北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)

合集下载

北京理工大学数学专业应用回归分析期末试题(MTH17095)

北京理工大学数学专业应用回归分析期末试题(MTH17095)

课程编号:07000237 北京理工大学2011-2012学年第二学期2009级应用回归分析期末试题A 卷1.(35)Consider the following model:0112233i i i i i y x x x ββββε=++++,where y=labor force paticipation (%)by family heads of poor families, x 1=mean family income ($), x 2=mean family size,x 3=unemployment rate (% of civilian labor force unemployed).Two versions of the model were estimated as follows (the standard errors are in the brackets).(A)123ˆ33.460.01915.520.813i i i i yx x x =-+++ (48.78) (0.019) (9.46) (1.911)()Re 15,5130.13,3716.98T s n SS SS A ===(B) 12ˆ26.510.01815.30i i i yx x =-++ (44.37) (0.018) (9.12)()Re 3778.11s SS B =(1)Interpret the coefficient of mean family income in model (B);(2)Carry out a t-test to test whether in model (A) mean family size has a significant effect upon labor force paticipation;()0.05α=(3) Carry out a partial F-test to test whether in unemployment rate has a significant effect upon labor force paticipation;()0.05α=(4)What is the adjusted coefficient of determination 2R in model (A); (5)Test the significance of model(B);()0.05α=(6)Find a 95% confidence interval for the coefficient 1β of 1x in model (B); (7)Interpret the confidence coefficient 95% in (6).x 1=national income (100 million yuan) x 2=volume of consumption (100 million yuan) x 3=volume of passengers on railway (ten thousands persons) x 4=length of airline of civil aviation (ten thousands persons) x 5=number of inbound tourist arrivals (ten thousands persons) y=volume of passengers of civil aviation (ten thousands persons)(1)What problem do the VIFs imply? (2)Which regression coefficients may have the wrong sign? (3)Discuss the reasons for the problem in (2).3.(12)Consider the following model (n=8):2012y x x βββε=+++where y=body temperature of a pig (centi) x=time length after the pig is infected (hours)(1)Test the significance of 2x ;()0.05α= (2)Predict body temperature at x=80; (3)If the observations of x lie in (8,64),what ’s your suggestion about the prediction in (2); 4.(18)()()()2,:,,0,,0y X X n p rk X p E Var V V βεεεσ=+⨯===>, (1)Find GLSE for β;(2)Find an unbiased estimator for 2σ.5.(20)Full model ()()112220,,1,2,,,cov ,0,i i i i i i j y x x E i j n i ji j ββεεσεε⎧⎪=++⎪⎪==⎨⎪⎧=⎪=⎨⎪≠⎩⎩subset model ()()1120,,1,2,,,cov ,0,i i i i i j y x E i j n i ji j βεεσεε⎧⎪=+⎪⎪==⎨⎪⎧=⎪=⎨⎪≠⎩⎩(1)Under subset model caculate OLSE 1ˆβfor 1β; (2)Assume full model is true,caculate ()()11ˆˆ,E Var ββ. Attached list:()()()()()0.0250.0250.0250.050.0511 2.201,12 2.1788,5 2.5706,1,11 4.8443,2,12 3.8853t t t F F =====课程编号:MTH17095 北京理工大学2012-2013学年第二学期2010级应用回归分析期末试题A 卷Attached list:()()()0.050.050.041,22 4.30,1,23 4.28,3,22 3.418,F F F ===()()0.0250.02522 2.074,23 2.0687t t ==1.(28)Consider the following model:01122ˆyx x βββ=++,n=25,where y=deliver time (minutes), x 1=number of cases of product, x 2=distance walked by the route driver (feet).Two versions of the model were estimated as follows (the standard errors are in the brackets).(A)12ˆ 2.341 1.6160.014yx x =++ (1.097) (0.171) (0.004)()Re 5784.543,233.732T s SS SS A ==(B) 1ˆ 3.321 2.176yx =+ (1.371) (0.124)()Re 402.134s SS B =(1)Interpret the coefficient of number of cases of product in model (A);(2)Carry out a t-test to test whether for model (A) number of cases of product has a significant effect upon deliver time;()0.05α=(3)Carry out a partial F-test to test whether distance has a significant effect upon deliver time;()0.05α=(4)Test the significance of model(B);()0.05α=(5)Find a 95% confidence interval for the parameter 1β from model (B);(6)Find a 90% Bonferroni confidence interval for the parameter 0β and 1β from model (B); (7)Explain the result in (6).2.(18) Consider the following model:01122ˆyx x βββ=++,n=25,where y=deliver time (minutes), x 1=number of cases of product, x 2=distance walked by the route driver (feet).(1)What are the horizontal scale and vertical scale in the following partial regression plot?What does the plot indicate?(2)It is reported that studentized residual at point 9 9993.2138,0.4983r h ==,where ii h is the ith diagonal element of hat matrix H,and COOK ’s distance 9 3.418D =.Interpret the results. (3)The correlation coefficients 12r between x 1 and x 2 is 120.824r =.What does the result imply? What are sources of the problem?3.(15)To study the relationship between the annual per capita expenditure on education and the annual per capita consumption expenditure,two models are used to fit the data,where y:The annual per capita expenditure on education, x:The annual per capita consumption expenditure.4.(21) Consider the simple linear regression model:011y x ββε=++,with ()()20,E Var εεσ==,and ε uncorrelated.(1)Show ()221R xx E MS S σβ=+; (2) Show ()2Re s E MS σ=.5.(18)A linear regression model is written as follows: 11223344y x x x x ββββε=++++,()()20,E Var εεσ==.The data is shown in the following table:(2)Caculate OLSE 1ˆβ for 1β; (3)Caculate ()1ˆVar β.课程编号:MTH17095 北京理工大学2013—2014学年第二学期2011级应用回归分析期末试题*卷(年份推断为2011,试卷类型未知)附表:()()0.050.0255,10 3.33,10 2.2281F t ==1.(28分)中国民航客运量回归方程为:(括号里是标准误差)12345ˆ450.90.3540.5610.007321.5780.435yx x x x x =+--++, (178.08)(0.085) (0.125) (0.002) (4.030) (0.052)16,13843371.750,13818876.769n SST SSR ===其中:y —民航客运量(万人) x 1—国民收入(亿元) x 2—消费额(亿元)x 3—铁路客运量(万人) x 4—民航航线里程(万公里) x 5—来华旅游入境人数(万人) (1)解释回归方程中民航航线里程的回归系数; (2)检验回归方程的显著性;()0.05α= (3)计算回归方程的决定系数,并作出解释; (4)计算回归的标准误差,解释这一结果; (5)对模型中来华旅游入境人数对民航客运量是否有显著影响进行t-检验; (6)建立x 4的回归系数4β的置信水平为95%的置信区间。

北京理工大学 数学分析 分析解答2014-2(a)

北京理工大学 数学分析 分析解答2014-2(a)

(2014-2015-1)工科数学分析期末试题(A 卷)解答(2015.1)一.1. )43(7341-=-x y 2. 21 3.⎰+∞+2,)1(x x dx,0⎰+∞-dx xe x4. 1 , 32- 5. )(x f二. .122110dx x x I -=⎰ ……………..(2分)令t x sin = t d t t 22010cos sin 2⎰=π……………..(4分)tdt ⎰=210sin (2π)sin 2012tdt ⎰-π……………..(6分)π102421=……………..(8分)三. )(131⎰⎰+⎰=---dx exe C ey dx xxx dx xx……………..(4分))(ln 3ln ⎰--+=dx e xe C exx x xx ……………..(6分))(3⎰-+=dx xe xe C x e xx x )(2⎰+=dx e C xe x x……………..(8分) )21(2x x e C x e += ……………..(9分)四. (1) 1)0(=y ……………..(1分) y xe e y y y '--=' ……………..(分)e y -=')0( ……………..(3分)y xe y xe y e y e y y y y y ''-'-'-'-=''2)( ………..(4分) 22)0(e y ='' ……………..(5分)(2)由题设, 应有)0()0(y f = )0()0(y f '=' )0()0(y f ''='' ………..(6分)1)0(==f c ……………..(7分)b ax x f +='2)( e f b -='=)0( ……………..(8分) a x f 2)(='' 22)0(2e f a =''= 2e a = ……………..(9分)五. ⎰=34t a n c o sln ππx xd I ……………..(2分) ⎰+=3434t a n c o s s i n ln tan ππππxdx x xsx co x ……………..(5分) ⎰-+-=342)1cos 1(21ln 21ln 3ππdx x ……………..(6分) 34)(t a n 2ln 212ln 3ππx x -++-= ……………..(8分) 12132ln )321(π--+-= ……………..(9分)六. 设 a x x x f --=2ln )(2),0(+∞∈x ……………..(1分) x xx f -='1)( ……………..(2分) 令 0)(='x f 得1=x ……………..(3分)-∞==++→)(lim )00(0x f f x ……………..(4分) -∞==+∞+∞→)(lim )(x f f x ……………..(5分)a f --=21)1( ……………..(6分) 当21-<a 0)1(>f 二曲线有两个交点 ……………..(7分)当21-=a 0)1(=f 二曲线有一个交点 ……………..(8分)当21->a 0)1(<f 二曲线有没有交点 ……………..(9分)七. 设 12)1)(2(142222++++=++--x DBx x A x x x x ……………..(2分) )2)(()1(14222++++=--x D Bx x A x x得 3=A 2-=B 1-=D …(1+1+1)…..(5分)dx x x x x x x x )1223()1)(2(142222++-+=++--⎰⎰C x x x +-+-+=arctan 2)1ln(212ln 32 (每项1分)…..(9分)八. xx ax f x arcsin lim )00(30-=--→ ……………..(1分)2201113l i mx ax x --=-→ ……………..(2分)1113l i m 2220---=-→x x ax x22202113l i m x x ax x --=-→ ……………..(3分)a 6-= ……………..(4分)41lim )00(220x ax x e f ax x --+=++→ ……………..(5分)22l i m 0xax ae ax x -+=+→ ……………..(6分)212l i m 20+=+→ax x e a)2(22+=a ……………..(7分) 由题设得 6)2(262≠+=-a a 2-=a ……………..(9分)九.dx y a g x dW )(2100-⨯⋅=μdx x a a gx )(20022--=μ .……..(3分)⎰--=adx x a a gx 022)(200μ …..…..(4分)⎰-=a axdx g 0(200μ)022⎰-adx x a x …..…..(5分))312(20033a a g -=μ …(1+2)..…..(8分)33100ga μ=(J) ……………..(9分)十. 022=-+r r ……………..(1分) 1=r 2-=r ……………..(3分) x x e C e C y 221-+= ……………..(4分) 设 x e B Ax x y )(*+= ……………..(5分) 代入方程得 x B A Ax 3326=++ ……………..(7分)解得 21=A 31-=B ……………..(9分) 通解为 x x x e x x e C e C y )3121(2221-++=- ……………..(10分)十一. ⎰-=ξξπadx f x f V )]()([221 ……………..(2分)⎰-=bdx x f f x V ξξπ)]()([22 ……………..(4分)令 ⎰⎰---=btt adx x f t f x dx t f x f t F )]()([2)]()([)(22ππ …………..(6分)则)(x F 在],[b a 上连续0)]()([2)(<--=⎰ba dx x f a f x a F π ……………..(7分)0)]()([)(22>-=⎰badx b f x f b F π ……………..(8分)根据介值定理, ),(b a ∈∃ξ, 使0)(=ξF , 即⎰-ξξπadx f x f )]()([220)]()([2=--⎰bdx x f f x ξξπ21V V = ……………..(9分)。

北京理工大学数学专业应用随机过程期末试题(MTH17096)

北京理工大学数学专业应用随机过程期末试题(MTH17096)

北京理工大学2012-2013学年第一学期2010级《应用随机过程》期末试题A 卷一、(15分)设随机过程()X t Yt Z =+,其中Y ,Z 是相互独立的()0,1N 随机变量,求()X t 的数学期望,协方差函数和一维概率密度函数。

二、(15分)设在(]0,t 内到达某商店的顾客数()X t 是具有强度(每分钟)为λ的泊松过程,求:(1)5分钟内来到的顾客数为2人的概率;(2)5分钟内到来的平均顾客数;(3)设T 为首位顾客到达的时间,计算概率()5P T >。

三、(15分)设质点在线段[]1,5的整数点上作随机游动,n X 表示质点在时刻n 所处的位置,其一步转移概率矩阵为:11000221100022100001110033301000P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。

(1)若初始分布为11,,0,0,022⎛⎫ ⎪⎝⎭,求质点在时刻n=1的概率分布; (2)试讨论该Markov 链的状态分类及其各常返闭集的平稳分布。

四、(10分)设Markov 链的状态空间{}0,1,2,I = ,转移概率,10,111,i i i i p p a ---==,1001,1,2,,1i i i a i a ∞-=<<==∑ 。

(1)试证明该Markov 链是不可约常返链; (2)试给出此链正常返的充要条件,并求出状态0的平均返回时间。

五、(15分)某实验室有两台机器,每台机器发生故障的概率为μ,发生故障后立即修理,且在h 时间内机器从故障到正常的概率为()h o h λ+。

令()X t 表示t 时刻正常工作的机器数,则()X t 是一生灭过程。

(1)写出()X t 的Q 矩阵;(2)写出转移概率所满足的Kolmogorov 向前、向后方程;(3)求平稳分布。

六、(15分)设()()cos X t V at =+Θ,其中()0,2,0,1U EV DV πΘ== ,且,V Θ相互独立。

北京理工大学数学专业数理统计期末试题(07000233)

北京理工大学数学专业数理统计期末试题(07000233)

北京理⼯⼤学数学专业数理统计期末试题(07000233)课程编号:07000233 北京理⼯⼤学2011-2012学年第⼆学期2010级数理统计期末试题A 卷⼀、设总体()20,X N σ,12,,,m n X X X +是抽⾃总体X 的简单随机样本,求常数c 使得随机变量2221222212mm m m n X X X Y c X X X ++++++=?+++服从F 分布,指出分布的⾃由度并证明。

⼆、设总体()2,X N µσ,其中220σσ=为已知常数,R µ∈为未知参数。

12,,,nX X X 是抽⾃总体X 的简单随机样本,12,,,n x x x 为相应的样本观测值。

1.求参数µ的矩估计;2.求参数µ和2EX 的极⼤似然估计;3.证明1n i i i X X α='=∑,其中11ni i α==∑和11ni i X X n ==∑都是µ的⽆偏估计;4.⽐较两个⽆偏估计X '和X 的有效性并解释结果。

三、设总体X 服从泊松分布()P λ,123,,X X X 是抽⾃总体X 的简单随机样本,设假设检验问题011:3;:3H H λλ==的否定域为(){}123,,0.5D X X XX =≤。

1.求该检验问题犯第⼀类错误的概率;2.求该检验问题犯第⼆类错误的概率和在1H 下的功效函数。

四、设总体X 的概率密度函数为()32,0,20,0xx e x f x x θθθ-?>?=??≤?,其中0θ>为未知参数,12,,,n X X X 是抽⾃总体X 的简单随机样本。

1.验证样本分布族是指数族,并写出其⾃然形式(标准形式);2.证明()1nii T X X==∑是充分完全(完备)统计量,并求()ET X ;3.利⽤充分完全统计量法和Cramer-Rao 不等式⽅法证明113n i i X n =∑是1θ的⼀致最⼩⽅差⽆偏估计。

数学分析(下)_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

数学分析(下)_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

数学分析(下)_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1. 4. 设y=f(x1,...,xn)是Rn上连续函数,E={(x1,..xn,y):y=f(x1,...xn),(x1,...,xn)属于Rn}。

则:E是【图片】上的闭集。

参考答案:正确2. 2. 函数【图片】在(0,0)点可微。

参考答案:正确3. 1. 已知三角形ABC的三个顶点为A(2,1,3),B(1,2,1),C(3,1,0),求BC边上的高AD的长。

参考答案:根号35/64. 5. 求以原点为顶点,z轴为轴,半顶角为α的直圆锥面方程为【图片】.参考答案:正确5. 2. 已知平面经过点M(4,-3,-2),且垂直于平面x+2y-z=0和2x-3y+4z-5=0,求这个平面的方程。

参考答案:5x-6y-7z-52=06.8. 证明:Rn中点列{Pk}收敛的充要条件是:参考答案:{Pk}是基本列7.7. E是Rn中紧集的充要条件是:参考答案:E是有界闭集8. 6. 设z=f(x,y)在区域D有定义,关于x和y分别都是连续函数,且关于x单调. 则z=f(x,y)在区域D内连续.参考答案:正确9.7.设【图片】,若【图片】是由【图片】所确定的隐函数,【图片】.求【图片】参考答案:-110. 1. 设【图片】则【图片】在【图片】点是否连续?偏导数是否存在?参考答案:不连续,存在11. 3. 函数【图片】在(0,0)点可微。

参考答案:错误12. 3. P是E的聚点的充要条件是:存在E中点列{Pk},且,Pk不等于P,k=1,2,...,使得k趋于无穷时,Pk的极限是P..参考答案:正确13. 5. 函数【图片】的稳定点是____,此点是____(填极小值点或极大值点)。

参考答案:(1,2)极小值点##%_YZPRLFH_%##(1,2),极小值点##%_YZPRLFH_%##(1,2) 极小值点14.8. 设【图片】可微,它所表示的曲面与【图片】平面的交线为【图片】且【图片】.求【图片】.参考答案:-215. 1. 设E是Rn的一个子集,E0是E的内点构成的集合. 则E0是开集.参考答案:正确16. 6. 设【图片】,若【图片】是由【图片】所确定的隐函数,【图片】.求【图片】参考答案:-217.9. 设【图片】是由方程【图片】所确定的隐函数,并且满足【图片】.则【图片】的极值为____.参考答案:818. 2. 设E是Rn中开集,F是Rn中闭集. 则E-F是开集,F-E是闭集.参考答案:正确19. 5. 设P是Rn上任意一点,E是Rn中给定的一个子集. 定义P到E的距离为:d(P,E)=inf{d(P,Q),Q属于E}。

(完整word版)北京理工大学数学专业泛函分析期末试题(MTH17060)

(完整word版)北京理工大学数学专业泛函分析期末试题(MTH17060)

(完整word版)北京理⼯⼤学数学专业泛函分析期末试题(MTH17060)北京理⼯⼤学2012-2013学年第⼀学期2010级泛函分析试题(A 卷)⼀、(10分)设T 是赋范线性空间X 到⾃⾝的线性映射。

证明以下三条等价:(1)T 连续;(2)T 在零点连续;(3)T 有界。

⼆、(10分)设H 是Hilbert 空间。

证明:(1)若n x x →,则对于任意固定的y H ∈,()(),,n x y x y →;(2)若n x x →,n y y →,则()(),,n n x y x y →。

三、(10分)设H 是Hilbert 空间,()A B H ∈且存在0m >使得()2,,x H Ax x m x ?∈≥,证明:存在()1A B H -∈。

四、(10分)设H 是Hilbert 空间,M 是H 的线性⼦空间。

证明:M 在H 中稠密的充分必要条件是{}M θ⊥=。

注:M 仅为H 的⼦集时充分性不成⽴,试举反例五、(15分)设[]0,1C 为区间[]0,1上连续函数的全体,对于[]0,1f C ∈,令[]()0,1max x f f x ∈=。

证明:(1)[]0,1C 是完备的赋范线性空间,即Banach 空间;(2)对于[]0,1t ∈,令()()t F f f t =,则t F 是[]0,1C 上线性有界泛函,求t F 。

六、(15分)设[]2,0,1,1,2,k f f L k ∈=L ,且[],..0,1k f f a e →。

证明:lim k k f f →∞=当且仅当lim 0k k f f →∞-=,其中()[][]12220,1,0,1f f x dx f L ?? ?=∈ ?。

七、(15分)设12,f f 是Hilbert 空间H 上的线性⽆关的线性有界泛函,12ker ker M f f =I。

证明:(1)M 是闭的线性⼦空间;(2)存在12,y y H ∈使得对于x H ∈,有01122x x y y λλ=++,其中0x 为x 在M 上的正交投影,12,λλ∈£。

(完整word版)北京理工大学数学专业泛函分析期末试题(MTH17060)

北京理工大学2012-2013学年第一学期2010级泛函分析试题(A 卷)一、(10分)设T 是赋范线性空间X 到自身的线性映射。

证明以下三条等价: (1)T 连续; (2)T 在零点连续; (3)T 有界。

二、(10分)设H 是Hilbert 空间。

证明: (1)若n x x →,则对于任意固定的y H ∈,()(),,n x y x y →; (2)若n x x →,n y y →,则()(),,n n x y x y →。

三、(10分)设H 是Hilbert 空间,()A B H ∈且存在0m >使得()2,,x H Ax x m x ∀∈≥,证明:存在()1A B H -∈。

四、(10分)设H 是Hilbert 空间,M 是H 的线性子空间。

证明:M 在H 中稠密的充分必要条件是{}M θ⊥=。

注:M 仅为H 的子集时充分性不成立,试举反例 五、(15分)设[]0,1C 为区间[]0,1上连续函数的全体,对于[]0,1f C ∈, 令[]()0,1max x f f x ∈=。

证明:(1)[]0,1C 是完备的赋范线性空间,即Banach 空间;(2)对于[]0,1t ∈,令()()t F f f t =,则t F 是[]0,1C 上线性有界泛函,求t F 。

六、(15分)设[]2,0,1,1,2,k f f L k ∈=L ,且[],..0,1k f f a e →。

证明:lim k k f f →∞=当且仅当lim 0k k f f →∞-=,其中()[][]12220,1,0,1f f x dx f L ⎛⎫ ⎪=∈ ⎪⎝⎭⎰。

七、(15分)设12,f f 是Hilbert 空间H 上的线性无关的线性有界泛函,12ker ker M f f =I。

证明:(1)M 是闭的线性子空间;(2)存在12,y y H ∈使得对于x H ∈,有01122x x y y λλ=++,其中0x 为x 在M 上的正交投影,12,λλ∈£。

北京理工大学数学专业矩阵分析期末试题(MTH17075)

2011级数学学院矩阵分析期末试题B 卷一、(5分)求λ矩阵()()()()2332331A λλλλλλλ⎡⎤-⎢⎥⎢⎥=-⎢⎥-⎢⎥⎣⎦的初等因子和Smith 标准型。

二、(10分)求正规矩阵0110000i A i ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的谱分解。

三、(15分)已知2001206002A π⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。

(1)求矩阵A 的Jordan 标准形和最小多项式;(2)求矩阵函数sin ,cos A A 。

四、(10分)设A 是半正定Hermite 矩阵,A ≠O ,B 是正定Hermite 矩阵。

试证:A B B +>。

这里X 表示X 的行列式。

五、(20分)求矩阵2002i A i -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的奇异值分解和伪逆矩阵。

六、(10分)已知Hermite 二次型()1231113312233,,334f x x x x x ix x ix x x x x x =+-++,求酉变换X=UY ,并将其化成Hermite 二次型的标准型。

七、(10分)x =3上的向量范数?请说明理由。

八、(10分)已知()222000303te A t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求()()()22120,,x d A t dA t d A t dt dt dt dx -⎰。

九、(10分)已知,m m n n A B ⨯⨯∈∈,证明:,,A I A I B B A B A B e e I e I e e e e ⊗⊗⊕=⊗=⊗=⊗。

这里n m A B A I I B ⊕=⊗+⊗。

2013级矩阵分析期末试题B 卷一、(10分)求λ矩阵()()()32211A λλλλλλ⎡⎤⎢⎥=+⎢⎥⎢⎥+⎢⎥⎣⎦的初等因子组、Smith 标准型和各阶行列式因子。

二、(15分)已知211011013A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。

(1)求矩阵A 的Jordan 标准形和最小多项式;(2)求矩阵函数sin ,tAA e 。

北京理工大学数学专业高等代数Ⅱ期末试题(MTH17063)

课程编号:17063 北京理工大学2010-2011学年第一学期2009级数学类高等代数期末考试试题A 卷班级 学号 姓名 成绩一、(25分)设()n n M F ⨯表示域F 上的所有n 阶矩阵构成的F 上的线性空间。

取定()n n A M F ⨯∈,对于任意的()n n X M F ⨯∈,定义()X AX XA σ=-。

(1)证明:σ为()n n M F ⨯上的一个线性变换。

(2)证明:对于任意的,()n n X Y M F ⨯∈都有()()()XY X Y X Y σσσ=+。

(3)当a b A c d ⎡⎤=⎢⎥⎣⎦时,求σ在给定基1112212201101111,,,11110110F F F F ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦下的矩阵表示。

(4)当1402A -⎡⎤=⎢⎥⎣⎦时,求()Ker σ的一组基与维数。

二、(15分)设数域K 上3维线性空间V 的线性变换A 在V 的一个基123,,ααα下的矩阵为010440212A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦。

求线性变换A 的标准形。

三、(20分)设A 是域F 上n 维线性空间V 上的一个线性变换,证明:(1)如果W 是A 的一维不变子空间,那么W 中任何一个非零向量都是A 的特征向量;反之,如果ξ是A 的一个特征向量,那么ξ生成的子空间ξ<>是A 的一维不变子空间。

(2)A 可以对角化的充分必要条件是V 可以分解成A 的一维不变子空间的直和。

四、(20分)设22()V M F ⨯=,在V 中取一个基11122122,,,E E E E 。

(2)求V 上任意一个线性函数f 的表达式。

五、(20分)证明:n 维酉空间V 上的线性变换A 是变换A 当且仅当在V 的任意一个标准正交基下的矩阵是矩阵。

课程编号:17063 北京理工大学2011-2012学年第一学期2010级数学类高等代数期末考试试题 A 卷班级 学号 姓名 成绩一、(15分)设()n n M F ⨯为数域F 上所有n 阶矩阵构成的F 上的线性空间。

北京理工大学数学专业离散数学期末试题(MTH17068,MTH17175)

课程编号:MTH17068 北京理工大学2012-2013学年第一学期2011级离散数学试题A 卷一、选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是A.7能被3整除B.5是素数当且仅当太阳从西边升起C.x+7<0D.北京理工大学位于北京市西城区2.设p :王平努力学习,q :王平取得好成绩。

命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为A.p q →B.p q ⌝→C.q p →D.q p ⌝→3.下列4个推理定律中正确的是A.A A B ⇒∨(附加律)B.()A B A B ∨∧⌝⇒(析取三段论)C.()A B A B →∧⇒(假言推理)D.()A B B A →∧⌝⇒(拒取式)4.设解释I 如下:个体域{}()()()()1,2,1,12,20,1,22,11D F F F F =====。

在此解释下,下列各式真值为1的是A.(),x yF x y ∀∃B.(),x yF x y ∃∀C.(),x yF x y ∀∀D.(),x yF x y ⌝∃∃ 5.下列4个命题为真的是 A.Φ∈Φ B.{}a Φ∈ C.{}{}Φ∈Φ D.Φ⊆Φ 6.设{},,A a b c =上的二元关系{},,,,,R a a b b a c =<><><>,则关系R 的对称闭包()s R 为A.A R IB.RC.{},R c a <>D.A R I7.设{},,A a b c =,则下列是A 的划分的是A.{}{}{},,b c cB.{}{}{},,,a b a cC.{}{},,a b cD.{}{}{},,a b c8.下列编码是前缀码的是A.{1,11,101}B.{1,001,0011}C.{1,01,001,000}D.{0,00,000}9.下列图既是Euler 图又是Hamilton 图的是 A.9K B.10K C.2,3K D.3,3K 10.下列图一定是平面图的是A.5KB.,,9,22G V E V E =<>==C.3,3KD.,,10,8G V E V E =<>==二、填空题(本大题共10小题,每小题2分,共20分)1.若对命题P 赋值1,对命题Q 赋值0,则命题P Q ↔的真值为_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足.OA OB OC =+ (b),空间任意一点O,三点满足11.22OA OB OC =+ (c),空间任意一点O,三点满足0.OA OB OC ++= (d),空间任意一点O,三点满足110.23OA OB OC ++=2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( ) (a), ()0αβγ⋅=, (b), 0.αββγγα⨯+⨯+⨯=, (c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线2103260x z x y ++=⎧⎨+-=⎩和直线2102140x y z x z +--=⎧⎨+-=⎩,则下面(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20210x y z x y z +-=⎧⎨-+-=⎩,则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩与y 轴相交,则( )(a)11220C D C D =,(b)11220A D A D =,(c)11220B D B D =,(d)11220A B A B =7,在空间直角坐标系下,方程2223230xy z xy yz +-++=的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

8,在空间直角坐标系中,曲面的方程是22442218x xy y x y z ++-++=, 则曲面是( )(a)椭球面, (b)双曲抛物面, (c)椭球抛物面, (d)双曲柱面.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设12,γγ是平面上两个旋转变换,则12γγ不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)1,在一空间直角坐标系中,四面体的顶点A,B,C,D 的坐标依次为(1,0,1), (-1,1,5), (-1,-3,-3), (0,3,4), 则四面体的体积是 .2,在仿射坐标系中,给定一平面和一直线方程分别是与32230:320:210x y z x y z l x y z π-++=⎧-+-=⎨+++=⎩,则过点(0,1,-1)与平面π平行,且与直线l 共面的直线方程是3,在空间直角坐标系中,给定二次曲面222:(1)(2)(1)10x y z Γ-+-+--=和平面方程:20y z π+=,则二次曲面Γ上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线22(3)10x y z ⎧-+=⎨=⎩绕x 轴旋转的旋转面方程是.5,在空间直角坐标系中, 已知马鞍面222169x y z -=,则在马鞍面上过点(4,3,0)的直线是 . 6,在空间给定不同面的四点A,B,C,D,则坐标系[;,,]I A AB AC AD 到坐标系[;,,]I B BC BD BA 的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线2234462120x xy y x y ++++-=的中心是 .8,在平面直角坐标系中,给定曲线22695880x xy y x y y -+--+=,则它的对称轴方程是9,在平面仿射坐标系中, 二次曲线225720xxy y x y ++-+=过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是2214y x z ⎧+=⎪⎨⎪=⎩和22128x y z ⎧+=⎪⎨⎪=⎩,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线222100x y z ⎧+-=⎨=⎩,求经过此曲线的圆柱面方程.四,在平面仿射坐标系中,二次曲线Γ过点(3,-3), (3,-7), 且以两直线10x y -=和60x y ++=为一对共轭直径. 求二次曲线方程.五,在空间直角坐标系中,求与两个球面22216x y z ++=与222(6)4x y z +-+= 都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标(1,0),(0,1),(3,1),A B C ---'''(1,1),(1,3),(2,4)A B C --和二次曲线2:310x xy y Γ-++=,仿射变换:f ππ→满足, '''(),(),().f A A f B B f C C === 求二次曲线Γ在仿射变换下的像()f Γ的方程.课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题B 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知平面三点A,B,C,下面哪个条件能确定A,B,三点共线( ) (a),平面任意一点O,三点满足OA OB OC =+(b),平面任意一点O,三点满足1344OA OB OC =+(c),平面任意一点O,三点满足0.OA OB OC ++=(d),空间任意一点O,三点满足130.44OA OB OC ++=2, 已知非零向量,αβ,满足0αβ⨯=,下面等式成立的是( ) (a), 对于任意向量有,(,,)0γαγβ=,(b), 对于任意向量有,()0γαγβ⨯⨯=,(c), 对于任意向量有,()0γαγβ⨯⨯=, (d), 存在向量使得,(,,)0γαγβ≠,.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线2203260x y z x y -+=⎧⎨+-=⎩和直线2020x y z x z +-=⎧⎨+=⎩,则下面说确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5,在空间直角坐标系下,方程22230x y xy yz xz +++-=的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

6,在平面直角坐标中,方程2211122212(,)2220F x y a x a xy a y b x b y c =+++++=如果1112111121122122221222120,0,0a a b a a a a a a b a a b b c+>><, 方程(,)0F x y =的图形是 ( )(a),椭圆, (b),双曲线, (c),抛物线, (d)两条相交直线.7,直角坐标系下,椭球面2222221x y z a b c++=与球面2222x y z R ++=相切(0)a b c >>>,并椭球面在球面,则它们公共点有( )(a),两个;(b),四个;(c),八个;(d),无穷多个.8,下面哪对几何图形在平面仿射变换下不全等( )(a)平面上任意两个梯形, (b)平面上任意两个平行四边形, (c)平面任意两个椭圆, (d)平面上任意两个双曲线.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设12,γγ是平面上两个旋转变换,则12γγ不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)1,在一空间直角坐标系中,四面体的顶点A,B,C,D 的坐标依次为(1,0,1), (-1,1,5), (-1,-3,-3), (0,3,4), 则四面体的体积是 .2,在空间直角坐标系中,给平面方程:610ax by z π+++=和直线参数方程:21:4131x t l y t z t =+⎧⎪=--⎨⎪=+⎩,若平面π与直线l 的垂直,则a = , b = .3,在空间直角坐标系中,给定二次曲面222:(1)(2)(1)10x y z Γ-+-+--=和平面方程:0y z π+=,则二次曲面Γ上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线22(1)10x y z ⎧-+=⎨=⎩绕x 轴旋转的旋转面方程是.5,在空间直角坐标系中, 已知马鞍面222169x y z -=,则在马鞍面上过点(4,3,0)的直线是 .6,在空间给定不同面的四点A,B,C,D,则坐标系[;,,]I A AB AC AD 到坐标系[;,,]I B BC BD BA 的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线2232462120x xy y x y ++++-=的中心是 .8,在平面直角坐标系中,给定曲线22695880x xy y x y y -+--+=,则它的对称轴方程是9,在平面仿射坐标系中, 二次曲线225720x xy y x y ++-+=过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是2214y x z ⎧+=⎪⎨⎪=⎩和22128x y z ⎧+=⎪⎨⎪=⎩,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线224400x y z ⎧+-=⎨=⎩,求经过此曲线的圆柱面方程.四,在平面仿射坐标系中,二次曲线Γ过点(3,-3), (3,-7), 且以两直线10x y -=和40x y ++=为一对共轭直径. 求二次曲线方程.五,在空间直角坐标系中,求与两个球面2224x y z ++=与222(6)9x y z +-+= 都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标(1,0),(0,1),(3,1),A B C ---'''(2,1),(1,3),(2,4)A B C --和二次曲线2:2310x xy y Γ+++=,仿射变换:f ππ→满足, '''(),(),().f A A f B B f C C === 求二次曲线Γ在仿射变换下的像()f Γ的方程.课程编号:MTH17014 理工大学2012-2013学年第一学期2012级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间五点A,B,C,D,O.满足131110.2488OA OB OC OD ++-=则下面说确的是( )(a), 空间五点A, B, C, D, O 一定在一个平面上. (b), 空间四点A, B, C, D,一定在一个平面上. (c), 空间五点A, B, C, D, O 一定在一个直线上. (d), 空间四点A, B, C, D 一定在一个直线上.2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( ) (a), ()0αβγ⋅=, (b), 0.αββγγα⨯+⨯+⨯=,(c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,0,1)和点B(0,0,-3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线1210x y z -==-和直线11410x y z --==,则下面说确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20y z x ==, 则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面直角坐标中,二次曲线2862612130x xy x y +--+=是( ) (a),椭圆, (b),双曲线, (c),抛物线, (d),一对相交直线.7,在空间直角坐标系下,方程222330x y z xy yz ++++=的图形是( ) (a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

相关文档
最新文档