第二节 设计洪峰流量及设计洪量的推求

第二节 设计洪峰流量及设计洪量的推求
第二节 设计洪峰流量及设计洪量的推求

第二节设计洪峰流量及设计洪量的推求

由流量资料推求设计洪峰及不同时段的设计洪量,可以使用数理统计方法,计算符合设计标准的数值,一般称为洪水频率计算。

一、资料审查

在应用资料之前,首先要对原始水文资料进行审查,洪水资料必须可靠,具有必要的精度,而且,具备频率分析所必须的某些统计特性,例如洪水系列中各项洪水相互独立,且服从同一分布等。

除在第三章谈到审查资料的可靠性之外,还要审查资料的一致性和代表性。

为使洪水资料具有一致性,要在调查观测期中,洪水形成条件相同,当使用的洪水资料受人类活动如修建水工建筑物、整治河道等的影响有明显变化时,应进行还原计算,使洪水资料换算到天然状态的基础上。

洪水资料的代表性,反映在样本系列能否代表总体的统计特性,而洪水的总体又难获得。一般认为,资料年限较长,并能包括大、中、小等各种洪水年份,则代表性较好。此可见,通过古洪水研究,历史洪水调查,考证历史文献和系列插补延长等增加洪水列的信息量方法,是提高洪水系列代表性的基本途径。

根据我国现有水文观测资料情况,SL44—93规定坝址或其上下游具有较长期的实测水资料(一般需要30年以上),并有历史洪水调查和考证资料时,可用频率分析法计算计洪水。

二、样本选取

河流上一年内要发生多次洪水,每次洪水具有不同历时的流量变化过程,如何从历洪水系列资料中选取表征洪水特征值的样本,是洪水频率计算的首要问题。

根据SL44—93规定,应采用年最大值原则选取洪水系列,即从资料中逐年选取一个大流量和固定时段的最大洪水总量,组成洪峰流量和洪量系列。固定时段一般采用l、3、5、7、15、30天。大流域、调洪能力大的工程,设计时段可以取得长一些;小流域、调洪能力小的工程,可以取得短一些。

在设计时段以内,还必须确定一些控制时段,即洪水过程对工程调洪后果起控制作用的时段,这些控制时段洪量应具有相同的设计频率。同一年内所选取的控制时段洪量,可发生在同一次洪水中,也可不发生在同一次洪水中,关键是选取其最大值。例如,图9—l中最大1天洪量与3天、5天洪量不属于同一次洪水。

三、特大洪水的处理

特大洪水是指实测系列和调查到的历史洪水中,比一般洪水大得多的稀遇洪水。我国测流量资料系列一般不长,通过插补延长的系列也有限,若只根据短系列资料作,当出现一次新的大洪水以后,设计洪水数值就会发生变动,所得成果很不稳定。如果在频率计算中能够正确利用特大洪水资料,则会提高计算成果的稳定性。

特大洪水一般指的是历史洪水,但是在实测洪水系列中,若有大于历史洪水或数值相当大的洪水,也作为特大洪水。洪水系列(洪峰或洪量)有两种情况,一是系列中没有特大洪水值,在频率计算时,各项数值直接按大小次序统一排位,各项之间没有空位,序数m是连序的,称为连序系列,如图9—2(a)所示;二是系列中有特大洪水值,特大洪水值的重现期(N) 必然大于实测系列年数n,而在N—n年内各年的洪水数值无法查得,它们之间存在一些空位,由大到小是不连序的,称为不连序系列,如图9—2(b)所示。

特大洪水处理的关键是特大洪水重现期的确定和经验频率计算。所谓重现期是指某随机变量的取值在长时期内平均多少年出现一次,又称多少年一遇。特大洪水中历史洪水的数值确定以后,要分析其在某一代表年限内的大小序位,以便确定洪水的重现期。目前我国根据资料来源不同,将与确定历史洪水代表年限有关的年份分为实测期、调查期和文献考证期。

实测期是从有实测洪水资料年份开始至今的时期。调查期是在实地调查到若干可以定量的历史大洪水的时期。文献考证期是从具有连续可靠文献记载历史大洪水的时期。调查期以前的文献考证期内的历史洪水,一般只能确定洪水大小等级和发生次数,不能定量。

历史洪水包括实测期内发生的特大洪水,都要在历史洪水代表年限中进行排位,在排位时不仅要考虑已经确定数值的特大洪水,也要考虑不能定量但能确定其洪水等级的历史洪水,并排出序位。

在洪水频率计算中,经验频率是用来估计系列中各项洪水的超过概率,以便在机率格纸上点绘洪水点子,构成经验分布,因此,首先要估算系列的经验频率。

连序系列中各项经验频率的计算方法,已在第七章中论述,不予重复。

不连序系列的经验频率,有以下两种估算方法:

(1) 把实测系列与特大值系列都看作是从总体中独立抽出的两个随机连序样

本,各项洪水可分别在各个系列中进行排位,实测系列的经验频率仍按

连序系列经验频率公式

(9-1)计算。特大洪水系列的经验频率计算公式为

(9-2)

公式中--实测系列第m项的经验频率;

m--实测系列由大至小排列的序号;

n—-实测系列的年数;

--特大洪水第序号的经验频率;

M--特大洪水由大至小排列的序号;

N—自最远的调查考证年份至今的年数。

当实测系列内含有特大洪水时,此特大洪水亦应在实测系列中占序号。例如,实测为30年,其中有一个特大洪水,则一般洪水最大项应排在第二位,其经验频率=:0.0645。

(2)将实测系列与特大值系列共同组成一个不连序系列,作为代表总体的一个样本,不连序系列各项可在历史调查期N年内统一排位。

假设在历史调查期N年中有特大洪水a项,其中有l项发生在n年实测系列之内;中的“项特大洪水的经验频率仍用式(9—2)计算。实测系列中其余的(n-l)项,则均匀分布在l-频率范围内,为特大洪水第末项M=a的经验频率,即

(9-3)实测系列第m项的经验频率计算公式为

(9-4)上述两种方法,我国目前都在使用,第一种方法比较简单,但是在使用式(9—1)和式(9—2)点绘不连序系列时,会出现所谓的“重叠”现象,而且在假定不连序系列是两个相互独立的连序样本条件下,没有对式(9—1)作严格的推导。当调查考证期N年中为首的数项历史洪水确系连序而无错漏,为避免历史洪水的经验频率与实测系列的经验频率的重叠现象,采用第二种方法较为合适。

四、频率曲线线型选择

样本系列各项的经验频率确定之后,就可以在机率格纸上确定经验频率点据的位置。点绘时,可以不同符号分别表示实测、插补和调查的洪水点据,其为首的若干个点据应标明其发生年份。通过点据中心,可以目估绘制出一条光滑的曲线,称为经验频率曲线。由于经验频率曲线是由有限的实测资料算出的,当求稀遇设计洪水数值时,需要对频率曲线进行外延,而经验频率曲线往往不能满足这

一要求,为使设计工作规范化,便于各地设计洪水估计结果有可比性,世界上大多数国家根据当地长期洪水系列经验点据拟合情况,选择一种能较好地拟合大多数系列的理论线型,以供本国或本地区有关工程设计使用。

我国曾采用皮尔逊Ⅲ型和克里茨基一曼开里型作为洪水特征的频率曲线线型,为了使设计工作规范化,自60年代以来,一直采用皮尔逊m型曲线,作为洪水频率计算的依据。在SL44—93中规定“频率曲线线型一般应采用皮尔逊Ⅲ型。特殊情况,经分析论证后也可采用其他线型”。

有关皮尔逊Ⅲ型频率曲线的性质、数学模式、参数估计以及频率计算等问题,已在第七章作了详细论述,本节不重复。

从皮尔逊Ⅲ型频率曲线的特性来看,其上端随频率的减小迅速递增以至趋向无穷,曲线下端在>2时趋于平坦,而实测值又往往很小,对于这些干旱半干旱的中小河流,即使调整参数,也很难得出满意的适线成果,对于这种特殊情况,经分析研究,也可采用其他线型。

五、频率曲线参数估计

在洪水频率计算中,我国规范统一规定采用适线法。适线法有两种:一种是经验适线法(或称目估适线法),另一种是优化适线法。

经验适线法是在经验频率点据和频率曲线线型确定之后,通过调整参数使曲线与经验频率点据配合得最好,此时的参数就是所求的曲线线型的参数,从而可以计算设计洪水值。适线法的原则是尽量照顾点群的趋势,使曲线通过点群中心,当经验点据与曲线线型不能全面拟合时,可侧重考虑上中部分的较大洪水点据,对调查考证期内为首的几次特大洪水,要作具体分析。一般说来,年代愈久的历史特大洪水加入系列进行配线,对合理选定参数的作用愈大,但这些资料本身的误差可能较大。因此,在适线时不宜机械地通过特大洪水点据,否则使曲线对其他点群偏离过大,但也不宜脱离大洪水点据过远。

用适线法估计频率曲线的统计参数分为初步估计参数、用适线法调整初估值以及对比分析三个步骤。

矩法是一种简单的经典参数估计方法,它无需事先选定频率曲线线型,因而是洪水频率分析中广泛使用的一种方法。由矩法估计的参数及由此求得的频率曲线总是系数偏小,其中尤以偏小更为明显。

在用矩法初估参数时,对于不连序系列,假定年系列的均值和均方

差与除去特大洪水后的年系列的相等,即,,可以导出参数计算公式:

(9-5)

(9-6)

式中--特大洪水,1、2、…、a;

——一般洪水,;

其余符号意义同前。

偏态系数属于高阶矩,用矩法算出的参数值及由此求得的频率曲线与经验点据往往相差较大,故一殷不用矩法计算,而是参考附近地区资料选定一个值。对于<0.5的地区,可试用=3—4进行配线;对于0.5<

<1.0的地区,可试用=2.5—3.5进行配线;对于>1.0的地区,

可试用=2—3进行配线。

如第七章所述,权函数法在于引入一个权函数,用一阶与二阶加权中心矩来推求,可以提高皮尔逊Ⅲ型的偏态系数计算精度,但权函数法本身不能估计、

,属于单参数估计,仍需借助其他方法(如矩法),且的精度受、估算

精度的影响。

第七章中介绍了另一个类型的适线法,即优化适线法。在能用计算机优选的条件下,可根据洪水系列的误差规律,选定适线准则,直接求解与经验点据拟合最优的频率曲线,本章不拟再作具体介绍。

六、推求设计洪峰、洪量

根据上述方法计算的参数初估值,用适线法求出洪水频率曲线,然后在频率曲线上求得相应于设计频率的设计洪峰和各统计时段的设计洪量。

有关水文频率曲线适线法的步骤、计算实例,以及适线时应考虑的事项,已在第七章作了具体介绍,但未涉及特大洪水处理问题,本节将用一个实例,考虑加入特大洪水,具体说明用矩法配线推求设计洪峰的方法。

[例9—1]某河水文站实测洪峰流量资料共30年[见表9—4第(2)栏],历史特大洪水2年L见表9—4第(2)栏],历史考证期102年,试用矩法初选参数进行配线,推求该水文站200年一遇的洪峰流量。

(1)计算经验频率,并点绘经验频率曲线,见图9—3。

用式(9—2)计算特大洪水的经验频率,式中N=102,计算成果列入表9—4第(3)栏。

用式(9—3)计算一般洪水的经验频率,式中=,计算成果列入表9—4

第(4)栏。

(2)用矩法计算统计参数。用式(9—5)计算年最大洪峰流量的均值,式中N

=102、n=30、a=2、l=0,得:

==587

用公式(9-6)计算年最大洪峰流量的变差系数,得(见表9-5,表9-6)

=

(3)选配洪水频率曲线。根据统计参数计算成果,取=0.7, ,查附

表2得出相应于不同频率P的值,列入表9-7第(2)栏,乘以得相应的值,列入表9-7第(3)栏。

将表9-7中第(1),(3)栏的对应数值点绘成曲线,可见点绘的频率曲线中下段于经验频率点据配合较好,但中上段偏离特大洪水点子下方较多,因此必须进行

调整。

第二次配线时适当将增大,并取,使曲线中上部与经验点靠近,再

查附表2,得出相应于不同频率P的值,列入表9-7第(4)栏,乘以得相应的值,列入表9-7第(5)栏,此时曲线与经验点据配合较好,可作为采用的洪水频率曲线。查=0.5%对应的,得=4.87,按算得

=4.87×587=2859m3/s

即为所求的该水文站200年一遇的洪峰流量。

七、设计洪水估计值的抽样误差

水文系列是一个无限总体,而实测洪水资料是有限样本,用有限样本估算总体的参数必然存在抽样误差。由于设计洪水值是一个随机变量,抽样分布的确切形式又难以获得,只能根据设计洪水估计值抽样分布的某些数字特征如抽样方差来表征它的随机特性。

样本特征值的方差开方称为均方误。频率计算中,统计参数的抽样误差与所选的频率线型有关,当总体分布为皮尔逊Ⅲ型,根据n年连序系列,并用矩法估计参数时,样本参数的均方误计算公式为:

(9-7)均值的相对误差为:

(9-8)设计洪水值的均方误近似公式为:

或(相对误差)(9-9)

式中———指定频率的模比系数;

———和的函数,已制成诺模图。

SL44-93规定,对大型工程或重要的中型工程,用频率分析计算的校核标准洪水,应计算抽样误差,经综合分析检查后,如成果有偏小的可能,应加安全修正值,一般不超过计算值的20%。

八、计算成果的合理性检查

在洪水峰量计算中,不可避免地存在各种误差,为了防止因各种原因带来的差错,必须对计算成果进行合理性检查,以便尽可能地提高精度。检查工作一般从以下三个方面进行:

(1)根据本站频率计算成果,检查洪峰、各时段洪量的统计参数与历时之间的关系,一般说来,随着历时的增加,洪量的均值也逐渐增大,而时段平均流量的均值则随历时的增加而减小。、在一般情况下随历时的增长而减小,但

对于连续暴雨次数较多的河流,随着历时的增长,、反而加大,如浙江省

新安江流域就有这种现象。所以参数的变化还要和流域的暴雨特性和河槽调蓄作用等因素联系起来分析。

另外还可以从各种历时的洪量频率曲线对比分析,要求各种曲线在使用范围内不应有交叉现象,当出现交叉时,应复查原始资料和计算过程有无错误,统计参数是否选择得当。

(2) 根据上下游站、干支流站及邻近地区各河流洪水的频率分析成果进行比较,如气候、地形条件相似,则洪峰、洪量的均值应自上游向下游递增,其模数则由上游向下游递减。

如将上下游站、干支流站同历时最大洪量的频率曲线绘在一起,下游站、干流站的频率曲线应高于上游站和支流站,曲线间距的变化也有一定的规律。

(3)暴雨频率分析成果进行比较。一般说来,洪水的径流深应小于相应天数的暴雨深,而洪水的值应大于相应暴雨量的值。

以上所述,可作为成果合理性检查的参考,如发现明显的不合理之处,应

分析原因,将成果加以修正。

洪峰流量的计算

1.1 3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

洪峰流量的计算

3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

洪峰流量的计算

设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数;

F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表。 表鸭嘴河布西水库坝址流域特征值表 (2)设计暴雨 1)设计点雨量 由于流域内缺乏短历时暴雨资料,本次蓄水安全鉴定各时段设计暴雨参数采用四川省水文局2006年出版的《四川省暴雨统计参数等值线图集》查算。与初设报告根据《四川省中小流域暴雨洪水计算手册》(以下简称《手册》)查算的成果相同,见表。 表鸭嘴河布西坝址以上流域不同时段设计点雨量表(单位:mm) 2)设计面雨量 按《手册》,雅砻江干流属Ⅴ1区。点面折减系数α可通过查《手册》中“四川省分区综合暴雨时面深关系表”得到;鉴于布西水库坝址集水面积超过该表“使用上限面积”,故还对点面折减系数α进行修正。修正系数k经《手册》分析,6小时、24小时分别为、。

用EXCEL进行洪峰流量计算

用EXCEL进行洪峰流量计算 默认分类2009-03-10 15:10:32 阅读1210 评论13 字号:大中小订阅 一、前言 在水利工作中,经常需要计算设计洪水的洪峰流量,如水库的调洪演算、防洪堤的高度、拦沙坝的大小等等许许多多方面,都要知道洪峰流量的大小,推求洪峰流量一般有4种方法,一种是根据流量资料,通过频率的分析计算来求出设计洪水的洪峰流量;第二种是根据暴雨资料,通过频率计算求出设计暴雨,再通过流域的产流和汇流计算,推求出设计洪水的洪峰流量;第三种是经验公式法,利用简化的经验公式来估算设计洪水的洪峰流量;第四种是推理公式法。在缺乏资料的小流域内,利用推理公式是推求洪峰量的主要方法。 由推理公式计算设计洪峰流量,需要计算三个方程:

从以上的公式可看出,要求得洪峰流量Qm,必须求得Ψ和τ的值,而Ψ和τ互为参变,传统的方法是通过图解法和诺模图法求解,图解法需要画图,比较麻烦,诺模图法需要查图,容易出错,精度也不高。还有没有快捷而又精准的方法呢?答案是肯定的,这就是用EXCEL来计算洪峰流量。EXCEL是我们常用的软件,其简洁的界面、丰富的函数、 可编程的宏语言常常使我们事半功倍,工作轻松而更有效率。下面就用推理公式法推求洪峰流量为例,介绍EXCEL在其 中的应用。 二、计算方法 为使叙述清晰易懂,下面以用编辑好的表格为例,介绍 在EXCEL表格中用推理公式计算洪峰流量的方法。见图1。

图1 首先,在1至10行输入要用到的基本公式,目的是让人一目了然,了解计算的来龙去脉,也便于以后的理解。 在14至18行输入基本数据,包括流域面积、河流长度、河道平均坡降、暴雨衰减指数、流域中心最大24小时降雨量,其中暴雨衰减指数和最大24小时降雨量可以从水文手册上查取,有条件的最好将之扫描下来,保存到表格文件的同一目录下,在计算表格中用超级链接将之链接起来,今后

后河设计洪峰流量计算

后河设计洪峰流量计算 后河线路跨越断面处流域面积为F=1789.57km2,流域长度为L=78km,流域比降为J=2.64‰。 1 地区经验公式 查《内蒙古自治区水文手册》得,C=3.64,n=0.55,Cv=1,Cs=2.5Cv,K p=1%=4.85,K p=2%=4.04,K p=20%=1.52。 Q m=CF n=3.64*1789.570.55=223.9m3/s。 Q1%= K p=1%* Q m=1086 m3/s; Q2%= K p=2%* Q m=905m3/s; Q20%= K p=20%* Q m=340m3/s; 2 面积比法计算 兴和水文站位于二道河上,位于线路跨越断面下游约20km,流域面积为F水文站=2019km2,其间有较大支流前河汇入。 2.1由兴和水文站实测流量计算 根据收集兴和水文站1979年~2010年共32年实测历年最大洪峰流量系列,采用P-III型频率计算得,Q均=180,C V=1,Cs=2.5Cv; Q1%= K p=1%* Q m=872 m3/s; Q2%= K p=2%* Q m=729m3/s; Q20%= K p=20%* Q m=273m3/s; 2.2 线路跨越处面积比法计算洪峰流量 根据公式Q线1%=Q水文站(F线/F水文站)n Q1%=872*(1789.57/2019)0.55=816 m3/s; Q2%=729*(1789.57/2019)0.55=682 m3/s; Q20%=273*(1789.57/2019)0.55=255 m3/s;

3 根据《内蒙古河流湖泊资料统计》计算得 查《内蒙古河流湖泊资料统计》得知,根据兴和水文站采用1959~1960年和1963~1974年共14年实测最大洪峰流量计算得,Q均=239,C V=1,Cs=2.5Cv;Q1%=1160 m3/s;Q2% =966m3/s。 采用面积比法计算:Q线1%=Q水文站(F线/F水文站)n Q1%=1160*(1789.57/2019)0.55=1086 m3/s; Q2%=966*(1789.57/2019)0.55=904m3/s。

小流域洪峰流量计算的公式

小流域洪峰流量计算的公式 1、推理公式 f Q n s m τ ψ278.0= 当τ≥c t ,时,n s u τψ-=1 当τ c t ,时,n c t n -? ? ? ??=1τψ n H s -= 12424 n --=410ψ ττ () n n n sF L m J ----??? ? ? ?= 414431410278.0τ ()n c s n t 1 1? ???? ?-=μ m Q ——设计频率的洪峰流量(m 3 /s ) ψ ——洪峰径流系数 τ ——汇流历时(h) S ——暴雨雨力(mm/h) n ——暴雨衰减指数,其分界点为1小时,当t<1,取n=n 1,

当t 1,取n=n 2 μ ——产流历时内流域内的平均入渗率(mm/h ) c t ——产流历时 24H ——设计频率的最大 24小时雨量(mm ) 计算步骤 1、根据地形图确定流域的特征参数F 、L 、J 2、由公式4 13 1 F J L =θ计算θ值,并根据相关公式计算汇流参数 m 3、由暴雨μ的参数等值线图确定设计流域的暴雨参数特征值 24 H 、C V 、C S 、n 1或n 2,并由皮尔逊Ⅲ型,结合频率查表, 确定指定频率下的K p 值,由()2412 24H K s K S n p p p -== 4、有《四川省水文手册》,查出 n -44 的值,并根据n s m -?? ? ? ? ???????=44 410383.0θτ计算0 τ值 5、查表确定μ值,并计算n s τμ,查图由n 、n s τμ两坐标 的焦点值,确定洪峰径流系数ψ 6、根据《四川省水文手册》,查出n -41的值,计算流域汇流时间n --=41 ψ ττ,计算τ值

洪峰流量的计算

洪峰流量的计算 The manuscript was revised on the evening of 2021

设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm(1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数;

洪峰流量的计算修订稿

洪峰流量的计算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm(1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数;

第二节设计洪峰流量及设计洪量的推求

第二节设计洪峰流量及设计洪量的推求 由流量资料推求设计洪峰及不同时段的设计洪量,可以使用数理统计方法,计算符合设计标准的数值,一般称为洪水频率计算。 一、资料审查 在应用资料之前,首先要对原始水文资料进行审查,洪水资料必须可靠,具有必要的精度,而且,具备频率分析所必须的某些统计特性,例如洪水系列中各项洪水相互独立,且服从同一分布等。 除在第三章谈到审查资料的可靠性之外,还要审查资料的一致性和代表性。 为使洪水资料具有一致性,要在调查观测期中,洪水形成条件相同,当使用的洪水资料受人类活动如修建水工建筑物、整治河道等的影响有明显变化时,应进行还原计算,使洪水资料换算到天然状态的基础上。 洪水资料的代表性,反映在样本系列能否代表总体的统计特性,而洪水的总体又难获得。一般认为,资料年限较长,并能包括大、中、小等各种洪水年份,则代表性较好。此可见,通过古洪水研究,历史洪水调查,考证历史文献和系列插补延长等增加洪水列的信息量方法,是提高洪水系列代表性的基本途径。 根据我国现有水文观测资料情况,SL44—93规定坝址或其上下游具有较长期的实测水资料(一般需要30年以上),并有历史洪水调查和考证资料时,可用频率分析法计算计洪水。 二、样本选取 河流上一年内要发生多次洪水,每次洪水具有不同历时的流量变化过程,如何从历洪水系列资料中选取表征洪水特征值的样本,是洪水频率计算的首要问题。 根据SL44—93规定,应采用年最大值原则选取洪水系列,即从资料中逐年选取一个大流量和固定时段的最大洪水总量,组成洪峰流量和洪量系列。固定时段一般采用l、3、5、7、15、30天。大流域、调洪能力大的工程,设计时段可以取得长一些;小流域、调洪能力小的工程,可以取得短一些。 在设计时段以内,还必须确定一些控制时段,即洪水过程对工程调洪后果起控制作用的时段,这些控制时段洪量应具有相同的设计频率。同一年内所选取的控制时段洪量,可发生在同一次洪水中,也可不发生在同一次洪水中,关键是选取其最大值。例如,图9—l中最大1天洪量与3天、5天洪量不属于同一次洪水。

三点法计算设计洪峰流量

三点法计算设计洪峰流量 摘要:文章主要针对具有短系列实测洪峰流量的流域,且该流域内有几个较为精确的历史洪水调查值,此种情况可采用三点法推求统计参数和设计洪峰流量。 关键词:三点法;洪峰流量;历史洪水1概况 乌拉斯特河流域地处新疆阿勒泰地区吉木乃县境内,地理坐标北纬47°00′~47°59′、东经85°33′~87°09′。河流发源于萨吾尔山脉的木斯岛冰峰,山脉平均海拔高度(黄海标高,下同)3 200.00 m以上,最高峰 3 787.30 m。流域地势南高北低,西高东低,山体南陡北缓,地形呈阶梯状。乌拉斯特河全流域面积为837.50 km2,河长79.70 km,河流平均宽度为10.50 km,流域形状系数0.13,河床比降上陡下缓,在中游段可达20 ‰,下游段为16 ‰。干流上的科克克也木也尔站控制断面集水面积272.00 km2,河长26.00 km。 科克克也木也尔水文站距吉木乃县城约21 km,水文站地理位置北纬47°16′、东经85°47′,海拔高程 1 458.50 m。该站于1980年9月由新疆维吾尔自治区水利厅设立并开始观测,1993年停测,历时13年。该站水文测验及数据整编均严格按国家行业技术标准执行,其测验精度较高,水文资料成果可靠。主要观测项目包括:水位、流量、冰情、辅助气象观测等观测项目。该站设站期间水文测验基本断面未发生迁移,基本断面以上无大规模引水活动。 2计算过程 乌拉斯特河科克克也木也尔水文站,具有1981~1993年13年连续实测洪峰流量资料,通过历史洪水调查得知,历史上曾有过2次较大洪水,经计算调查断面洪峰流量分别为196 m3/s、164 m3/s,可推算重现期为105年和52.5年。由于实测系列不能满足规范要求30年长度,拟采用三点法计算。 用13年实测系列和两个历史洪水点据点绘经验频率曲线,用矩法估算三参数,目估适线。在频率曲线上依次读出P=5 %、P=50 %和P=95 %三点的纵标。 用下式求偏度系数S: S=■ 根据S~CS关系表查得Cs;由CS查CS~离均系数(ΦP)关系表,查得Φ50 %和Φ5 %、Φ95 %。 再用下式求: σ=■ X=Xp2-σφp2 Cv=■ 已知三参数,查皮Ⅲ型曲线的模比系数KP值表求XP。 用XP=(1+CVΦP)=XKP计算设计值。 经计算机频率程序多次配线,最后当Q=26.33 m3/s,CV=1.49,CS/CV=3.01时配线结果最好,设计洪峰流量计算成果见表1。 3计算结果合理性分析 三点法设计洪水估算值的抽样误差,用均方误(σxp=■×B)衡量,相对值均小于5 %。说明就此资料条件而言,在仅有不足30年短系列实测洪水及2次以上洪水调查资料时,用三点法不用展延、插补系列,可降低因展延插补的误差累

由流量资料推求设计洪水部分测试题

由流量资料推求设计洪水部分测试题 一、填空题 1.设计洪水的标准高时,其相应的洪水数值就____,则水库规模亦____;造价亦____;水库安全所承担风险则____。 2.目前我国的防洪规划及水利水电工程设计中采用先选定_____________,再推求与此 __________相应的洪峰、洪量及洪水过程线。 3.通常用_______________、__________________、_____________三要素描述洪水过程。 4.洪水资料系列有两种情况,一是系列中没有特大洪水值,称为______________系列,二 是系列中有特大洪水值,称为______________________。 5.在洪水峰、量频率计算中,洪水资料的选样采用________________ 法。 6.对特大洪水进行处理时,洪水经验频率计算的方法有_____________和____________。 7.入库洪水包括___________________、___________________和___________________。 8.在进行设计洪水成果合理性分析时,将1天、3天和7天洪量系列的频率曲线画在同一 张频率格纸上,它们不应_____________,且间距________________。 9.典型洪水同频率放大法推求设计洪水时,其放大的先后顺序是____________、 ____________、______________。 10.洪水事件是随机事件,某水库按百年一遇洪水设计,在水库运行期间,连续两年发生等 于、大于该标准洪水的可能性是___________________。 二、简答题 1.用矩法计算不连续系列统计参数时的假设条件是什么? 2.什么叫设计洪水?其包括的三要素是什么? 3.选择典型洪水的原则是什么? 4.典型洪水放大有哪几种方法?它们各有什么优缺点? 5.设计洪水和设计年径流频率计算有哪些异同点? 三、计算题 1.某水库坝址处有1950-1992年实测洪水资料,其中最大的两年洪峰流量为1560m3/s、1250m3/s,此外洪水资料如下:(1)经实地洪水调查,1935年曾发生过流量为5100m3/s的大洪水,1896年曾发生过流量为5000m3/s的大洪水,依次为1896年以来的首两项大洪水,

第6章习题_由流量资料推求设计洪水

第六章由流量资料推求设计洪水 本章学习的内容和意义:在进行水利水电工程设计时,为了建筑物本身的安全和防护区的安全,必须按照某种标准的洪水进行设计,这种作为水工建筑物设计依据的洪水称为设计洪水。设计洪水包含三个要素,即设计洪峰流量、设计洪水总量和设计洪水过程线。按工程性质不同,设计洪水分为:水库设计洪水; 下游防护对象的设计洪水; 施工设计洪水; 堤防设计洪水、桥涵设计洪水等。推求设计洪水有多种途径,本章研究由流量资料推求设计洪水,目的是解决水库、堤防、桥涵等工程设计洪水的计算问题。 本章习题内容主要涉及:防洪标准及其选择;洪峰、洪量样本系列的选样,资料的可靠性、一致性、代表性审查;特大洪水的处理,即不连续系列的经验频率和统计参数的计算方法;典型洪水的选择及放大方法;入库洪水、分期洪水、洪水地区组成等内容。 一、概念题 (一)填空题 1.设计洪水的标准按保护对象的不同分为两类:第一类为保障 的防洪标准;第二类为确保水库大坝等水工建筑物自身安全的洪水标准。 2.设计洪水的标准按保护对象的不同分为两类:第一类为保障防护对象免除一定洪水灾害的防洪标 准;第二类为确保的洪水标准。 3.设计洪水的标准高时,其相应的洪水数值就;则水库规模亦,造价亦;水库安 全所承担风险则。 4.目前我国的防洪规划及水利水电工程设计中采用先选定,再推求与此 相应的洪峰、洪量及洪水过程线。 5.设计永久性水工建筑物需考虑及两种洪水标准,通常称前者为设计 标准,后者为校核标准。 6.目前计算设计洪水的基本途径有三种,它们分别是、 、。 7.通常用、及三要素描述洪水过程。 8.洪水资料系列有两种情况:一是系列中没有特大洪水值,称为系列;二是系列中有特大 洪水值,称为系列。 9.用矩法计算不连续系列(N年中有a次特大洪水) 统计参数时,假定实测洪水(n年) 除去实测特大洪 水( l次)后构成的(n-l)年系列的和与除去特大洪水后的(N-a)年系列

第七章-由流量资料推求设计洪水

第9章水文预报 内容简介 研究对象 本章研究水文现象的客观规律,利用现时已经掌握的水文、气象资料,预报水文要素未来变化过程。 研究内容 1.短期洪水预报; 2.枯水预报; 3.施工水文预报; 4.水文实时预报方法。 研究目的 在防汛工作中,及时准确的水文预报,是防汛抗洪指挥决策的重要科学依据;在水能、水资源的合理调度、开发利用和保护以及航运等工作中,都需要有水文预报作指导。 第9.1节概述 内容提要 1. 水文预报的重要作用; 2. 水文预报的分类; 3. 水文预报工作的基本程序 学习要求 掌握预见期的定义及水文预报工作的基本程序。 9.1.1水文预报的重要作用 可靠的洪水预报对防止洪水灾害具有特别重要的作用。例如在河流防洪抢险中,需要及时预报出防洪地点即将出现的洪峰水位、流量,以便在洪峰到来之前,迅速加高加固堤防、转移可能受淹的群众和物资,动用必要的防洪设施等,把洪水灾害减小到最低限度。图9.1.1为1998年长江沙市水位预报与实测情况。

图9.1.1 1998年长江沙市水位预报与实测情况

在水库管理中,可以利用洪水预报,使上游来的洪水与区间洪水的高峰段彼此错开(称错峰),即下游洪水很大时,水库把上游来的洪水暂时蓄存起来,待下游洪峰过后,再加大水库泄量,把上游来的洪水放出来,从而大大减低下游的洪峰和洪水灾害,例如1998年8月长江中下游发生近百年一遇的特大洪水,由于及时准确的洪水预报,对葛洲坝水库、隔河岩水库和漳河水库科学调度,使三峡以上来的洪水和清江、沮漳河洪水的洪峰互相错开,大大降低了荆江河段的洪峰水位,避免了荆江分洪损失,为战胜该年发生的特大洪水做出了巨大贡献。表9.1.1为1998葛洲坝水库、隔河岩水库在错峰、调峰中,降低沙市水位发挥作用的分析结果。 表9.1.1葛洲坝水库、隔河岩水库在错峰调度对沙市水位的影响 另外,洪水预报还可较好地解决水库防洪与兴利的矛盾,在预报的洪水未进库之前,先打开泄洪闸门腾空一部分库容,以便洪水来临时能蓄存更多的水量;当洪水即将结束时,预知近期没有很大的洪水入库,则可超蓄洪水尾部的一些水量,用于多发电、多灌溉,使现有工程发挥更多的效益。 9.1.2水文预报的分类 1.按预报的项目,水文预报可分为 ●径流预报:预报的要素主要是水位和流量,水位预报指的是水位高程及其出现时 间;流量预报则是流量的大小、涨落时间及其过程。径流预报又可分洪水预报和 枯水预报。 ●冰情预报:冰情预报是利用影响河流冰情的前期气象因子,预报流凌开始、封冻 与开冻日期,冰厚、冰坝及凌汛最高水位等。

洪峰流量频率计算

习题一:洪峰流量频率计算 梅港站具有1952年至1983年的实测洪水资料(见表1),另调查到1878年的洪峰流量为18300 m3/s,1935年的洪峰流量为12500 m3/s,并可以查证没有遗漏更大的洪水。求P = 2 %和P = 0.33 %的设计洪峰流量。 表1梅港站实测洪峰流量资料 解:由给定资料可知,1878年洪水是自1878年以来的最大洪水,在1878~1983年的N1=106年间排第一位,1955年洪水排第二位,1935年的洪水排第三位。其余洪水按n=32年(1952~1983年间有资料年份数)根据大小依次排序。 法一:按分别处理法公式计算分析求得各年洪峰流量的经验频率结果见表2。 表2各年洪峰流量的经验频率结果表(分别处理法)

根据表2中的流量数据和计算的经验频率,点绘经验点据,如图1中圆形点据所示。 图1分别处理法求得的频率曲线 经过调整,参数最终选用Q?=7146.25 m3/s, C v=0.38,C s=1.32 ,拟合度达96.79%。经检验,当P = 2 %时的设计洪峰流量为14408.97 m3/s>13900 m3/s,故成果合理。据此组参数求得P = 2 %和P = 0.33 %的设计洪峰流量分别为14408.97 m3/s和18227.16 m3/s。

法二:按统一处理法公式计算分析求得各年洪峰流量的经验频率结果见表3。 表3各年洪峰流量的经验频率结果表(统一处理法)

根据表3中的流量数据和计算的经验频率,点绘经验点据,如图2中圆形点据所示。 图2统一处理法绘制的频率曲线 经过调整,参数最终选用Q?=7080.47 m3/s, C v=0.38,C s=1.33 ,拟合度达96.70%。经检验,当P = 2 %时的设计洪峰流量为14286.92 m3/s>13900 m3/s,故成果合理。据此组参数求得P = 2 %和P = 0.33 %的设计洪峰流量分别为14286.92 m3/s和18085.61 m3/s。

答案由暴雨资料推求设计洪水

第八章由暴雨资料推求设计洪水 一、概念题 (一)填空题 1.设计洪水 2. 流域中心点雨量与相应的流域面雨量之间的关系,设计面雨量 3.同频率 4.同频率法 5.从经验频率点据偏离频率曲线的程度、模比系数K、暴雨量级、重现期等分析判断 6.推求设计暴雨,推求设计净雨,推求设计洪水 7.邻站直接借用法,邻近各站平均值插补法,等值线图插补法,暴雨移植法,暴雨与洪水峰或量相关法 8.算术平均法 9.泰森多边形法 10.流域上雨量站分布均匀,即各雨量站面积权重相同 11.适线 12.暴雨定点定面关系,暴雨动点动面关系 13.实测大暴雨 14.水汽因子,动力因子 15.大,小 16.设计的前期影响雨量P a,p,降雨径流关系 17. W m折算法,扩展暴雨系列法,同频率法 18.在现代气候条件下,一个特定流域一定历时的理论最大降水量 19.可能最大暴雨产生的洪水 20.垂直地平面的空气柱中的全部水汽凝结后 21.在现代气候条件下,一个特定地区露点的理论最大值 22.饱和湿度 23.水汽条件,动力条件 24.水汽压,饱和差,比湿,露点

25.大,低

26.假湿绝热过程 27. 0.2/h 28. P W W P m m =,P W W P m m m ηη= 29.历史最大露点加成法,露点频率计算法,露点移植法 30. 24℃ 31.(1)通过暴雨径流查算图表(或水文手册)查算统计历时的设计暴雨量,(2)通过暴雨公式将统计历时的设计雨量转化为任一历时的设计雨量 ㈡选择题 1.[c] 2.[c] 3.[a] 4.[b] 5. [a] 6. [d] 7. [d] 8. [c] 9. [b] 10.[d] 11.[c] 12.[a] 13.[b] 14.[b] 15.[b] 16.[d] 17.[b] 18.[d] 19.[d] 20.[c] 21.[d] 22.[b] 23.[a] 24.[b] 25.[b] 26.[c] 27.[a] 28.[c] 29. [b] ㈢判断题 1.[T ] 2.[F] 3.[F] 4.[F ] 5. [T ] 6. [F ] 7. [T] 8. [T] 9. [T] 10.[T] 11.[T] 12.[T] 13.[T] 14.[T] 15.[F] 16.[T] 17.[T] 18.[F ] 19.[T ] 20.[F] 21.[T] 22.[F] 23.[T] 24.[F ] 25.[T ] 26.[T] 27.[T] 28.[T] 29.[F] 30.[F ] (四)问答题 1、答:由流量资料推求设计洪水最直接,精度也较高。但在以下几种情况,则必须由暴雨资料推求设计洪水,即:①设计流域实测流量资料不足或缺乏时;②人类活动破坏了洪水系列的一致性; ③要求多种方法,互相印证,合理选定;④PMP 和小流域设计洪水常用暴雨资料推求。 2、答: 洪水与暴雨同频率,即某一频率的暴雨,就产生某一频率的洪水。如百年一遇的暴雨,就产生百年一遇的洪水。 3、答:由暴雨资料推求设计洪水的方法步骤是:①暴雨选样;②推求设计暴雨;③推求设计净雨;④推求设计洪水过程线 4、答:判断大暴雨资料是否属于特大值,一般可从经验频率点据偏离频率曲线的程

洪峰流量计算

洪峰流量计算

8.7.3推理公式法计算设计洪峰流量 推理公式法是基于暴雨形成洪水的基本原理推求设计洪水的一种方法。 1.推理公式法的基本原理 推理公式法计算设计洪峰流量是联解如下一组方程X 便可求得设计洪峰流量Qp,即Qm,及相应的流域汇流时间τ。 计算中涉及三类共7个参数,即流域特征参数F、L、J;暴雨特征参数S、n;产汇流参数μ、m。为了推求设计洪峰值,首先需要根据资料情况分别确定有关参数。对于没有任何观测资料的流域,需查有关图集。从公式可知,洪峰流量Qm和汇流时间τ互为隐函数,而径流系数ψ对于全面汇流和部分汇流公式又不同,因而需有试算法或图解法求解。 1. 试算法 该法是以试算的方式联解式(8.7.4)(8.7.5)和(8.7.6),步骤如下: ①通过对设计流域调查了解,结合水文手册及流域地形图,确定流域的几何特征值F、L、J,设计暴雨的统计参数(均值、C V、Cs / C V)及暴雨公式中的参数n(或n1、n2),损失参数μ及汇流参数m。

②计算设计暴雨的Sp、X TP,进而由损失参数μ计算设计净雨的T B、R B。 ③将F、L、J、T B、R B、m代入式(8.7.4)(8.7.5)和(8.7.6),其中仅剩下Q m、τ、Rs,τ未知,但Rs,τ与τ有关,故可求解。 ④用试算法求解。先设一个Q m,代入式(8.7.6)得到一个相应的τ,将它与t c比较,判断属于

何种汇流情况,再将该τ值代入式(8.7.4)或式(8.7.5),又求得一个Q m,若与假设的一致(误差不超过1%),则该Q m及τ即为所求;否则,另设Q m仿以上步骤试算,直到两式都能共同满足为止。试算法计算框图如图8.7.1。 图8.7.1 推理公式法计算设计洪峰流量流程图

EXCEL洪峰流量计算说明

EXCEL洪峰流量计算 一、前言 在水利工作中,经常需要计算设计洪水的洪峰流量,如水库的调洪演算、防洪堤的高度、拦沙坝的大小等等许许多多方面,都要知道洪峰流量的大小,推求洪峰流量一般有4种方法,一种是根据流量资料,通过频率的分析计算来求出设计洪水的洪峰流量;第二种是根据暴雨资料,通过频率计算求出设计暴雨,再通过流域的产流和汇流计算,推求出设计洪水的洪峰流量;第三种是经验公式法,利用简化的经验公式来估算设计洪水的洪峰流量;第四种是推理公式法。在缺乏资料的小流域内,利用推理公式是推求洪峰量的主要方法。 由推理公式计算设计洪峰流量,需要计算三个方程: 从以上的公式可看出,要求得洪峰流量Qm,必须求得Ψ和τ的值,而Ψ和τ互为参变,传统的方法是通过图解法和诺模图法求解,图解法需要画图,比较麻烦,诺模图法需要查图,容易出错,精度也不高。还有没有快捷而又精准的方法呢?答案是肯定的,这就是用EXCEL 来计算洪峰流量。EXCEL是我们常用的软件,其简洁的界面、丰富的函数、可编程的宏语言常常使我们事半功倍,工作轻松而更有效率。下面就用推理公式法推求洪峰流量为例,介绍EXCEL在其中的应用。 二、计算方法 为使叙述清晰易懂,下面以用编辑好的表格为例,介绍在EXCEL表格中用推理公式计算洪峰流量的方法。见图1。

图1 首先,在1至10行输入要用到的基本公式,目的是让人一目了然,了解计算的来龙去脉,也便于以后的理解。 在14至18行输入基本数据,包括流域面积、河流长度、河道平均坡降、暴雨衰减指数、流域中心最大24小时降雨量,其中暴雨衰减指数和最大24小时降雨量可以从水文手册上查取,有条件的最好将之扫描下来,保存到表格文件的同一目录下,在计算表格中用超级链接将之链接起来,今后查算就十分方便了,再也不用东翻西找,鼠标一点超级链接就可查算。 第20至24行是计算雨力的值,最大24小时降雨量变差系数可由水文手册上查取,偏差系数一般采用变差系数的3.5倍值,离均系数与设计频率有关,可查表计算,将离均系数表全部录入,放入另一张工作表中,见图2: 图2

洪峰流量的计算

3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表。 表鸭嘴河布西水库坝址流域特征值表

用EXCEL进行洪峰流量计算说明

用EXCEL进行洪峰流量计算 一、前言 在水利工作中,经常需要计算设计洪水的洪峰流量,如水库的调洪演算、防洪堤的高度、拦沙坝的大小等等许许多多方面,都要知道洪峰流量的大小,推求洪峰流量一般有4种方法,一种是根据流量资料,通过频率的分析计算来求出设计洪水的洪峰流量;第二种是根据暴雨资料,通过频率计算求出设计暴雨,再通过流域的产流和汇流计算,推求出设计洪水的洪峰流量;第三种是经验公式法,利用简化的经验公式来估算设计洪水的洪峰流量;第四种是推理公式法。在缺乏资料的小流域内,利用推理公式是推求洪峰量的主要方法。 由推理公式计算设计洪峰流量,需要计算三个方程: 从以上的公式可看出,要求得洪峰流量Qm,必须求得Ψ和τ的值,而Ψ和τ互为参变,传统的方法是通过图解法和诺模图法求解,图解法需要画图,比较麻烦,诺模图法需要查图,容易出错,精度也不高。还有没有快捷而又精准的方法呢答案是肯定的,这就是用EXCEL来计算洪峰流量。EXCEL是我们常用的软件,其简洁的界面、丰富的函数、可编程的宏语言常常使我们事半功倍,工作轻松而更有效率。下面就用推理公式法推求洪峰流量为例,介绍EXCEL在其中的应用。 二、计算方法 为使叙述清晰易懂,下面以用编辑好的表格为例,介绍在EXCEL表格中用推理公式计算洪峰流量的方法。见图1。

图1 首先,在1至10行输入要用到的基本公式,目的是让人一目了然,了解计算的来龙去脉,也便于以后的理解。 @ 在14至18行输入基本数据,包括流域面积、河流长度、河道平均坡降、暴雨衰减指数、流域中心最大24小时降雨量,其中暴雨衰减指数和最大24小时降雨量可以从水文手册上查取,有条件的最好将之扫描下来,保存到表格文件的同一目录下,在计算表格中用超级链接将之链接起来,今后查算就十分方便了,再也不用东翻西找,鼠标一点超级链接就可查算。 第20至24行是计算雨力的值,最大24小时降雨量变差系数可由水文手册上查取,偏差系数一般采用变差系数的倍值,离均系数与设计频率有关,可查表计算,将离均系数表全部录入,放入另一张工作表中,见图2:

相关文档
最新文档