线性系统理论MATLAB大作业

线性系统理论MATLAB大作业
线性系统理论MATLAB大作业

兰州理工大学2015级线性系统理论大作业

线性系统理论Matlab 实验报告

1、在造纸流程中,投料箱应该把纸浆流变成2cm 的射流,并均匀喷洒在网状传送带上。为此,要精确控制喷射速度和传送速度之间的比例关系。投料箱内的压力是需要控制的主要变量,它决定了纸浆的喷射速度。投料箱内的总压力是纸浆液压和另外灌注的气压之和。由压力控制的投料箱是个耦合系统,因此,我们很难用手工方法保证纸张的质量。

在特定的工作点上,将投料箱线性化,可以得到下面的状态空间模型:

u x x ??

????+??????-+-=0001.0105.0002.002.08.0. []21,x x y =

其中,系统的状态变量x1=液面高度,x2=压力,系统的控制变量u1=纸浆流量u2=气压阀门的开启量。在上述条件下,试设计合适的状态变量反馈控制器,使系统具有实特征根,且有一个根大于5

解:本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数时系统不稳定,这样的设计是无意义的,故而不妨采用状态反馈后的两个期望特征根为-7,-6,这样满足题目中所需的要求。要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控。 Matlab 判断该系统可控性和求取状态反馈矩阵K 的程序,如图1所示,同时求得加入状态反馈后的特征根并与原系统的特征根进行了对比。

图1系统能控性、状态反馈矩阵和特征根的分析程序上述程序的运行结果如图2所示:

图2系统能控性、反馈矩阵和特征根的运行结果

图2中为图1matlab 程序的运行结果,经过判断得知系统是可控的,同时极点的配置个数与系统状态相符,求得了状态反馈矩阵K 的值,并把原系统的特征根(rootsold )和加入状态反馈后的特征根(rootsnew )进行对比。同时通过特征值可以看出该系统是稳定的。

2、描述恒速制导导弹的运动方程为:

u x x ???????

?????????+????????????????=0001000015

.0001000

00005.00005.0-1.0-00010. []x y 01000= 运用ctrb 函数计算系统的能控型矩阵,并验证系统是不可控的;

计算从u 到Y 的传递函数,并消去传递函数中的分子和分母公因式,由此可以得到能控的状态空间模型。在消去了公因子之后,请用tf2ss 函数确定新的状态变量模型;

证明(b)中得到的状态变量模型是能控的;说明恒速制导导弹是否稳定?

讨论状态变量模型的能控性和复杂性的关系(假设用状态变量的数目来度量复杂性)。

解:该题是通过描述的恒速制导导弹的运动方程求解相应问题。

(a )运用ctrb 函数计算系统的能控性矩阵,并判断该系统不可控,详细matlab 程序和判断结果如图3和图4所示。

图3是判断该系统能控性的matlab 程序,通过求得能控性矩阵Qc ,并通过秩判据来判定该系统是否能控。

图3系统能控性的判别程序

判定的结果如图4所示:

图4系统的能控性矩阵和能控性判定结果

通过matlab分析求得了系统的能控性矩阵Qc,同时通过秩判据判定该系统不可控。(b)、(c)计算u到y的传递函数,并通过tf2ss函数确定新的状态变量模型,同时判断该模型是能控的。具体程序如图5所示,判断的结果如图6示。

图5确定新状态空间并判定能控性的程序

图6系统的传递函数、新的状态空间模型和能控性判定结果

分析得知u到y的传递函数可通过状态空间描述的矩阵求得,同时通过tf2ss 函数确定了新的状态空间(A1,B1,C1,D1),运用函数ss求得新模型的状态方程,再通过能控型矩阵判定系统的能控性。

显然得到系统是可控的,同时还要声明通过传递函数求得空间描述和通过状态矩阵求得结果不同,从而验证了传递函数对系统的内部描述不完整。

(d)判断恒速制导导弹系统稳定性

以下通过求得矩阵的特征值即传递函数的极值点来判断该系统是否稳定。图7是求取极值点的程序,通过roots和eig函数来求取,目的进行必要的对比。图8是通过两种途径获得的系统的极值点。

图7求取极值点的源程序

图8是图7程序的运行结果:

图8系统的传递函数和极值点

从求得的结果中可以看出其特征值的根的实部都不是正数,从而就说明了该系统在李雅普洛夫意义下是稳定的。

图9 系统的单位阶跃响应

通过程序给系统一个单位阶跃信号,从上图可以看出系统不是严格收敛的,而是发散的。

(e )状态变量模型的能控性和复杂性的关系(用状态变量的数目来度量复杂性)。

讨论状态变量模型的能控性与复杂性的关系。很直观地讲,一个系统要能控,必须要其能控型判别矩阵的秩等于系统的阶数也即就是状态变量的数目,但是反过来,系统越复杂,状态变量的个数越多,能控型判别矩阵要求满足的秩也就越大,也即意味着越难达到要求,从而其能控性也就越不容易满足。从而可以得出结论,即越复杂的系统越不容易达到完全可控。

3、垂直起降的飞机的线性化模型为:

=Ax+B1u1+B2u2

其中

?????

???????----=01004200.17070.0.3681.01002.00208.40024.00100.10482.04555.00188.00271.00366.0A ????????????-=05200.55446.34422.01B , ?????

???????-=04900.45922.71761.02B 系统的状态变量为水平速度1x (节)、垂直速度2x (节)、倾斜率3x (度/秒)和倾

斜角4x (度);系统的控制输入为1u 和2u ,其中1u 用于控制垂直运动,2u 用于控制

水平运动。

(a) 计算系统矩阵A 的特征值,并由此判断系统是否稳定;

(b) 利用poly 函数确定A 的特征多项式,计算特征根,并与(a)中得到的特征根相比较;

(c) 当只有1u 发挥作用时,系统能控吗?当只有2u 发挥作用时,结果又如何?请比较解释你的结论。

解:通过给定的垂直起降的飞机的线性化模型分析系统的属性

(a)计算系统矩阵A的特征值,并根据特征值判断系统是否稳定

图10矩阵A的特征值和u1、u2分别作用的能控性判别程序

(b)利用poly函数确定A的特征多项式,计算特征值,并与(a)中的结果进行对比

(c)当只有u1作用时,系统能控性;只有u2作用时,系统能控性。

针对以上三点问题,通过图10所示的matlab程序来判断所有问题,最终的结果在图11中显示。

求取矩阵A的特征值和u1、u2分别作用时系统可控性的运行结果:

图11特征值、特征多项式和u1、u2分别作用的能控性结果其中roots1是通过eig函数求得的状态矩阵A的特征值,显然有两个特征值具有正实部,故系统不稳定;Q1是通过poly函数确定的A的特征多项式,roots2是通过roots函数求得的A矩阵的特征多项式的根,经过对比发现roots1和roots2的数值一样;只有u1或者u2作用是通过能控型矩阵Qc,用秩判据得到系统都是可控的。dimA是通过size函数求得矩阵A的维数。对比的当u1与u2发挥作用时所对应的能控型判别矩阵的秩都为4,即其秩等于系统的阶数也就是矩阵A的维数,从而说明在这两种情况下,系统均为能控。

4、为了探究月球背面(远离地球的一面)的奥秘,人们付出了不懈的努力。例如,在地球-太阳-月球系统中,人们希望通信卫星能定点在不受月球遮挡的轨道上,并为此开展了广泛的论证研究工作。图中给出了预期卫星轨道的示意图,从地球上看上去,卫星轨道的光影恰似环绕月球的外层光晕,因此这种轨道又称为光晕轨道。轨道控制的目的是,使通信卫星在地球可见的光晕轨道上运行,从而保证通信链路的畅通,所需的通信链路包括从地球到卫星和从卫星到月球背面共两段线路。 卫星绕定点位置运动时,经过标准化和线性化的漂移运动方程为:

1230001000000000100000000010007.3809

000201000 2.1904020001000 3.1904000001x x u u u ????????????????????????????????=+++????????????????????????--????????-????????

其中,状态变量x 是卫星在三个方向上的位置和速度漂移,输入(1,2,3)i u i =分别是轨控发动机在ξ、η和ζ方向上产生的加速度。

(a) 卫星的定点位置是否稳定?(b) 如果只有1u 发挥作用,卫星是否能控? (c) 如果只有2u 发挥作用,卫星是否能控?(d) 如果只有3u 发挥作用,卫星是否能控?

(e) 如果能够测得η方向的位置漂移,请确定由2u 到该位置漂移量的传递函数。(提示:可以令观测输出为[]010000y x =)

(f) 用tf2ss 函数,计算(e)中得到的传递函数的状态变量模型,并验证该轨迹子系统是能控系统;

(g) 采用状态反馈2u Kx =-,设计合适的反馈控制器,使(f)中得到的系统的闭环极点为1,21s j =-±和3,410s =-。

解:在给定的卫星绕定点位置运动时的标准化和线性化的漂移运动方程,通过matlab 分析一下几点问题。

图12系统稳定性和u1、u2、u3分别作用时的能控性

(1)关于卫星的定点位置的稳定性和分别只有u1或者u2或者u3作用时,卫星的能控性通过图12的程序来判断,判断结果在图13中显示。

卫星定位系统的稳定性和u1、u2、u3分别作用时的能控性判别结果如图13所示

图13系统特征根和u1、u2、u3分别作用的能控性判别结果

图14系统极值点分布图

通过图13可以看出系统的极值点(roots1)中有大于零的点,直观的从图14的系统极值点分布图中看出在虚轴的右半平面上有一个极值点,所以系统是不稳定的;从图13中还可以发现系统在只有u1或者u2或者u3作用时,均不可控。

(2)确定由u2到漂移量的传递函数并确定传递函数所对应的状态变量模型,然后验证其为能控系统。执行程序如图15所示,该程序用于求解传递函数和状态模型,并验证该模型的能控性。运行的结果如图16所示。

图15传递函数、状态变量模型和能控性求解程序

以上程序中求得了新系统的传递函数以及状态空间模型,并通过求取系统的能控性矩阵,根据秩判据判定系统的可控性,由if语句来选取,把最终结果显示在命令窗口。

图15程序的运行结果如图16所示:

图16传递函数、状态空间描述和能控性的结果

图16中显示了由u2到n方向的位置漂移量的传递函数,以及通过tf2ss函数得到该传递函数的状态变量模型,最后验证得到该模型是能控的。

(3)在给定状态空间描述的基础上采用状态反馈u2=-Kx,使得(1)中得到的模型的闭环极点为-1+j,-1-j,-10,-10.具体程序如图17所示,运行的结果如图18,

图19所示。

图17状态反馈设计的程序:

图17状态反馈设计程序

该程序首先判定极值点是否配置合理,求得反馈矩阵,并画出加入状态反馈后的根轨迹,再求得加入状态反馈后系统的零极点及增益,最后画出系统加入反馈后的阶跃响应图。

图18是上述程序运行得到的反馈矩阵和系统的零极点以及增益值。

图18状态反馈矩阵、零极点和增益

其中K是状态反馈矩阵,zI是加入状态反馈后的零点,pI是加入状态反馈后的极点,gainI是系统增益,透过极点可以看出系统是稳定的。

通过图18可以看出再加入状态反馈K时,求得的极点正好是期望的值,也验证了求取的正确性。最后求得加入状态反馈时系统的增益。通过图19可以看出系统是渐近稳定的。

图19是加入状态反馈后系统的根轨迹和阶跃响应:

图19加入反馈K时系统的根轨迹和阶跃响应

从图19看到系统是稳定的正好验证了极值点实部小于零系统稳定,同时可以发现系统在加入状态反馈后调节时间较快。

5、在8.2风力机的一阶模型中,采用浆距角控制风力机的转速,风速的变化视为扰动,设计风力机转速的闭环PI控制,使转速恒定。

解:给定风力机的一阶模型,采用浆距角控制风力机转速,风速变化视为扰动,设计风力机的PI控制,使转速恒定。

PI控制器的模型为K1+K2/s,从而可以求出该系统闭环系统的特征方程为

S^2+0.3397K1*S+0.3397K2=0

要使得该风力机稳定运行,则需让特征方程的根具有负实部。

syms s k1 k2;

>> s=solve(s^2+0.339*k1*s+0.339*k2)

s =

- (339*k1)/2000 - ((114921*k1^2)/1000000 - (339*k2)/250)^(1/2)/2

((114921*k1^2)/1000000 - (339*k2)/250)^(1/2)/2 - (339*k1)/2000

使其为负数,从而可得出K1<=180,K2<=86,得到的PI控制器就能满足要求,不妨取K1=80,K2=60.simulink仿真如图20所示。

图20加入PI控制的系统仿真图

其中输入采用阶跃信号,扰动信号为单位脉冲。

在未加入扰动信号时,只有阶跃信号输入的系统响应如图21所示:

图21未加脉冲扰动只有阶跃信号输入的输出响应

图22在加入脉冲扰动情况下系统输出响应

通过图21和22对比发现系统能很好的通过反馈调节使系统在扰动情况下趋于稳定,同时可以看出调节速度较快,所以得到的PI控制器可以满足所要求的指数。

6、在8.2风力机的三阶模型中,采用浆距角控制风力机的转速,风速的变化视为扰动,电磁转矩视为常数,采用状态反馈和极点配置算法,设计风力机转速的闭环控制系统。

解:理论上一般选取观测器的期望极点为传递函数极点的2到5倍为佳,在以下程序中选取观测器的极值点为-2.2986e004,-300,-0.0286e004。具体求解程序如图23所示。同时通过求取加入状态反馈后的伯德图,根轨迹以及单位阶跃响应来判定系统的稳定性和调节速度。

通过图23的分析程序,我们能得到图24能控性矩阵和状态反馈矩阵K,图25的加入状态反馈后系统的伯德图以及图26的根轨迹,图27的反馈系统的阶跃响应曲线。

图23是利用极点配置算法求取风力机转速的闭环控制系统的程序:

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

线性系统理论大作业小组报告-汽车机器人建模

审定成绩: 重庆邮电大学 硕士研究生课程设计报告 (《线性系统理论》) 设计题目:汽车机器人建模 学院名称:自动化学院 学生姓名: 专业:控制科学与工程 仪器科学与技术 班级:自动化1班、2班 指导教师:蔡林沁 填表时间:2017年12月

重庆邮电大学

摘要 汽车被广泛的应用于城市交通中,它的方便、快速、高效给人们带来了很大便利,这大大改变了人们的生活. 研制出一种结构简单、控制有效、行驶安全的城市用无人智能驾驶车辆,将驾驶员解放出来,是大大降低交通事故的有效方法之一,应用现代控制理论设计出很多控制算法,对汽车进行控制是非常必要的,本文以汽车机器人为研究对象,对其进行建模和仿真,研究了其模型的能控能观性、稳定性,并通过极点配置和状态观测器对其进行控制,达到了一定的性能要求。这些研究为以后研究汽车的自动驾驶和路径导航,打下了一定的基础。 关键字:建模、能控性、能观性、稳定性、极点配置、状态观测器

目录 第一章绪论 (1) 第一节概述 (1) 第二节任务分工 (2) 第二章系统建模 (2) 2 系统建模 (2) 2.1运动学模型 (2) 2.2自然坐标系下模型 (4) 2.3具体数学模型 (6) 第三章系统分析 (7) 3.1 能控性 (7) 3.1.1 能控性判据 (7) 3.1.2 能控性的判定 (8) 3.2 能观性 (10) 3.2.1 能观性判据 (10) 3.2.2 能观测性的判定 (12) 3.3 稳定性 (13) 3.3.1 稳定性判据 (13) 3.3.2 稳定性的判定 (14) 第四章极点配置 (15) 4.1 极点配置概念 (15) 4.2 极点配置算法 (15) 4.3 极点的配置 (16) 4.4 极点配置后的阶跃响应 (17) 第五章状态观测器 (18) 5.1概念 (19) 5.2带有观测器的状态反馈 (20) 5.3代码实现 (21) 5.4 极点配置和状态观测器比较 (23)

线性系统理论大作业

目录 题目一 (2) (一)状态反馈加积分器校正的输出反馈系统设计 (2) (1)建立被控对象的状态空间模型,并判断系统性质 (2) (2)状态反馈增益矩阵和积分增益常数的设计 (4) (3)全维观测器设计 (6) (4)如何在闭环调速系统中增加限流环节 (8) (二)二次型最优全状态反馈控制和按负载扰动前馈补偿的复合控制系统设计 (8) (1)线性二次型最优全状态反馈设计 (8) (2)降维观测器设计 (13) 题目二 (15) (1)判断系统是否存在最优控制律 (15) (2)非零给定点的最优控制设计和仿真分析 (16) (3)权矩阵的各权值对动态性能影响分析 (17)

题目一 (一)状态反馈加积分器校正的输出反馈系统设计 (1)建立被控对象的状态空间模型,并判断系统性质 1)画出与题目对应的模拟结构图,如图1所示: 图1原始系统结构图 取状态变量为1x =n ,2x =d I ,3x =d u ,控制输入u=c u 1222212333375375111 T L e la la la s s s C x x T GD GD C x x x x RT T RT K x x u T T ?=-???=--+???=-+?? 将已知参数代人并设输出y=n=1x ,得被控对象的状态空间表达式为 L x Ax Bu ET y Cx =++= 其中,2 37500039.768011=-3.696-17.85727.05600-588.2351 00 T e la la la s C GD C A RT T RT T ???? ? ???????=- -?????? ??????-??? ? ,

MATLAB大作业

选 题 说 明 本人选做第2、4、5、9、11、12、13、14、16、19、24 题。 作业内容题目2:问题描述:在[0 , 2π]范围内绘制二维曲线图y=cos(5x)*sin(x) (1)问题分析 这是一个二维绘图问题,先写出x的取值范围,再用plot函数画出y的图像。 (2)软件说明及源代码 >> x = 0:pi/100:2.*pi; y=cos(5*x).*sin(2*x); >> plot(x,y) (3)实验结果 题目4:问题描述:创建符号函数并求解,要求写出步骤和运行结果 (1)创建符号函数f=ax2+bx+c

(2)求f=0的解 (1)问题分析 这是符号计算问题,首先要确定符号变量,然后创建符号函数,最后利用subs函数求解特值。 (2)软件说明及源代码 >> syms a b c x f; f=a*x^2+b*x+c; subs(f,0) (3)实验结果 ans = c 题目5:问题描述:求积分 (1)问题分析 这是符号计算的积分求解问题,首先需要确定符号变量,然后利用int函数计算积分。 (2)软件说明及源代码 >> syms x y; y=sqrt(1-2*sin(2*x)); >> int(y,x,0,pi/2) (3)实验结果 ans = ellipticE(-pi/4, 4)*1i - ellipticE(pi/4, 4)*1i - ellipticE(-pi/6, 4)*2i + ellipticE(pi/6, 4)*2i 题目9:问题描述:按水平和竖直方向分别合并下述两个矩阵:

(1)问题分析 这是考查矩阵的基本操作,首先定义矩阵,然后合并矩阵。 (2)软件说明及源代码 >> A=[1,0,0;1,1,0;0,0,1]; B=[2,3,4;5,6,7;8,9,10]; >> a=[A,B],b=[A;B] (3)实验结果 a = 1 0 0 2 3 4 1 1 0 5 6 7 0 0 1 8 9 10 b = 1 0 0 1 1 0 0 0 1 2 3 4 5 6 7 8 9 10 题目11:问题描述:计算z=yx2+3y2x+2y3的和: (1)问题分析 这是符号计算问题,首先确定符号变量,然后构造函数,最后利用diff函数进行求导。 (2)软件说明及源代码 >> syms x y z; >> z=y*x^2+3*y^2*x+2*y^3; >> diff(z,y,1),diff(diff(z,y,1),x,1) (3)实验结果 ans = x^2 + 6*x*y + 6*y^2

春MATLAB仿真期末大作业

MATLAB仿真 期末大作业 姓名:班级:学号:指导教师:

2012春期末大作业 题目:设单位负反馈控制系统前向通道传递函数由)()(21s G s G 和串联,其中: ) 1(1)()(21++==s A s G s K s G A 表示自己学号最后一位数(可以是零),K 为开环增益。要求: (1)设K=1时,建立控制系统模型,并绘制阶跃响应曲线(用红色虚线,并标注坐标和标题);求取时域性能指标,包括上升时间、超调量、调节时间、峰值时间; (2)在第(1)问中,如果是在命令窗口绘制阶跃响应曲线,用in1或者from workspace 模块将命令窗口的阶跃响应数据导入Simulink 模型窗口,用示波器显示阶跃响应曲线;如果是在Simulink 模型窗口绘制阶跃响应曲线,用out1或者to workspace 模块将Simulink 模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线。 (3)用编程法或者rltool 法设计串联超前校正网络,要求系统在单位斜坡输入信号作用时,速度误差系数小于等于0.1rad ,开环系统截止频率s rad c /4.4''≥ω,相角裕度大于等于45度,幅值裕度大于等于10dB 。

仿真结果及分析: (1)、(2)、将Simulink模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线 通过在Matlab中输入命令: >> plot(tout,yout,'r*-') >> title('阶跃响应曲线') 即可得出系统阶跃响应曲线,如下: 求取该控制系统的常用性能指标:超调量、上升时间、调节时间、峰值时间的程序如下: G=zpk([],[0,-1],5)。 S=feedback(G,1)。

线性系统理论Matlab实践仿真报告指南

线性系统理论实验报告 学院:电信学院 姓名:邵昌娟 学号:152085270006 专业:电气工程

线性系统理论Matlab实验报告 1、由分析可知系统的状态空间描述,因系统综合实质上是通过引入适当状态反馈矩阵K,使得闭环系统的特征值均位于复平面S的期望位置。而只有当特征根均位于S的左半平面时系统稳定。故当特征根是正数时系统不稳定,设计无意义。所以设满足题目中所需要求的系统的期望特征根分别为λ1*=-2,λ2*=-4。 (a) 判断系统的能控性,即得系统的能控性判别矩阵Q c,然后判断rankQ c,若rank Q c =n=2则可得系统可控;利用Matlab判断系统可控性的程序如图1(a)所示。由程序运行结果可知:rank Q c =n=2,故系统完全可控,可对其进行状态反馈设计。 (b) 求状态反馈器中的反馈矩阵K,因设系统的期望特征根分别为λ1*=-2,λ2*=-4;所以利用Matlab求反馈矩阵K的程序如图1(b)所示。由程序运行结果可知:K即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 图1(a) 系统的能控性图1(b) 状态反馈矩阵 2、(a) 求系统的能控型矩阵Q c,验证若rank Q c

MATLAB大作业

MATLAB大作业 作业要求: (1)编写程序并上机实现,提交作业文档,包括打印稿(不含源程序)和电子稿(包含源程序),以班为单位交,作业提交截止时间6月24日。 (2)作业文档内容:问题描述、问题求解算法(方案)、MATLAB程序、结果分析、本课程学习体会、列出主要的参考文献。打印稿不要求MATLAB程序,但电子稿要包含MATLAB 程序。 (3)作业文档字数不限,但要求写实,写出自己的理解、收获和体会,有话则长,无话则短。不要抄袭复制,可以参考网上、文献资料的内容,但要理解,要变成自己的语言,按自己的思路组织内容。 (4)从给出的问题中至少选择一题(多做不限,但必须独立完成,严禁抄袭)。 (5)大作业占过程考核的20%,从完成情况、工作量、作业文档方面评分。 第一类:绘制图形。(B级) 问题一:斐波那契(Fibonacci)螺旋线,也称黄金螺旋线(Golden spiral),是根据 斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,如图所示。 问题二:绘制谢尔宾斯基三角形(Sierpinskitriangle)是一种分形,由波兰数学家谢 尔宾斯基在1915年提出,它是一种典型的自相似集。其生成过程为:取一个实心的三角形(通常使用等边三角形),沿三边中点的连线,将它分成四个小三角形,然后去掉中间的那一个小三角形。接下来对其余三个小三角形重复上述操作,如图所示。

问题三:其他分形曲线或图形。分形曲线还有很多,教材介绍了科赫曲线,其他还有皮 亚诺曲线、分形树、康托(G. Cantor)三分集、Julia集、曼德布罗集合(Mandelbrot set),等等。这方面的资料很多(如https://www.360docs.net/doc/9f15876835.html,/content/16/0103/14/5315_525141100.shtml),请分析构图原理并用MATLAB实现。 问题四:模拟掷骰子游戏:掷1000次骰子,统计骰子各个点出现的次数,将结果以下表的形式显示,并绘制出直方图。 点数 1 2 3 4 5 6 出现次数166 150 164 162 184 174 问题五:利用MATLAB软件绘制一朵鲜花,实现一定的仿真效果。 提示:二维/三维绘图,对花瓣、花蕊、叶片、花杆等的形状和颜色进行详细设置。 第二类:插值与拟合。(B级) 问题一:有人对汽车进行了一次实验,具体过程是,在行驶过程中先加速,然后再保持匀速行驶一段时间,接着再加速,然后再保持匀速,如此交替。注意,整个实验过程中从未 (1)分别使用最近点插值、线性插值、三次埃尔米特插值和三次样条插值进行计算[0,110]时间段50个时间点的速度。 (2)绘制插值图形并标注样本点。 问题二:估算矩形平板各个位置的温度。已知平板长为5m,宽为3m,平板上3×5栅格 点上的温度值为44,25,20,24,30;42,21,20,23,38;25,23,19,27,40。 (1)分别使用最近点插值、线性插值和三次样条插值进行计算。 (2)用杆图标注样本点。 (3)绘制平板温度分布图。 问题三:自行车道的设计。对9条道路上的自行车道宽度以及自行车与过往机动车之间 (1)对数据进行线性拟合。 (2)绘制拟合曲线和样本点。 (3)如果自行车与过往机动车之间安全距离的最小距离是1.8m,试计算相应的自行车道宽度的最小值。 问题四:在水资源工程学中,水库的大小与为了蓄水而拦截的河道中的水流速度密切相 关。对于某些河流来说,这种长时间的历史水流记录很难获得。然而通常容易得到过去若干年间关于降水量的气象资料。鉴于此,推导出流速与降水量之间的关系式往往特别有用。只

电机学matlab仿真大作业报告

. 基于MATLAB的电机学计算机辅助分析与仿真 实验报告

一、实验内容及目的 1.1 单相变压器的效率和外特性曲线 1.1.1 实验内容 一台单相变压器,N S =2000kVA, kV kV U U N N 11/127/21=,50Hz ,变压器的参数 和损耗为008.0* ) 75(=C k o R ,0725.0*=k X ,kW P 470=,kW P C KN o 160)75(=。 (1)求此变压器带上额定负载、)(8.0cos 2滞后=?时的额定电压调整率和额定效率。 (2)分别求出当0.1,8.0,6.0,4.0,2.0cos 2=?时变压器的效率曲线,并确定最大效率和达到负载效率时的负载电流。 (3)分析不同性质的负载(),(8.0cos 0.1cos ),(8.0cos 222超前,滞后===???)对变压器输出特性的影响。 1.1.2 实验目的 (1)计算此变压器在已知负载下的额定电压调整率和额定效率 (2)了解变压器效率曲线的变化规律 (3)了解负载功率因数对效率曲线的影响 (4)了解变压器电压变化率的变化规律 (5)了解负载性质对电压变化率特性的影响 1.1.3 实验用到的基本知识和理论 (1)标幺值、效率区间、空载损耗、短路损耗等概念 (2)效率和效率特性的知识 (3)电压调整率的相关知识 1.2串励直流电动机的运行特性 1.2.1实验内容 一台16kw 、220V 的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω。电动势常数为.电机的磁化曲线近似的为直线。其中为比例常数。假设电枢电流85A 时,磁路饱和(为比较不同饱和电流对应的效果,饱和电流可以自己改变)。

线性系统大作业1

研 究 生 课 程 论 文 (2014-2015学年第一学期) 线性系统的基本特性 研究生:

线性系统理论的研究对象为线性系统。线性系统是最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中研究最为充分、发展最为成熟和应用最为广泛的一个分支。线性系统理论中的很多概念和方法,对于研究系统控制理论的其他分支,如非线性系统理论、最优控制理论、自适应控制理论、鲁棒控制理论、随机控制理论等,同样也是不可缺少的基础。 线性系统的一个基本特征是其模型方程具有线性属性即满足叠加原理。叠加原理是指,若表系统的数学描述为L ,则对任意两个输入变量u 1和u 2以及任意两个非零有限常数c 1和c 2必成立关系式: 11221122()()()L c u c u c L u c L u +=+ 对于线性系统,通常还可进一步细分为线性时不变系统(linear time-invariant systems)和线性时变系统(linear time-varying systems)两类。 线性时不变系统也称为线性定常系统或线性常系数系统。其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都是不随时间变化的函数。从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。 线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个卷数为随时间变化的函数。在视实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

Matlab大作业

Matlab 大作业 (组内成员:彭超杰、南彦东、江明伟) 一、研究模型 (电车)通过控制油门(保持一定角度)来调节电动机能输出稳定的转速,从而控制车速稳定。 数学依据说明如下: 由图可知存在以下关系:a d a a u w k R i dt di L =++ (w k e d d =) L M M dt dw J -= a m i k M = L a m M i k dt dw J -=

k为反电势常数,m k为电动机电磁力矩常数,这里忽略阻尼力矩。d

二、数学模型 再看整个研究对象,示意图以课本为依据,不同点是这里将数控的进给运动,转换为汽车行驶所需要的扭矩。(这里不说明扭矩的具体产生过程,仅仅说明输出车轮旋转的角速度w ) 对照课本不同,() s θ变为()s N ,1 221z z w w =,1w 为电动机的转速,2w 为轮胎的转速,1z 为电动机的光轴齿轮的齿数,2z 为与轮胎相连光轴的 齿轮齿数。 )(*10110w x w k x ==,1 21z z k = ()c a m m d b a m x K K K k s k k JRs JLs K K K k s G i 1231+++= () c a m m d M K K K k s k k JRs JLs R Ls K s G L 1231)(++++-= 同理,忽略电枢绕组的电感L ,简化系统传递函数方框图如下

()JR K K K k JR s k k s JR K K K k s G c a m m d b a m x i 121++= ()JR K K K k JR s k k s K K K K k s k k Rs R K s G c a m m d c a m m d M L 121121++-=++-=

matlab 大作业

上海电力学院 通信原理Matlab仿真 实验报告 实验名称: 8QAM误码率仿真 试验日期: 2014年 6月3日 专业:通信工程 姓名:罗侃鸣 班级: 2011112班 学号: 20112272

一、实验要求 写MATLAB程序,对图示的信号星座图完成M=8的QAM通信系统Monte Carlo仿真,在不同SNRindB=0:15时,对N=10000(3比特)个符号进行仿真。画出该QAM系统的符号误码率。 二、实验原理 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分

matlab与数学实验大作业

《数学实验与MATLAB》 ——综合实验报告 实验名称:不同温度下PDLC薄膜的通透性 与驱动电压的具体关系式的研究学院:计算机与通信工程学院 专业班级: 姓名: 学号: 同组同学: 2014年 6月10日

一、问题引入 聚合物分散液晶(PDLC)是将低分子液晶与预聚物Kuer UV65胶相混合,在一定条件下经聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,再利用液晶分子的介电各向异性获得具有电光响应特性的材料,它主要工作在散射态和透明态之间并具有一定的灰度。聚合物分散液晶膜是将液晶和聚合物结合得到的一种综合性能优异的膜材料。该膜材料能够通过驱动电压来控制其通透性,可以用来制作PDLC型液晶显示器等,具有较大的应用范围。已知PDLC薄膜在相同光强度及驱动电压下,不用的温度对应于不同的通透性,不同温度下的阀值电压也不相同。为了尽量得到不同通透性的PDLC薄膜,有必要进行温度对PDLC薄膜的特性的影响的研究。现有不同温度下PDLC 薄膜透过率与驱动电压的一系列数据,试得出不同温度下PDLC薄膜通透性与驱动电压的具体关系式,使得可以迅速得出在不同温度下一定通透性对应的驱动电压。 二、问题分析 想要得到不同温度下PDLC薄膜通透性与驱动电压的具体关系式可以运用MATLAB多项式农合找出最佳函数式,而运用MATLAB多项式插值可以得出在不同温度下一定通透性所对应的驱动电压。 三、实验数据 选择10、20、30摄氏度三个不同温度,其他条件一致。

(1)、10摄氏度 实验程序: x=2:2:40; y=[5.2,5.4,5.8,6.4,7.2,8.2,9.4,10.8,12.2,14.0,16.6,22.0, 30.4,39.8,51.3,55.0,57.5,58.8,59.6,60.2]; p3=polyfit(x,y,3); p5=polyfit(x,y,5); p7=polyfit(x,y,7); disp('三次拟合函数'),f3=poly2str(p3,'x') disp('五次拟合函数'),f5=poly2str(p5,'x') disp('七次拟合函数'),f7=poly2str(p7,'x') x1=0:1:40; y3=polyval(p3,x1); y5=polyval(p5,x1); y7=polyval(p7,x1); plot(x,y,'rp',x1,y3,'--',x1,y5,'k-.',x1,y7); legend('拟合点','三次拟合','五次拟合','七次拟合') 实验结果:

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

电机大作业(MATLAB仿真-电机特性曲线)

电机大作业 专业班级:电气XXXX 姓名:XXX 学号:XXX 指导老师:张威

一、研究课题(来源:教材习题 4-18 ) 1. 74 、R 2 0.416 、X 2 3.03 、R m 6. 2 X m 75 。电动机的机械损耗p 139W,额定负载时杂散损耗p 320W, 试求额定负载时的转差率、定子电流、定子功率因数、电磁转矩、输出转矩和效 率。 二、编程仿真 根据T 形等效电路: 3D - R Q 运用MATLAB 进行绘图。MATLAB 文本中,P N PN ,U N UN ,尺 R 1, X 1 X1 , R 2 R 2,X 2 X 2,R m Rm, X m Xm ,p pjixiesunh ao , p pzasansunhao 。定子电流I11,定子功率因数 Cosangle1,电磁转矩Te , 效率 Xiaolv 。 1.工作特性曲线绘制 MATLA 文本: R1=0.715;X 仁1.74;Rm=6.2;Xm=75;R2=0.416;X2=3.03;pjixiesu nhao=139; pzasa nsu nhao=320;p=2;m 仁 3; ns=1500;PN=17000;UN=380;fN=50; Z1=R1+j*X1; Zm=Rm+j*Xm; for i=1:2500 s=i/2500; nO=n s*(1-s); Z2=R2/s+j*X2; Z=Z1+Zm*Z2/(Zm+Z2); 有一台三相四极的笼形感应电动机, 参数为P N 17kW 、U N 380V (△联 Rm 结)、尺 0. 715 、X j lcr S

U1=UN; I1=U1/Z; l110=abs(l1); An gle 仁an gle(ll); Cosa ngle10=cos(A ngle1); P仁3*U1*l110*Cosa ngle10; l2=l1*Zm/(Zm+Z2); Pjixie=m1*(abs(I2))A2*(1-s)/s*R2; V=(1-s)*pi*fN; Te0=Pjixie/V; P20=Pjixie-pjixies un hao-pzasa nsun hao; Xiaolv0=P20/P1; P2(i)=P20; n (i)=n0; l11(i)=l110; Cosa ngle1(i)=Cosa ngle10; Te(i)=Te0; Xiaolv(i)=Xiaolv0; hold on; end figure(1) plot(P2, n); xlabel('P2[W]');ylabel(' n[rpm]'); figure(2) plot(P2,l11); xlabel('P2[W]');ylabel('l1[A]'); figure(3) plot(P2,Cosa nglel); xlabel('P2[W]');ylabel('go nglvyi nshu'); figure(4) plot(P2,Te); xlabel('P2[W]');ylabel('Te[Nm]'); figure(5) plot(P2,Xiaolv); xlabel('P2[W]');ylabel('xiaolv');

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

线性系统极点配置和状态观测器基于设计(matlab) - 最新版本

一. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: 这时,闭环系统的状态空间模型为: ()x A BK x Bv y Cx =-+?? =? 二. 状态观测器设计原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可观的,则可引入全维状态观测器,且: ??(y y)??x Ax Bu G y Cx ?=++-??=?? 设?x x x =-,闭环系统的状态空间模型为: ()x A GC x =- 解得: (A GC)t (0),t 0x e x -=≥ 由上式可以看出,在t 0≥所有时间内,如果(0)x =0,即状态估计值x 与x 相等。如果(0)0x ≠,两者初值不相等,但是()A GC -的所有特征值具有负实部,这样 x 就能渐进衰减至零,观测器的状态向量?x 就能够渐进地逼近实际状态向量x 。状态逼近的速度取决于G 的选择和A GC -的特征配置。 三. 状态观测的实现 为什么要输出y 和输入u 对系统状态x 进行重构。 u Kx v =-+

证明 输出方程对t 逐次求导,并将状态方程x Ax Bu =+代入整理,得 2(n 1)(n 2)(n 3)21n n y Cx y CBu CAx y CBu CABu CA x y CBu CABu CA Bu CA x -----=??-=??--=????----=? 将等号左边分别用z 的各分量12,, ,n z z z 表示,有 121(n 1)(n 2)(n 3) 2 n n n y C z y CBu CA z z y CBu CABu x Qx z CA y CBu CABu CA Bu -----?? ???????? -?? ????? ? ? ?????==--==?? ????????????????????----?? ? 如果系统完全能观,则 rankQ n = 即 1?(Q Q)T T x Q z -= (类似于最小二乘参数估计) 综上所述,构造一个新系统z ,它是以原系统的输出y 和输入u ,其输出经过变 换1(Q Q)T T Q -后得到状态向量?x 。也就是说系统完全能观,状态就能被系统的输入输出以及各阶倒数估计出来。 四. 实例 给定受控系统为 再指定期望的闭环极点为12,341,1,2i λλλ*** =-=-±=-,观测器的特征值为 12,33,32i λλ=-=-±,试设计一个观测器和一个状态反馈控制系统,并画出系统 的组成结构图。 []0100000101000100 05 021000x x u y x ???? ????-????=+????????-???? =

MATLAB期末大作业模版

《MATLAB》期末大作业 学院土木工程与建筑学院 专业 班级 姓名 指导教师李琳 2018 年 5 月16 日

明 作业内容题目2:问题描述:在[0 2π]范围内绘制二维曲线图y=cos(5x)*sin(x) (1)问题分析 这是一个二维绘图问题,先划定x的范围与间距,再列出y的表达式,利用plot函数绘制二维曲线。 (2)软件说明及源代码 >> x = 0:pi/10:2*pi; >>y = cos(5*x).*sin(x); >>plot(x,y) (3)实验结果 题目4:问题描述:创建符号函数并求解,要求写出步骤和运行结果 (1)创建符号函数f=ax2+bx+c (2)求f=0的解 (1)问题分析 这是一个符号函数显示以及符号函数的求解问题,第一问先定义常量与变量,在写出f表达式,利用pretty函数显示f。第二问利用solve函数求解f=0时的解。 (2)软件说明及源代码

第一问 >> syms a b c x; >> f=a*x^2+b*x+c; >> pretty(f) 第二问 >>syms a b c x; >>f=a*x^2+b*x+c; >> solve(f) (3)实验结果 1、 2、 题目5:问题描述:求积分 (1)问题分析 这是一个利用符号函数求积分的问题,先定义变量x,再列出I1表达式,利用int函数求在范围0到Pi/2上的积分。 (2)软件说明及源代码 >> syms x; >> I1=(1-2*sin(2*x))^0.5; >> int(I1,0,0.5*pi) (3)实验结果 题目6:问题描述:分别随机产生一个6×6的整数矩阵(元素可在[-20,20]之间),求该随机阵的秩,特征值和特征向量。 (1)问题分析 这是一个矩阵运算问题,先利用rand函数产生一个6*6的元素在-20到20

运动控制MATLAB仿真

大作业: 直流双闭环调速MATLAB仿真 运动控制技术课程名称: 名:姓电气学院院:学 自动化业:专 号:学 孟濬指导教师: 2012年6月2日

------------------------------------- -------------学浙大江 李超 一、Matlab仿真截图及模块功能描述 Matlab仿真截图如下,使用Matlab自带的直流电机模型: 模块功能描述: ⑴电机模块(Discrete DC_Machine):模拟直流电机 ⑵负载转矩给定(Load Torque):为直流电机添加负载转矩 ⑶Demux:将向量信号分离出输出信号 ⑷转速给定(Speed Reference):给定转速 ⑸转速PI调节(Speed Controller):转速PI调节器,对输入给定信号与实际信号

的差值进行比例和积分运算,得到的输出值作为电流给定信号。改变比例和积分运算系数可以得到不同的PI控制效果。 ⑹电流采样环节(1/z):对电流进行采样,并保持一个采样周期 ⑺电流滞环调节(Current Controller):规定一个滞环宽度,将电流采样值与给定值进行对比,若:采样值>给定值+0.5*滞环宽度,则输出0; 若:采样值<给定值—0.5*滞环宽度,则输出1; 若:给定值—0.5*滞环宽度<采样值<给定值+0.5*滞环宽度,则输出不变 输出值作为移相电压输入晶闸管斩波器控制晶闸管触发角 :根据输入电压改变晶闸管触发角,从而改变电机端电压。GTO⑻晶闸管斩波.⑼续流二极管D1:在晶闸管关断时为电机续流。 ⑽电压传感器Vd:测量电机端电压 ⑾示波器scope:观察电压、电流、转速波形 系统功能概括如下:直流电源通过带GTO的斩波器对直流电机进行供电,输出量电枢电流ia和转速wm通过电流环和转速环对GTO的通断进行控制,从而达到对整个电机较为精确的控制。 下面对各个部分的功能加以详细说明: (1)直流电机 双击电动机模块,察看其参数:

相关文档
最新文档