几种边缘检测算子比较

合集下载

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘,给出结果并分析。

用sobel,log,candy三种算子对图像进行边缘提取:f = imread('E:\木子的U盘\大三的木子\第一学期\数字图像处理\xback.jpg');f = rgb2gray(f); %将图像转化为灰度图像[gsobel_default,ts] = edge(f,'sobel');%利用sobel算子的默认语法得到边缘图像subplot(231);imshow(gsobel_default);title('g sobel default');[glog_default,tlog]=edge(f,'log');%利用log算子的默认语法得到边缘图像subplot(233);imshow(glog_default);title('g log default');[gcanny_default,tc]=edge(f,'canny');%利用candy算子的默认语法得到边缘图像subplot(235);imshow(gcanny_default);title('g canny default');gSobel_best=edge(f,'sobel',0.05);%减少不必要的细节subplot(232);imshow(gSobel_best);title('g sobel best');gLog_best=edge(f,'log',0.003,2.25);%subplot(234);imshow(gLog_best);title('g log best');gCanny_best=edge(f,'canny',[0.04 0.10],1.5);%subplot(236);imshow(gCanny_best);title('g canny best');MATLAB图像显示如下:分析如下:sobel得出的结果与试图检测边缘的目标相差太远。

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索引言:图像识别技术如今已经广泛应用于各个领域,其关键之一就是图像中的轮廓提取算法。

轮廓提取的准确与否直接影响到图像识别的效果。

本文将探索图像识别中常用的轮廓提取算法,并对其原理和优缺点进行分析。

一、边缘检测算法边缘检测是图像处理中最基础的一步,是进行轮廓提取的前提。

常用的边缘检测算法有Sobel算子、Laplacian算子和Canny算子等。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,其原理是通过计算每个像素点的梯度值来判断其是否为边缘点。

然后根据梯度值的大小确定边缘的强度,进而提取轮廓。

Sobel算子的优点是计算简单,对噪声鲁棒性强。

但其缺点也较为明显,容易产生边缘断裂的情况,并且对角线边缘检测效果较差。

2. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,其原理是通过计算图像中每个像素点的二阶导数来判断其是否为边缘点。

Laplacian算子的优点是能够检测出边缘的交叉点,能够更精准地定位边缘。

但其缺点是对噪声比较敏感,容易产生误检。

3. Canny算子Canny算子是一种综合考虑多种因素的边缘检测算法,其原理是通过梯度计算、非极大值抑制和阈值处理来提取目标轮廓。

Canny算子的优点是能够提取清晰且连续的边缘,对噪声抑制效果好。

但其缺点是计算量较大,算法较为复杂。

二、区域生长算法区域生长算法是一种基于种子点的轮廓提取方法,其原理是在图像中选择若干个种子点,然后通过像素点之间的相似性判断来逐渐生长成为一个完整的区域。

区域生长算法的优点是能够提取出连续且相似的轮廓,适用于要求较高的图像识别任务。

但其缺点是对种子点的选择比较敏感,容易受到图像质量和噪声的影响。

三、边缘跟踪算法边缘跟踪算法是一种基于边缘连接的轮廓提取方法,其原理是通过追踪边缘点的连接关系,形成完整的轮廓。

边缘跟踪算法的优点是能够提取出精细的轮廓,并且对噪声抑制效果好。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。

常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。

本文将对这几种算法进行比较。

1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。

2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。

3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。

Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。

4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。

Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。

但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。

综上所述,不同的边缘检测算法具有各自的优缺点。

若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。

如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。

另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。

最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释1.引言1.1 概述边缘检测及拟合是图像处理和计算机视觉领域中重要的技术研究方向,旨在从图像中提取出物体或目标的边缘信息,并进一步对边缘进行拟合和分析。

通过边缘检测和拟合,可以实现诸如物体检测、轮廓提取、目标跟踪、三维重构等多种计算机视觉任务。

边缘是指图像中灰度或颜色变化剧烈的区域。

边缘检测的目标是在图像中准确地标记和定位出这些边缘。

边缘检测是计算机视觉中常用的技术,具有广泛的应用领域,例如机器人导航、图像识别、医学影像处理等。

通过边缘检测,我们可以对图像进行分割,从而将图像分成不同的区域,方便后续处理。

边缘拟合是对图像中的边缘进行曲线或直线拟合的过程。

通过对边缘进行拟合,可以得到更加平滑的边缘曲线或直线,从而更好地描述物体的形状和轮廓。

边缘拟合广泛应用于图像重建、形状分析、目标识别等领域,能够提高边缘的准确性和鲁棒性。

边缘检测和拟合是紧密相连的两个过程,相互影响并共同完成对图像边缘的提取和分析。

边缘检测是边缘拟合的基础,而边缘拟合可以通过拟合来修正和优化边缘检测的结果。

在实际应用中,边缘检测和拟合经常需要同时进行,相互补充来提高整体的效果和精度。

本文将对边缘检测和拟合的概念进行介绍,并总结常用的方法和应用领域。

同时还会重点探讨边缘检测与拟合的关系,包括相互影响、综合应用以及未来的研究方向。

通过深入研究边缘检测及拟合的原理和方法,我们可以更好地理解图像的结构和特征,为计算机视觉和图像处理领域的相关应用提供有力支持。

文章结构部分的内容可以如下所示:1.2 文章结构本文分为引言、正文和结论三部分。

- 引言部分介绍了边缘检测及拟合的相关概念和研究意义,并对文章的结构进行了概述。

- 正文部分包括了边缘检测和边缘拟合两个主要部分。

- 边缘检测部分主要介绍了边缘检测的概念、常用方法和应用领域。

- 边缘拟合部分主要介绍了边缘拟合的概念、拟合方法和实际应用。

- 边缘检测与拟合的关系部分探讨了二者之间的相互影响,以及如何综合应用边缘检测和拟合方法,并给出了拓展研究方向的建议。

图像边缘检测中的微分算子法及其比较

图像边缘检测中的微分算子法及其比较

与区域( 包括不同色彩 ) 之间。 边缘表明一个特征 区域的终结和另一特征区域的开始 。边缘所分开区 域的内部特征或属性是一致的, 而不同的区域内部 特征或属性是不同的。边缘检测正是利用物体和背 景在某种图像特征上的差异来实现检测 , 这些差异 包括灰度、 颜色或纹理特征, 边缘检测实际上就是检 测图像特征发生变化的位置。 边缘的类型很多, 常见的有以下三种: 第一种是 阶梯形边缘, 其灰度从低跳跃到高; 第二种是屋顶形 边缘, 其灰度从低逐渐到高然后慢慢减小 ; 第三种是 线性边缘, 其灰度呈脉冲跳跃变化。如图 1 所示。
0
引言
边缘检测是图像分析与识别的第一步, 边缘检 测在计算机视觉、 图像分析等应用中起着重要作用 , 图像的其他特征都是由边缘和区域这些基本特征推 导出来的, 边缘检测的效果会直接影响图像的分割 和识别性能。边缘检测法的种类很多, 如微分算子 [1 ] 法、 样板匹配法、 小波检测法、 神经网络法等等 , 每一类检测法又有不同的具体方法。 目前, 微分算 Sobel, Prewitt, Canny, Laplacian, 子法 中 有 Roberts, Log 以及二阶方向导数等算子检测法, 本文仅将讨 论微分算子法中的几个常用算子法 。
图像边缘检测中的微分算子法及其比较
龙 清
( 重庆广播电视集团 ( 总台) ,重庆 401147 )

要: 边缘是图像最基本的特征, 边缘检测是图像分析与识别的重要环节。 基于微分算子的 边缘检测是目前较为常用的边缘检测方法 。通过对 Roberts,Sobel, Prewitt, Canny 和 Log 等几个
2 h( x, y) = [ y) ] * f( x, y) g( x, 2 y) = 其中, g( x,

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子转自:/xiaowei_cqu/article/details/7829481边缘边缘(edge)是指图像局部强度变化最显著的部分。

主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。

图像强度的显著变化可分为:∙阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;∙线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导数来检测边缘。

(a)(b)分别是阶跃函数和屋顶函数的二维图像;(c)(d)是阶跃和屋顶函数的函数图象;(e)(f)对应一阶倒数;(g)(h)是二阶倒数。

一阶导数法:梯度算子对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗)。

对于右图,结论相反。

常数部分为零。

用来检测边是否存在。

梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量:计算这个向量的大小为:近似为:梯度的方向角为:Sobel算子sobel算子的表示:梯度幅值:用卷积模板来实现:【相关代码】接口[cpp]view plaincopyprint?1.CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,2.int dx, int dy, int ksize=3,3.double scale=1, double delta=0,4.int borderType=BORDER_DEFAULT );使用[cpp]view plaincopyprint?1./////////////////////////// Sobe l////////////////////////////////////2./// Generate grad_x and grad_y3.Mat grad_x, grad_y;4.Mat abs_grad_x, abs_grad_y;5./// Gradient X6.//Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );7.//Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.8.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );9.convertScaleAbs( grad_x, abs_grad_x );10./// Gradient Y11.//Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );12.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );13.convertScaleAbs( grad_y, abs_grad_y );14./// Total Gradient (approximate)15.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );二阶微分法:拉普拉斯二阶微分在亮的一边是负的,在暗的一边是正的。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的检测算子有:
(1)微分算子
(2)拉普拉斯高斯算子
(3)canny算子
微分算子
Sobel算子, Robert算子,prewitt算子比较
Sobel算子是滤波算子的形式来提取边缘。

X,Y方向各用一个模板,两个模板组合起来构成1个梯度算子。

X方向模板对垂直边缘影响最大,Y方向模板对水平边缘影响最大。

Robert算子是一种梯度算子,它用交叉的差分表示梯度,是一种利用局部差分算子寻找边缘的算子,对具有陡峭的低噪声的图像效果最好。

prewitt算子是加权平均算子,对噪声有抑制作用,但是像素平均相当于对图像进行地同滤波,所以prewitt算子对边缘的定位不如robert算子。

源程序:
i=imread('tanke.jpg');
i2=im2double(i);
ihd=rgb2gray(i2);
[thr,sorh,keepapp]=ddencmp('den','wv',ihd);
ixc=wdencmp('gbl',ihd,'sym4',2,thr,sorh,keepapp);
figure,imshow(ixc),title('消噪后图像');
k2=medfilt2(ixc,[7 7]);
figure,imshow(k2),title('中值滤波');
isuo=imresize(k2,0.25,'bicubic');
%sobert、robert和prewitt算子检测图像边缘
esobel=edge(isuo,'sobel');
erob=edge(isuo,'roberts');
eprew=edge(isuo,'prewitt');
subplot(2,2,1);
imshow(isuo);title('前期处理图像');
subplot(2,2,2);
imshow(esobel);title('sobel算子提取');
subplot(2,2,3);
imshow(erob);title('roberts算子提取');
subplot(2,2,4);
imshow(eprew);title('prewitt 算子提取'); 程序运行结果:
拉普拉斯高斯算子
拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零交叉。

前面介绍的几种梯度法具有方向性,不能对各种走向的边缘都具有相同的增强效果。

但是Laplacian
算子是各向同性的,能对任何走向的界线和线条进行锐化,无方向性。

这是拉普拉斯算子区别于其他算法的最大优点。

源程序:

期处理图像
sobel 算子提取
roberts 算子提取prewitt 算子提取
elog=edge(isuo,'log');
imshow(elog);title('log算子提取');
运行结果:
canny算子
Canny边缘检测是一种比较新的边缘检测算子,具有很好的边缘监测性能,在图像处理中得到了越来越广泛的应用。

源程序:
ecanny=edge(isuo,'canny');
imshow(ecanny);title('canny算子提取');
程序运行结果:
边缘检测结果比较
Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。

Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel 算子对边缘定位不是很准确,图像的边缘不止一个像素。

Prewitt算子检测方法对灰度渐变和噪声较多的图像处理效果较好。

但边缘较宽,而且间断点多。

Laplacian算子法对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。

Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。

优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。

相关文档
最新文档