刘应中!时钟≈ 提出了河口海岸三维水动力数学模型∀ 海岸底部边界层和细颗粒泥沙过程 现场实验尽管陈卫跃 年 徐元等 年 时钟等≈ 在这方面做了尝试 但由于野外作业的实际困难!观测仪器的精度 国内在淤泥质海岸底部边界层和细颗粒泥沙过程的现场实验方面还是缺乏的≈ ∀≥ 等 等 时钟≈ 时钟 刘应中≈ 对淤泥质海岸盐沼边界层和细颗粒泥沙过程进行了较成功的实验研究 研究结果表明 大米草冠层上!下水流的复杂性 在冠层内出现流速反转梯度 导致一个流速最大值 大米草冠层上的水流流速切变流速大于冠层内的切变流速∀室内实验赵子丹等 年进行了不规则波在浮泥床面上传播的实验研究 但未涉及波浪边界层∀练继建!洪柔嘉 年对淤泥质床面上减阻流动的紊动特征进行了实验研究 认为淤泥质床面具有减阻!增速!抑制紊流猝发产生和减小紊动耗散率的作用∀顾家龙等 年根据固体颗粒的薄膜水理论 探讨了颗粒间接触面积的计算模式 并在此基础上推导了黏性细颗粒泥沙在波浪作用下的起动公式∀ 数学模拟练继建!赵子丹 年从 √ 2≥ 方程出发 引入相应的紊流模式 从而封闭波流共存场的流动方程和波动方程 求得全水深的流速分布∀练继建!赵子丹 年就波流与淤泥质底床相互作用进行了数学模拟 结果发现 波浪顺流传播波高衰减率减小而泥层输移速度增大 波浪逆流传播波高衰减率增大而泥层衰减率减小 波高衰减率和泥层的输移速度都具有明显的非线性特征 由波高衰减产生的辐射应力对波流共存场中的水流流速分布影响明显∀练继建等 年从水流与淤泥质底床相互作用的动态角度来探讨黏性泥沙悬扬机理 即将水流层视为黏性体!泥层为黏弹性体 耦合求解水流和淤泥质底床的运动方程 得出界面失稳的临界水流流速!界面波波速和波长∀樊社军等≈ 对淤泥质海岸侵蚀堆积动力机制及剖面模式研究综述∞∂ ∞•≥≥ ∂进行了数学模拟∀借鉴前人的工作 采用多尺度摄动方法 樊社军等≈ 从理论上推导了波浪边界层中黏性细颗粒泥沙的再悬浮和扩散输移的规律 并用几个算例细致地分析了波浪对黏性细颗粒泥沙再悬浮和扩散输移的作用∀需指出的是 在他们的研究中并未完全体现出黏性细颗粒泥沙∀利用κ2Ε方程 吴永胜等≈ 求解了粗糙床面上波浪!水流联合作用下紊流边界层结构 结果表明 在边界层内 波浪和水流的耦合运动是非线性迭加 波浪的存在在很大程度上影响了水流的流速分布 而水流对波浪的影响则较小∀国外进展情况河口底部边界层和细颗粒泥沙运动研究 现场实验国外海洋科学家对河口近底边界层泥沙运动做了大量现场实验研究 澳大利亚海洋研究所• 等 年 美国ƒ 海岸与海洋工程系 年 和 年 ≥ 和 年详细地研究了河口底部边界层中泥跃层和近底高含沙层的动力特性∀美国• 大学海洋学院≥ 等 年用一改装的 ∞ ° ∞三角架研究≥ ƒ 湾河口底部边界层的悬沙输移 泥沙浓度采用光学后散射法 ≥ 观测∀利用光学测沙法和一维悬沙数学模型 • 等 年研究了≥ ∏ 河口底部边界层细颗粒泥沙过程∀• 等 年又利用光学测沙法研究了ƒ 河口近底高含沙层对最大浑浊带形成的影响 结果表明 最大浑浊带仅存在于大潮 风在波浪所致底床液化中起十分重要作用 淤泥侵蚀速率与水流速的六次方成比例 悬沙沉降速率与悬沙浓度呈非线性关系∀近年来 国外海洋科学家利用声学法观测海洋环境 河口!海岸和陆架 悬沙浓度∀例如 美国 等 年 等 年利用一个 2 的声学装置观测研究了 ≥ ∏ 中部水下边界层沉积动力 他们观测了水下边界层底部 范围内的悬沙浓度垂线分布∀利用一个环形水槽 美国• 和 学院∂ 海洋研究所 等 年在≤ 现场观测了泥沙悬扬的临界剪切应力 这为河口底部泥沙运动研究提供了新途径∀结果显示 当环速为 时 水槽的最大底床剪切应力大约为 ∀ 和 ≈ 测得≤ 底床泥沙再悬浮的切应力夏季为 ° !秋季为 ° ∀此外 他们还发现测得的再悬浮系数随底床应力的增加而增加∀利用广波段声学多谱勒流速剖面仪 美国地质调查局水资源部≤ 等≈ ∗ 对加州南≥ ƒ 湾底部边界层的紊流平均速度分布进行了详细观测 结果发现 在不同平均流速情形下 底部粗糙长度与参考速度有不同的关系∀数学模拟对河口边界层和泥沙输移 美国陆军工程兵航道实验站 和 年进行了详细的论述∀美国ƒ 大学海岸与海洋工程系≥ 和∂ 年用一个简单的二阶封闭模式模拟由泥沙导致的分层对河口底部边界层沉积动力学 尤其是侵蚀过程的影响∀利用一个垂向二维宽度积分水沙!耦合数学模型 等 年对法国 河口的最大浑浊带的形成和动力进行了模拟研究 模拟结果显示 计算的水动力参数与观测的值呈较好的对应的关系 潮流振荡导致最大浑浊带在一个潮周期内移动 最大浑浊带受紊动能量场控制 潮幅增加到 时 致使最大浑浊带的大小和强度增加∀海岸底部边界层和细颗粒泥沙过程 现场实验利用一水下环形水槽 加拿大地质调查局 等 年对ƒ∏ 湾淤泥质潮滩细颗粒沉积物的可侵蚀度进行了详细的原地测量 归纳出 种侵蚀类型 侵蚀速率随时间而递减 侵蚀速率随时间而递减 但产生撕裂开的碎屑并加积达 直径 侵蚀速率随时间变化恒定∀英国≥ ∏ 大学海洋学院≤ 等≈ 研究了潮滩上简单潮流结构 但并没有获得潮流边界层结构∀利用一现场侵蚀水槽 荷兰 ∏ ≈ 观测了荷兰• 海淤泥质潮滩的底床剪切强度∀观测结果发现 临界侵蚀值介于 和 ° 侵蚀速率介于 ≅ 和 ≅ 之间∀室内实验通过室内实验 和 年较早系统地研究了波浪作用下淤泥的侵蚀∀近年来 荷兰⁄ 理工大学土木工程系⁄ • 和 ∏ ≈ 对波浪作用下浮泥的产生机制进行了理论和实验研究 结果发现 当浮泥层出现时 水体层中的紊流强度减小∀⁄ • 和 ∏ ≈ 的水槽实验还进一步表明 当波高超过一临界值时波浪作用产生浮泥 这一临界值随着固结周期而增加 液化开始时测得的波浪平均毛细管水压力减小 这是由于聚积结构的破碎和有效应力的补偿∀通过采研究综述∞∂ ∞•≥海洋科学 年 第 卷 第 期用循环水槽实验 荷兰⁄ 水力学实验室和⁄ 理工大学土木工程系• 和 ∏ ≈ 研究了浮泥层的侵蚀 检验了 ∏ 和• ≈ 建立的浮泥悬扬 携运 模式∀他们得出这样的结论 浮泥初始悬扬 携运 过程与两层流体类似 即浮泥层上部可视为粘性流体∀在这一初始阶段 悬扬 携运 率可能受边界层发展的时间尺度影响∀在晚期 悬扬 携运 过程受到使泥沙悬浮的功和底床剪切强度的阻碍 可将淤泥视为 塑性体∀荷兰⁄ 理工大学土木工程系∂ 和 ∏ ≈ 就波致淤泥液化和输移进行了室内实验研究 实验结果显示 液化开始时 淤泥底床内的波致应力大于底床的剪切强度 液化后 斜坡底床上的淤泥在波浪和重力的综合作用下开始流动 速度为几个 重力提供了一个净坡向力 波浪力减小了浮泥的有效黏滞力∀这一机制可能解释风暴后航道中淤泥快速淤积∀荷兰 大学海洋和大气研究所 ∏ 和∂ ≈ 介绍了用于确定高岭淤泥底床的底切应力和侵蚀的水槽∀他们认为此水槽观测值代表了淤泥侵蚀开始时的最小剪切应力 这一应力将导致淤泥底床的顶层最大剪切强度∀数学模拟利用一个线性化多层模式 美国• 和 学院∂ 海洋研究所和ƒ 海岸与海洋工程系 和 年对波浪!淤泥相互作用的动力学进行了数学模拟∀他们采用一个黏弹性模式 ∂ 模式模拟在小变形下淤泥流变和能量耗损特性 结果显示 预测的波浪衰减系数一般与室内测试结果相一致 表明底床固结和泥沙组成对消浪的影响∀预测出的水体和淤泥中的速度也与有限的实验资料一致∀计算出的水泥交界面底床切应力比假设淤泥为坚硬的计算出的要大 这是由于水泥界面之间的超相位运动∀ 和 年认为 在缺乏水泥界面应力的直接观测情况下 以上模式为计算波浪作用下黏性泥沙的侵蚀速率提供了一个有用的方法∀荷兰⁄ 理工大学土木工程系和⁄ 水力学实验室 ∏ 和• ≈ 建立了浮泥悬扬 携运 模式∀此模式是通过积分横穿混合层的紊动能量方程而得到的 并假设水体层是流动的!淤泥层是静止的∀水体层是紊动混合层!冲蚀静止的淤泥层∀此外 模型中还考虑了淤泥的剪切强度以及黏性拖曳力∀敏感分析表明沉降!底床强度和黏滞力都减少悬扬 携运 率∀进展分析很显然 对于河口海岸底部边界层泥沙过程 国内外海洋学家!海岸工程师已经进行了大量研究∀ 一个最明显的进展是海洋水声学方法用于河口底部边界层泥沙 粗颗粒!细颗粒 过程的实验研究 它能提供连续的!高时空分辨率的泥沙动态变化过程以及悬沙浓度垂线分布∀但是 研究的主要是泥沙边界层而非波流底部边界层 换句话说 仅研究了河口近底部的泥沙过程∀ 此外 在水沙数学模型中 国外研究者考虑了河口近底高含沙层对水流的影响∀ 从国外研究情况来看 环形水槽模拟是研究河口海岸底部边界层和细颗粒泥沙过程的现场实验研究的重要途径∀ 就数学模拟而言 国内外河口海岸底部边界层的研究尚缺乏∀严格地讲 过去的数学模拟工作还不是模拟边界层的泥沙过程 因为他们采用的是二阶封闭模式∀ 河口海岸底部边界层细颗粒泥沙沉降速度如何确定 淤泥质河口海岸底床高频率再悬浮过程与湍流猝发的关系如何 由于野外现场!室内详细观测的困难 侵蚀速率和底床切应力一般经验性!非直接地从流速和悬沙浓度计算得出∀参考文献贺松林!孙介民∀海洋与湖沼 ∗时钟!陈伟民∀泥沙研究 ∗周济福等∀水动力学研究与进展 ∗ 刘应中!时钟∀见 周哲玮 主编 湍流理论新进展及其应用 上海 上海大学出版社 ∀ ∗时钟等∀泥沙研究 ∗时钟∀泥沙研究 ∗时钟!刘应中∀见 周哲玮 主编 湍流理论新进展及其应用 上海 上海大学出版社 ∀ ∗樊社军等∀海洋学报 19 ∗樊社军等∀海洋学报 19 ∗樊社军等∀泥沙研究 ∗吴永胜等∀水利学报 ∗Νεαρσηορε∆ψναµιχσανδΧοασταλΠροχεσσεσ.× √ × ° ∗° ΧοασταλΒοττοµΒουνδαρψΛαψερανδΣεδιµεντΤανσπορτ.Σινγαπορε:• ≥ °∏ ≤ °∗ƒ ≤ ΜαρινεΓεολογψ,研究综述∞∂ ∞•≥≥ ∂∗≥ εταλ..ΜαρινεΓεολογψ, ∗≥ εταλ..Γεο2ΜαρινεΛεττερσ, ∗ ≥ εταλ..Εστυαριεσ, 23 ∗⁄ ÷ εταλ..ϑουρναλοφΧοασταλΡεσεαρχη, 13 ∗∏ • εταλ..Εστυαρινε,ΧοασταλανδΣηελφΣχιενχε,46 ∗≤ ≠ εταλ..ΙντερνατιοναλϑουρναλοφΣεδιµεντΡεσεαρχη,14 ∗≥ ≤ ≠ ΧοντινενταλΣηελφΡεσεαρχη,16 ∗° ≠ ≤ 2 ϑουρναλοφΧοασταλΡεσεαρχη, ≥ ∗≤ × εταλ..ϑουρναλοφΧοασταλΡεσεαρχη,≥ ∗≤ × εταλ.. ⁄ ≥ ∞ ΠηψσιχσοφΕστυαριεσανδΧοασταλΣεασ,∗≤ × εταλ..ϑουρναλοφΓεοπηψσιχαλΡεσεαρχη,104 ≤ ∗≤ εταλ..Εστυαρινε,ΧοασταλανδΣηελφΣχιενχε, ∗∏ ∞ Εστυαρινε,Χοασταλ&ΣηελφΣχιενχε, ∗⁄ • ° ≤ ∏ ϑουρναλοφΗψδραυλιχΡεσεαρχη, ∗⁄ • ° ≤ ∏ Εστυαρινε,ΧοασταλανδΣηελφΣχιενχε, ∗• ≤ ∏ ≤ ϑουρναλοφΗψδραυλιχΕνγινεερινγ, ∗∏ ≤ • ≤ ϑουρναλοφΗψδραυλιχΕνγινεερινγ, ∗∂ × ∏ ≤ ϑουρναλοφΗψδραυλιχΕνγινεερινγ, ∗∂ × ∏ ≤ ΧοασταλΕνγινεερινγ, ∗∏ ∞ ∂ ≤ ϑουρναλοφΣεαΡεσεαρχη, ∗本文编辑 李本川对虾池塘养殖业现状及其可持续发展ΤΗΕΧΥΡΡΕΝΤΣΤΑΤΥΣΟΦΣΗΡΙΜΠΠΟΝ∆2ΧΥΛΤΥΡΕΑΝ∆ΙΤΣΣΥΣΤΑΙΝΑΒΛΕ∆ΕςΕΛΟΠΜΕΝΤ阎希柱李德尚董双林青岛海洋大学水产学院从发展角度而言 我国的对虾养殖业在经历 ∗ 年的快速发展阶段和 ∗ 年的急剧衰退阶段之后 近年来一直处于恢复性发展阶段的过程∀本文试图将我国近年来对虾养殖业对虾池塘养殖最近的变化!现状和对虾池塘综合养殖现状作一总结 并探讨今后对虾养殖业的可持续发展方向∀对虾养殖的主要模式我国对虾养殖业养殖模式的 个阶段按集约化程度而言 我国对虾养殖业养殖模式的演变 经历了以下 个阶段粗放式养殖阶段 ∗ 年养殖池规格 ∗ 一般 不投饵 不施肥 不除敌害 完全靠天然饵料或仅投喂饵料以少量新鲜小杂鱼虾!低值贝类为主 平均产量 ∗ 在这一阶段 养殖生态环境良好 很少有病害发生∀ 精养!半精养阶段 ∗ 年收稿日期 2 2 修回日期 2 2研究综述∞∂ ∞•≥海洋科学 年 第 卷 第 期。

缝洞型岩溶热储流动传热耦合数值模拟

天 然 气 工 业Natural Gas Industry第42卷第4期

2022年4月· 107 ·

引文:姚军,张旭,黄朝琴,等.缝洞型岩溶热储流动传热耦合数值模拟[J].天然气工业, 2022, 42(4): 107-116.YAO Jun, ZHANG Xu, HUANG Zhaoqin, et al. Numerical simulation of thermo–hydraulic coupling process in fractured–vuggy karst geothermal reservoirs[J]. Natural Gas Industry, 2022, 42(4): 107-116.

缝洞型岩溶热储流动传热耦合数值模拟

姚 军 张 旭 黄朝琴 巩 亮 杨文东 李 阳中国石油大学(华东)油气渗流研究中心

摘要:缝洞型岩溶热储是一种典型的地热能储层,具有出水量大且地热利用后尾水易于回灌的优势,是我国最具开发利用潜力的地热储层类型之一,但由于其储集空间类型多样(孔缝洞),且具有复杂的多尺度、强非均质性、多流态特征,因此对于热采过程中所涉及的流动、传热过程及热采动态等特征的认识尚不清晰。为此,基于缝洞型岩溶热储的特点,提出了基于离散缝洞网络方法的热流耦合数值模拟方法,并进行了模型准确性验证。研究结果表明:①提出了多孔介质渗流区采用达西定律描述,溶洞自由流区域采用Navier-Stokes方程描述,两区域间采用Beavers-Joseph-Saffman边界条件进行耦合的流动传热耦合数值模型;②裂缝网络连通性是控制和评价缝洞型热储流动传热效果的关键参数,而溶洞的存在对热储内的流动传热效果起重要影响;③离散缝洞网络热流耦合模型能够有效地描述缝洞型热储的流动传热过程,并发现裂缝网络连通性控制着缝洞型热储的热流耦合过程;④溶洞的存在会严重影响热储的热流耦合过程,一是增多系统内贯穿的高速流动通道数量,甚至使系统从不连通变为连通,二是增大系统内局部流动通道速度。结论认为,该方法对于研究缝洞型岩溶热储开发特征及其热采性能优化具有重要意义。关键词:地热;缝洞型岩溶热储;离散缝洞网络模型;数值模拟;热流耦合;连通性;裂缝;溶洞DOI: 10.3787/j.issn.1000-0976.2022.04.010

专业课计算题

2001 A综合题(每题13,计52分)3.1 某板框过滤机的过滤面积为0.4m2,在恒压下过滤某种悬浮液,4小时后得滤液量80m3,(过滤介质阻力不计)。

试求:(1)若其它情况不变,过滤面积加倍,可得滤液多少?(2)若过滤4小时后,用5m3的水洗涤滤饼,需要多长的洗涤时间?(洗水的粘度与滤液的相同)。

(3)若以上情况不变,折卸和组装时间为2小时,求生产能力(以m3(滤液)/h)?3.2填料吸收塔某截面上的气、液相组成为y=0.05,x=0.01(皆为溶质摩尔分率),气膜体积传质系数k y a=0.03kmol/(m3·s),液膜体积传质系数k x a=.02kmol/(m3·s),若相平衡关系为y=2.0x,试求两相间传质总推动力、总阻力、传质速率及各相阻力的分配。

3.3在填料塔内用稀硫酸吸收空气中的氨。

当溶液中存在游离酸时,氨的平衡分压为零。

下列三种情况下的操作条件基本相同,试求所需填料高度的比例:(1)混合气含氨1%,要求吸收率为90%;(2)混合气含氨1%,要求吸收率为99%;(3)混合气含氨5%,要求吸收率为99%。

3.4图中表述了聚式流化床压降与流速的关系,请指出,①、②、③线段分别代表什么阶段,④和⑤分别代表什么现象?P流化床压降与流速的关系图2001 B3.1用板框压滤机在恒压强差下过滤某种悬浮液,测得过滤方程式为:2Vθ252105A V V -⨯=+式中:V —滤液体积,m 3;A —过滤面积,m 2; θ—过滤时间,s 。

试求:(1)欲在30min 内获得5m 3滤液,需要边框尺寸为635mm ×635mm ×25mm 的滤筐若干个;(2)过滤常数K 、q e 、θe 。

3. 2图中表述了聚式流化床压降与流速的关系,请指出,①、②、③线段分别代表什么阶段?④和⑤分别代表什么现象?3.3在填料吸收塔内用清水吸收含溶质A 的气体混合物,两相逆流操作。

声学多普勒流速仪盲区数据处理及其在长江河口区的应用

2004年9月SHUILI XUEBAO第9期文章编号: 0559-9350(2004)10-0077-06声学多普勒流速仪盲区数据处理及其在长江河口区的应用王爱军,汪亚平,高抒(南京大学海岸与海岛开发教育部重点实验室,江苏南京 210093)摘要:本文基于边界层理论,在估算声学多普勒流速仪(Acoustic Doppler Current Profiler,简称ADCP)水表和底部的观测盲区流速作了初步探索。

根据长江口南港定点观测获取的ADCP潮周期流速剖面数据的分析结果,在涨急和落急阶段整个水层均为边界层,流速剖面呈对数分布。

因此,利用卡门-普朗特公式外插,计算ADCP盲区的流速,与在盲区放置的直读式流速仪测得的数据相比,平均相对误差分别为2.3%~2.9%。

某些数据点的偏离可能是由于悬沙浓度分布的变化而引起的。

关键词:流速剖面;ADCP;盲区流速计算;长江口中图分类号:TV143 文献标识码:A海洋环境流速剖面的研究由来已久,早期的现场观测研究可以追溯到20世纪中期[1],研究区域涵盖大陆架、河口海岸环境[2~4]。

这些观测大多是利用传统流速仪进行观测,难以获得整个水层的连续、高频流速数据。

而声学多普勒流速剖面仪(ADCP)克服了这一缺陷,它可以同时测定多层位流速[5],因而得到了广泛的应用[6]。

但是,由于ADCP探头电子设备、探头外壳及船体的影响,产生“激振效应”,因此在靠近ADCP探头的区域接收到的信号是发射脉冲消失后继续存留在水层中的能量,而不是多普勒漂移信号;此外,由于4个探头与垂直方向的夹角为20°,底部回声信号因此而受到干扰,产生“旁瓣效应”,所以分别在水层的上部和下部各形成一个盲区。

下部盲区的厚度约为水深的6%,而上部盲区的厚度不仅与探头放入水下的深度有关,还与ADCP的工作频率、在观测过程中的参数设定等因素有关[7]。

由于近底层水流流速在河口悬沙的水平输送及底部再悬浮过程的研究中,起着非常重要的作用[8];同时,在河口断面物质通量的计算中,水层上部和底部的贡献也非常大,因此有必要对ADCP盲区内的流速进行估算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9 习题 相平衡 9-1 总压为101.3kPa下,用苯、甲苯的安托因方程(见例9-1),求(1)温度为108℃及81℃时,苯对甲苯的相对挥发度;(2)用上述计算的相对挥发度的平均值αm,计算苯-甲苯的汽-液平衡数据,并与书末附录中所列的实验值作比较(列表)。 [答:(1) 2.370,2.596;(2) 2.483]

9-2 乙苯、苯乙烯混合物是理想物系,纯组分的蒸气压为: 乙苯 tp206.213225.142408240.6lgA

苯乙烯 tp43.20958.144508232.6lgB 式中 p的单位是kPa,t为℃。试求:(1)塔顶总压为8kPa时,组成为0.595(乙苯的摩尔分数)的蒸气温度;(2)与上述气相成平衡的液相组成。 [答:(1) 65.33℃;(2) 0.512]

9-3 乙苯、苯乙烯精馏塔中部某一块塔板上总压为13.6kPa,液体组成为0.144(乙苯的摩尔分数),安托因方程见上题。试求:(1)板上液体的温度;(2)与此液体成平衡的气相组成。 [答:(1) 81.36℃;(2) 0.187]

9-4 总压(绝压)为303.9kPa下,含丁烷0.80、戊烷0.20(均为摩尔分数)的混合蒸气冷凝至40℃,所得的液、气两相成平衡。求液相和气相数量(摩尔)之比。 已知丁烷(A)和戊烷(B)的混合物是理想物系,40℃下纯组分的饱和蒸汽压为:3kPa.373Ap,kPa1.117Bp。

[答:1.35]

9-5 某二元混合液100kmol,其中含易挥发组分0.40。在总压101.3kPa下作简单精馏,最终所得的液相产物中,易挥发物为0.30(均为摩尔分数)。试求:(1) 所得气相产物的数量和平均组成;(2)如改为平衡蒸馏,所得气相产物的数量和组成。 已知物系的相对挥发度为α=3.0。 [答:(1) 31.3kmol,0.619;(2) 38.0kmol,0.563]

物料衡算、热量衡算及操作线方程 9-6 某混合液含易挥发组分0.24,在泡点状态下连续送入精馏塔。塔顶馏出液组成为0.95,釜液组成为0.03(均为易挥发组分的摩尔分数)。试求:(1) 塔顶产品的采出率D/F;(2) 采用回流比R=2时,精馏段的液气比L/V及提馏段的气液比L′/V′;(3) 采用R=4时,求L/V及L′/V′。 设混合物在塔内满足恒摩尔流条件。 [答:(1) 0.228;(2) 0.667,0.470;(3) 0.8,0.595]

9-7 苯—甲苯混合液中含苯摩尔分数为0.3,预热至40℃以10kmol/h的流量连续加入一精馏塔。塔的操作压强为101.3kPa。塔顶馏出液中含苯摩尔分数95%,残液含苯摩尔分数为0.03,回流比R=3。试求塔釜的蒸发量是多少? [答:14.32kmol/h]

9-8 某混合物含易挥发组分0.10(摩尔分数,下同),以饱和蒸气状态连续加入精馏塔的塔釜。加料量为10kmol/h,塔顶产品组成为0.90,塔釜排出的残液组成为0.05。试求:(1)塔顶全凝器的蒸气冷凝量;(2)回流比R及塔内的液气比L/V。 [答:(1) 10kmol/h;(2) 16,0.941]

9-9 有如图的精馏流程,以回收二元理想混合物中的易挥发组分A。塔Ⅰ和塔Ⅱ的回流比都是3,加料、回流均为饱和液体。 已知:xF=0.6,xD=0.9,xB=0.3,xT=0.5(均为摩尔分数),F=100kmol/h。整个流程可使易挥发组分A的回收率达90%。试求:(1)塔Ⅱ的塔釜蒸发量;(2)写出塔Ⅰ中间段(F和T之间)的操作线方程。 [答:(1) 120kmol/h;(2) y = 1.17x-0.025]

9-10 某塔顶蒸气在冷凝器中作部分冷凝,所得的气、液两相互成平衡。气相作产品,液相作回流,参见附图。设该系统符合恒摩尔流的假定,试推导此时的精馏段操作线方程。 如该塔的塔顶采用的是全凝器,馏出液组成xD与上述采用冷凝器时的气相产品组成相同,试比较采用分凝器与全凝器两种情况下的操作线方程。

[答:11RxxRRyD,分凝器相当于一块理论板]

9-11 如图所示。某精馏塔顶采用的是冷回流(即回流液的温度低于泡点温度),其回流比为R′=L。/D(摩尔比,下同),而塔顶第一块板下方的回流比即为塔内实际回流比R(内回流),R=L/D,试证明:

(1) rTTcrRRspm)(,

(2)冷回流时精馏段的操作线方程形式不变,即:111RxxRRyDnn 式中 r、cm,p、Ts、T分别为摩尔汽化潜热,摩尔热容,回流液的泡点及回流液入塔温度。 [答略] 精馏设计型计算 9-12 欲设计一连续精馏塔用以分离含苯与甲苯各0.5的料液,要求馏出液中含苯0.96,残液中含苯不高于0.05(以上均为摩尔分数)。泡点进料,选用的回流比是最小回流比的1.2倍,物系的相对挥发度为2.5。试用逐板计算法求取所需的理论板数及加料板位置。 [答:16,第8块]

9-13 设计一连续精馏塔,在常压下分离甲醇—水溶液15kmol/h。原料含甲醇0.35,塔顶产品含甲醇0.95,釜液含甲醇0.04(均为摩尔分数)。设计选用回流比为1.5,泡点加料。间接蒸汽加热。用作图法求所需的理论板数、塔釜蒸发量及甲醇回收率。设没有热损失,物系满足恒摩尔流假定。 [答:m=5,N=7,12.8kmol/h,92.5%]

9-14 上题改用直接饱和蒸气加热,保持上述xD、xW、R不变,求理论板数、蒸汽消耗量、甲醇的回收率。 [答:m=5,N=7,11.5kmol/h,83.2%]

9-15 试用捷算法计算环氧乙烷和环氧丙烷系统的连续精馏塔理论板数。 已知:xD = 0.98,xF=0.60,xW=0.05(以上均为以环氧乙烷表示的摩尔分数)。取回流比为最小回流比的1.5倍。常压下系统的相对挥发度为2.47,饱和液体进料。 [答:15]

9-16 含易挥发组分0.42(均为摩尔分数)的双组分混合液在泡点状态下连续加入精馏塔塔顶,釜液组成保持0.02。物系的相对挥发度为2.5,塔顶不回流。试求:(1)欲得塔顶产物的组成为60%时所需的理论板数;(2)在设计条件下若板数不限,塔顶产物可能达到的最高含量xD,max。 [答:(1) 8;(2) 0.644]

9-17 用连续精馏塔同时取得两种产品,高含量者取自塔顶xD=0.9(摩尔分数,下同),低含量者取自塔侧(液相抽出) xD1=0.7(如图示)。已知:xF=0.4,xW=0.1,q=1.05,R=2,系统α=2.4,D/D1=2(摩尔比)。试求所需的理论板数。 [答:18]

9-18 图示为两股组成不同的原料液分别预热至泡点,从塔的不同部位连续加入精馏塔内。已知:xD

=0.98,xs=0.56,xF=0.35,xW=0.02(以上均为易挥发组分表示的摩尔分数)。系统的α=2.4,含量较高的原料液加入量为0.2F,试求:(1)塔顶易挥发组分回收率;(2)为达到上述分离要求所需的最小回流比。 [答:(1) 96.7%;(2) 1.51] 9-19 当采用理论板概念计算低含量气体吸收过程时,若物系相平衡服从y=mx,则所需理论板数为:

OGT)/ln(/1NmGL

LmGN

试推导证明上式。

操作型计算 9-20 一精馏塔有5块理论板(包括塔釜),含苯,摩尔分数为0.5的苯-甲苯混合液预热至泡点,连续加入塔的第3块理论板上。采用回流比R=3,塔顶产品的采出率D/F=0.44。物系的相对挥发度α=2.47。求操作可得的塔顶、塔底产品组成xD、xW。(提示:可设xW=0.194作为试差的初值) [答:0.889,0.194]

9-21 将20题的加料口向上移动一块板,即第二块板上加料,求操作可得的xD、xW,并与上题结果作比较。(提示:可设xW=0.207作试差初值)。 [答:0.873,0.207]

9-22 某精馏塔共有3块理论板,原料中易挥发组分的摩尔分数为0.002,预热至饱和蒸汽连续送入精馏塔的塔釜。操作时的回流比R=4.0,物系的相平衡关系为y=6.4x。求塔顶、塔底易挥发组分的含量。 [答:0.00869,0.000327]

9-23 如图所示的精馏塔具有1块实际板及一只精馏釜,原料预热至泡点,由塔顶连续加入,xF=0.20(摩尔分数,下同),测得塔顶产品能回收原料中的易挥发组分为80%,且xD=0.28,系统的相对挥发度α=2.5。试求残液组成xW及该块塔板的板效率。设蒸馏釜可视为1块理论板。 [答:0.0935,66.4%]

9-24 某二组分混合液用精馏分离,其进料摩尔分率为0.5,泡点进料,系统的相对挥发度α=2,塔顶出料量是进料量的60%(摩尔比)。如果所采用的精馏塔的理论塔板数为无穷多块,试计算:(1) R=0.8时,塔顶与塔底的组成各为多少?(2) R=1.5时,试绘出表示精馏段和提馏段操作线的示意图。 [答:(1) 0.8,0.05;(2) 0.833,0,图略]

9-25 拟将100kmol乙醇的水溶液于常压下进行间歇精馏。料液组成含乙醇0.4(摩尔分数,下同),当釜内残液中乙醇的含量降到0.04时停止操作。每批操作所花时间为6h。 若保持馏出液的组成恒定为0.8,操作终止时回流比为最小回流比的2倍。试求:(1)理论板数;(2) 蒸馏釜汽化的蒸气量,kmol/h;(3)操作终止时釜内残液量和馏出液量。

相关文档
最新文档