大学物理第6章 真空中的静电场 课后习题及答案
3-1电磁-真空中的静电场 大学物理作业习题解答

dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯
当
r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8
大学物理6-8单元课后习题答案(详解)

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理静电场习题答案

U
-a
O +a
x
x
x
a
0
0
5.(1179)如图所示,两个点电荷+q 和-3q,相距为d. 试求: (1) 在它们的连线上电场强度的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+q的点电荷相距多远? 解:设点电荷q所在处为坐标原点O,x轴沿两点电荷的连线 (1) 设的点的坐标为,则
d 4x x( d x) 0
d- 4x = 0, x = d/4
6.(0250)在强度的大小为E,方向竖直向上的匀强电场中,有一半径为R的半球形 光滑绝缘槽放在光滑水平面上(如图所示).槽的质量为M,一质量为m带有电荷+q 的小球从槽的顶点A处由静止释放.如果忽略空气阻力且质点受到的重力大于其所 受电场力,求: (1) 小球由顶点A滑至半球最低点B时相对地面的速度; (2) 小球 通过B点时,槽相对地面的速度; (3) 小球通过B点后,能不能再上升到右端最高 点C? E E 解:设小球滑到B点时相对地的速度为v,槽相对地的速度为
沿x轴负向
10.(1245)如图所示,有一高为h 的直角形光滑斜面, 斜面倾角为a.在直角顶点A处有 一电荷为-q 的点电荷.另有一质量为m、电荷+q 的小球在斜面的顶点B 由静止下 滑.设小球可看作质点,试求小球到达斜面底部C点时的速率. 解:因重力和电场力都是保守力,小球从顶点B 到达底部 C点过程中能量守恒.
+q O -3q x x d x'
E
可得 解出 (2) 设坐标x处U=0,则 得
q 3q i i 0 2 2 4 0 x 4 0 x d
1 1 3 d 2
《大学物理》课后解答题 第六章 导体与电介质中的静电场

6
6.6.1课堂讨论
1.一个半径为 的金属球内部挖出了两个球形空腔,并在其各自的球心处同时放入点电荷 ,如图6-5所示。
(1)求出球壳上的电荷分布。
(2)若在距金属球心很远的 处( )放置另一个点电荷 离球心放置,求这三个点电荷各自所受的力。
答;
(1)如图
(2)Q,Q受力为0,-Q:
2.有两个半径分别为 和 的金属球相距很远,其中大球带电量为 ,小球不带电,今用导线将其相连。
(1)求金属球面的感应电荷在球内任一点贡献的电场和电势。
(2)若将金属球接地,又如何?此时金属球面感应出的总电量是多少?
解:(1)内部
, , ,
, ,Βιβλιοθήκη (2)(2)导体球所受库仑力如何?若规定无穷远处电势为0,导体球的电势是正还是负?
(3)若将导体球换成介质球,如图6-6b所示,再回答(1)和(2)中的问题。
4.在匀强电场 中同时放入一个导体平板A和一个电容率为 的介质平板B(原来都不带电)。A与B彼此平行靠近放置,并与 正交,如图6-7所示。忽略边缘效应。
(1)设A与B的各个表面上感应出的面电荷密度分别为 、 和 、 (如图),请问它们的大小、正负应有何关系?
(3)今取一个与A、B正交、底面积为 的闭合柱面 (如图),通过 的电通量 ,电位移通量
6.6.2课堂练习
8.一个半径为 的金属球原本不带电,在附近放置一个点电荷 , 到球心O的距离为 ,如图6-11所示。
(1)若规定无穷远处电势为0,求两个球的电势。
(2)两个球分别带多少电量?两个球表面的电荷面密度是多少?
(3)若 ,将会出现什么情况?
答;(1)(2) ,
(1) (2)
解方程(1)(2)可求解
大学物理第6章静电场中的导体和电介质解答(精)

第六章静电场中的导体和电介质解答一、选择题1.D 2.C 3.B 4.D 5.D 6.B 7.D 8.B 二、填空题1.-q; -q 2.3.r1r22322U04. 45. 6.7.Qd2ε0S;Qdε0SλQ04πε0εrr12λ2πr;;2πε0εrrQ04πr12Q04πr22;;Q04πεr202Q1+Q22s2s8.εr; 1;εr;εr;Q1-Q2; -Q1-Q22s;Q1+Q22s三、计算题1.解:电荷重新分布后,设c板左侧面带电荷为-q1,右侧面带电荷+q2,但电荷总和不变,即 q=-q1+q2 (1)此时(可用髙斯定理证明),a板上带电荷为+q1,b板上带电荷为-q2 设c板电势为Uc,则a、c板之间电势差为U-Uc=E1d2a、c板之间电场强度大小为E1=q1ε0S⎛q1所以 U-Uc= εS⎝0⎫d⎪⎪2⎭由此得 q1=同理可得c、b板之间电势差为2ε0Sd(U-Uc) (2)Uc⎛q2= εS⎝0⎫d⎪⎪2⎭由此得 q2=2ε0Sd将(2)、(3)代入(1)化简得c板之电势为Uc=Uc (3)⎫1⎛dU+⎪ q⎪2 2εS0⎝⎭2.解:设两平行长直导线A、B,单位长度上分别带电量+λ 和 - λ ,如图所示,离Ox轴原点为x 处一点P的电场强度为λλE= +2πε0x2πε0(d-x)则两导线之间电势差为UA-UB=⎰d-aaE⋅dl=⎰d-aa[λ2πε0xa+λ2πε0(d-x)=]dxA≈=λ2πε[lnx-ln(d-x)]d-aλπεlnd-aaλπεlnda(d >>a)所以两导线单位长度的电容为 C=λUA-UB=πεlnda3. 解:(1)点电荷+q使导体球产生感应电荷±q'在球表面上。
球心O处的电场强度为±q'的电场强度E'以及点电荷+q的场强E得叠加。
即EO=E+E'由静电平衡,EO=0,若取球心O为坐标原点,则E'=-E=q4πε0rˆrˆ是从O指(r向电荷+q的单位矢量)。
大学物理学 孙厚谦版 第6章 习题

习题 6-5 图
查看答案 6-5
106
6-6 如图一个细的带电塑料圆环,半径为 R ,所带荷线密度 y 圆心 O 处的场强。
0 sin 0 0 。试求
R
o
x
习题 6-6 图
查看答案 6-6
6-7 图中电场强度的分量为 Ex
b x , Ey Ez 0, 式中 b 800N/ Cm1 2 , 设
将
1 qq' F1 F2 4π 0 r 2 a 2
, cos
r r a2
2
,代入上式并化简
Fx 0
qq' r Fy 3 2 2π 0(r 2 a 2)
qq' r F j 3 2π 0(r 2 a 2)2
故
(2)若点电荷 q' 在 r 处受力最大,则
子,正方形的中心点为 O,P 点距 O 为 x(x>>a) ,求 P 点的电场强度。
o
a
习题 6-3 图
P
查看答案 6-3
6-4 如图一均匀带电直线长为 L ,线电荷密度为 。求直线的延长线上距 L 中点 O 为 r (r 处 P 点的场强。
L 2)
o
rPLຫໍສະໝຸດ 习题 6-4 图查看答案 6-4
6-5 如图, 两根平行长直导线间距为 2 R , 一端用半圆形线连起来。 设全线上均匀带电, 电荷面密度为 , 求圆心 O 处的电场强度。
返回 6-5
6-6 解 在如解用图所示的直角坐标系中,电荷元 dq dl 心处所产生的电场强度的大小为
Rd 0 sin Rd
y
在圆
sin d dE 0 4π 0 R
大学物理第6章静电场空题
大学物理
第6章静电场中的导体和电介质
填空题
一、填空题
1.两金属球壳A 和B 中心相距l ,
原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F =.如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是. 2.在图6-2-2所示的导体腔C 中,放置两个导体A 和B ,最初它们均不带电.现设法使导体A 带上正电,则这三个导体电势的大小关系为
.
3.半径为r 的导体球原来不带电.在离球心为R (r R )的地方放一个
点电荷q ,则该导体球的电势等于.4.如图6-2-4所示,金属球壳的内外半径分别r 和R ,其中心置一点电
荷q ,则金属球壳的电势为.5.一个未带电的空腔导体球壳内半径为R .在腔内离球心的距离为d
处(d <R )固定一电荷量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为.9.有一半径为R 的均匀带电球体,若球体内、外电介质的电容率相等,
此时球内的静电能与球外的静电能之比为.
11.一平行板空气电容器,极板面积为S ,间距为d ,接在电源上并保持电压恒定为U .若将极板距离拉开一倍,则电容器中的静电能改变量为.r R
q A B
C A B
Q
q l d R
q O。
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
大学物理上 第6章 静电场-5
作业32页:6-T16,T17,T18,T19静电场中的导体V -∇=-=grad ⎰⋅=-bab a lE V V d 表面表面⊥E=内Eεσ=E 正比尖端放电五、静电屏蔽隔绝静电场和导体间的相互影响。
1、空腔导体屏蔽外电场V =C 2V =C 2使空腔内的物体不受外电场的影响。
电势?受外电场的影响要维持空腔导体的电势不变,可把空腔导体接地。
V=02、空腔导体消除空腔中的带电体对空腔外物体影响。
外表面上的感应电荷被大地电荷全部中和(即外表面不带电)。
金属空腔是零等势体。
腔内、腔内表面、腔外表面以及腔外电荷在导体内产生的场强为零,金属空腔是零电势。
V=0②空腔接地,腔外有带电体时:外表面上的感应电荷被大地电荷部分中和,所带电量?空腔满足静电平衡条件:①空腔接地,腔外没有带电体时:q+q–qV=0qq+V=0此时壳内的任何电场都不影响外界,也不受外界影响。
例如电子仪器设备都用金属导体壳接地做保护,它起静电屏蔽作用,内外互不影响。
一个接地的空腔导体可以隔离内外静电场的影响。
q六、有导体存在时静电场的计算电荷分布、电场分布电场叠加原理、高斯定理、电势叠加原理、电荷守恒定律、导体静电平衡条件。
+1R 2R o dq-Qo R 得:---------q '代入上式q 2q A1R 2R 3R q1q rB1R 2R 3R q1q rBA1R 2R 3R BAq 'q '-q +全跑掉?q '=BAεσ=E 02E σε=第7节静电场中的电介质Dielectrics in the Electrostatic Fields电介质E++++----电介质在电场中为什么会受到电场力的作用?演示实验静电植绒木屑绝缘体:电子被所属原子核紧束缚,无自由电荷。
绝缘体不能导电,但电场可以在其中存在。
从电场这一角度,把绝缘体叫做电介质。
一、电介质的极化1. 电介质的电结构每个分子的正、负电荷:分布在10-10m范围电荷分布复杂所有负电荷→负重心所有正电荷→正重心→负点电荷→正点电荷可认为分子是由大量的微小电偶极子组成的。
真空中的静电场(含答案,大学物理作业,考研真题)
班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·
q·
(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41 cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。
⎰+=23220)(4dq R x xE x πε 232210)(24R x R x +⋅=πλπε232201)(2R x xR +=ελ 下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ方向沿x 轴正方向。
直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2R Oλ1λ2lxyz()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。
4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。
求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。
解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y Eϕϕελϕd RdE dE x sin π4sin 0==R d R E x 000π2sin π4ελϕϕελπ==⎰故 RE E x 0π2ελ==,方向沿x 轴正向。
(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。
5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。
解:建立图示坐标系。
在均匀带电细直杆上取dx Lqdx dq ==λ,dq 在P 点产生的场强大小为 202044xdxx dq dE πελπε==,方向沿x 轴负方向。
故 P 点场强大小为 ⎰⎰+==Ld dP xdxdE E 204πελ ()L d d q+π=04ε方向沿x 轴负方向。
6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。
解:建立图示坐标系。
将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。
在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2⋅=⋅=θθπσd R sin 22⋅=, dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)23220)(4r x xdqdE +=πε ,方向沿x 轴负方向利用几何关系,θcos R x =,θsin R r =统一积分变量,得23220)(4r x xdqdE +=πε θθπσθπεd R RR sin 2cos 41230⋅=Lθθθεσd cos sin 20=因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为⎰=dE E θθθεσπd cos sin 22/00⎰=04εσ= 方向沿x 轴负方向。
7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。
试求通过小孔中心O 并与平面垂直的直线上各点的场强。
解:应用补偿法和场强叠加原理求解。
若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。
“无限大”带电平面在P 点产生的场强大小为12εσ=E ,方向沿x 轴正方向 半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)022εσ=E )1(22xR x +-,方向沿x 轴负方向故 P 点的场强大小为220212x R xE E E +=-=εσ方向沿x 轴正方向。
8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少解:(1)由高斯定理0d εqS E s⎰=⋅ϖϖ求解。
立方体六个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为6εqe =Φ (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点,则0=Φe 。
9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。
解:如图所示,电荷面密度为1σ的平面产生的场强大小为12εσ=E ,方向垂直于该平面指向外侧 电荷面密度为2σ的平面产生的场强大小为ρ2σ1σ22εσ=E ,方向垂直于该平面指向外侧 由场强叠加原理得两面之间,)(2121021σσε-=-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(2121021σσε+=+=E E E ,方向垂直于平面向右 10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。
试求各区域的电场强度分布。
解:电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得i q r E ∑=⋅0214επ当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,)3434(313R r q i ππρ-=∑,所以203133)(r R r E ερ-=当2R r >时,)3434(3132R R q i ππρ-=∑,所以2031323)(rR R E ερ-= 11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。
求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得i q r E ∑=⋅0214επ当2R r >时,0=E ,0442122=⋅'+⋅=∑R R q i πσπσ,所以σσ212)R R (-=' (2)当1R r <时,0=∑i q ,所以0=E当21R r R <<时,222144R R q i πσπσ-=⋅'=∑,所以22)εσr R E (-=负号表示场强方向沿径向指向球心。
12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。
解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x ,底面圆的面积为S ∆。
由高斯定理∑⎰=⋅iSqS d E 01ερρ得=⋅⎰SS d E ρρi q S E S E ∑=+∆⋅+∆⋅010ε 当2dx <时(平板内部),S x q i ∆⋅⋅=∑2ρ,所以 0ερx E =当2dx >(平板外部),S d q i ∆⋅⋅=∑ρ,所以2ερd E =13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。
解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。
i Sq rl E S E ∑=⋅=⋅⎰1π2d εϖϖ(1) 当R r <时,l r qi2πρ⋅=∑,所以 02ερr E =(2) 当R r >时,l R qi2πρ⋅=∑,所以rR E 022ερ=14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。
解:取半径为r 、dr 的细圆环rdr dS dq πσσ2⋅==,则dq 在O 点产生的电势为024εσπεdrrdq dV ==圆盘中心O 点的电势为dr dV V R⎰⎰==002εσ02εσR = 15. 真空中两个半径都为R 的共轴圆环,相距为l 。
两圆环均匀带电,电荷线密度分别是λ+和λ-。
取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为2l,如图所示。
求x 轴上任一点的电势。
设无穷远处为电势零点。
解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为220)2/(4Rl x dqdV +-=πε右边带电圆环在P 产生的的电势为⎰⎰+-==+dq R l x dV V 220)2/(41πε220)2/(2Rl x R+-=ελ同理,左边带电圆环在P 产生的电势为220)2/(2Rl x RV ++-=-ελ由电势叠加原理知,P 的电势为02ελR V V V =+=-+-+-22)2/(1(R l x ))2/(122Rl x ++16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为R 31,b 点离球心的距离为R 32。