李庆扬-数值分析第五版第6章习题答案(20130819)

合集下载

《数值分析》第六章答案

《数值分析》第六章答案

习题61.求解初值问题y x y +=' )10(≤≤x 1)0(=y取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解xe x y 21+-=相比较。

解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.4599242) 用改进的Euler 公式进行计算,具体形式如下: 10=y)()(1i i i D i y x h y y ++=+ )()(11)(1D i i i C i y x h y y +++++= )(21)(1)(11c i D i i y y y ++++= 4,3,2,1,0=i计算结果列表如下i i x i y )(1D i y + )(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.0311473. 对初值问题1)0(=-='y y y)0(>x ,证明用梯形公式所求得的近似值为ii hh y ih y )22()(+-=≈ ),2,1,0( =i并证明当0→h 时,它收敛于准确解ix e y -=,其中ih x i =为固定点。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

(完整版)数值分析第五版答案(全)(最新整理)

(完整版)数值分析第五版答案(全)(最新整理)

第一章 绪论1.设,的相对误差为,求的误差。

0x >x δln x 解:近似值的相对误差为*x *****r e x x e x x δ-===而的误差为ln x ()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设的相对误差为2%,求的相对误差。

x n x 解:设,则函数的条件数为()n f x x ='()||()p xf x C f x =又, 1'()n f x nx -= 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且为2(*)r e x ((*))0.02n r x nε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:,, , ,*1 1.1021x =*20.031x =*3385.6x =*456.430x =*57 1.0.x =⨯解:是五位有效数字;*1 1.1021x =是二位有效数字;*20.031x =是四位有效数字;*3385.6x =是五位有效数字;*456.430x =是二位有效数字。

*57 1.0.x =⨯4.利用公式(2.3)求下列各近似值的误差限:(1) ,(2) ,(3) .***124x x x ++***123x x x **24/x x 其中均为第3题所给的数。

****1234,,,x x x x 解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===A A (*)(*)3(*)r p r r V C R R εεε∴≈=A 又%1(*)1r V ε=故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设,按递推公式 (n=1,2,…)028Y =1n n Y Y -=-计算到(5位有效数字),试问计算将有多大误差?100Y 27.982≈100Y解: 1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =-……10Y Y =-依次代入后,有1000100Y Y =-即,1000Y Y =-, 27.982≈100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯的误差限为。

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。

它包括了从数学理论到计算实现的一系列技术。

数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。

2. 解答:数值分析在实际应用中起着重要的作用。

它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。

数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。

3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。

与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。

数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。

4. 解答:计算误差是指数值计算结果与精确解之间的差异。

在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。

计算误差可以分为截断误差和舍入误差两种。

第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。

例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。

绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。

2. 解答:相对误差是指绝对误差与精确解之间的比值。

对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。

相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。

3. 解答:舍入误差是由于计算机的有限精度而引起的误差。

计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。

舍入误差会导致计算结果与精确结果之间存在差异。

4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。

数值分析课程课后习题答案(李庆扬等)1

数值分析课程课后习题答案(李庆扬等)1

第一章 绪论1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

李庆扬-数值分析第五版第6章习题答案(20130819)

李庆扬-数值分析第五版第6章习题答案(20130819)

试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
a A 11 a21

a12 a22
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
x ( k 1) x ( k )

10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k

数值分析第五版课后习题答案

数值分析第五版课后习题答案数值分析是一门应用数学的分支学科,主要研究如何利用数值方法解决实际问题。

在学习这门课程的过程中,课后习题是不可或缺的一部分。

本文将对《数值分析第五版》的课后习题进行一些探讨和解答。

第一章是数值分析的导论,主要介绍了误差分析和计算方法的基本概念。

在课后习题中,有一道题目是关于误差传播的。

假设有一个函数f(x, y) = x^2 + y^2,其中x和y的测量误差分别为Δx和Δy,要求计算f(x, y)的误差。

解答:根据误差传播公式,可以得到f(x, y)的误差为Δf = √[(∂f/∂x)^2 *(Δx)^2 + (∂f/∂y)^2 * (Δy)^2]。

对于本题而言,∂f/∂x = 2x,∂f/∂y = 2y。

代入公式,得到Δf = √[(2x)^2 * (Δx)^2 + (2y)^2 * (Δy)^2] = 2√(x^2 * (Δx)^2+ y^2 * (Δy)^2)。

第二章是插值与多项式逼近的内容。

其中一道习题涉及到拉格朗日插值多项式。

给定n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),要求构造一个n次多项式p(x),使得p(xi) = yi (i = 0, 1, ..., n)。

解答:拉格朗日插值多项式的表达式为p(x) = Σ(yi * Li(x)),其中Li(x) = Π[(x - xj) / (xi - xj)],j ≠ i。

将数据点代入表达式中,即可得到所求的多项式。

第三章是数值微积分的内容,其中一道习题是关于数值积分的。

给定一个函数f(x),要求使用复化梯形公式计算定积分∫[a, b]f(x)dx。

解答:复化梯形公式的表达式为∫[a, b]f(x)dx ≈ h/2 * [f(a) + 2Σf(xi) + f(b)],其中h = (b - a)/n,xi = a + i * h (i = 1, 2, ..., n-1)。

根据给定的函数f(x),代入公式中的各个值,即可得到近似的定积分值。

数值分析课程第五版课后习题答案(李庆扬等)(OCR)


根是x,,2…,x-,且V。x,x…·,x)=V,Cx6,x…·)(x-x)…(x-x)。
V,(xo,x,…x-x)=11】 -x,)用a-x,)
[证明]由
可得求证。
=V,(Cx8,x,…,xX))11(x-x)
2、当x=1-1,2时,f(x)=0,-3.4,求f(x)的二次插值多项式。
L,(x)=y%((xx6--xx,)((xx-2x-x22))
y=f(x)=f0.5)=-0.693147,y2=f(x)=f(0.6)=-0.510826,则
L2(x)=y。 (x-x)(x-x2)
(x6-x)x-x)
(x-x)(x-x)
(x-x)(x-x2)
(x-xo)(x-x) (x2-xo)(x2-x)
=-0.916291×.(0(.x4-0-.05.)5()x(-00..64)-0.6-.
30—+2—9.x9583x31 ̄02'=0.8336×104
14、试用消元法解方程x组1+10"x=100
x+x2=2
,假定只有三位数计算,问结果是否
可靠?
[解]精确解为x1=0100-*1 10"-2 ,当使用三位数运 算时,得到
x =1,x2=1,结果可靠。
15、已知三角形面积s=s去= absinc,其中c为弧度,0<c< 且测量a,b,c
位有效数字;x=56.430有5位有效数字;x=7×10有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中x,x;,x,x;均为第3题所给
的数。
(1)x+x2+x:
e(x+x写+x)=>
[解]
E(x)=E(x)+E(x)+E(x;)
3+tx10=1.05×103
(2)xxx;

数值分析第五版-李庆扬--课后习题答案

数值分析第五版-李庆扬--课后习题答案第一章绪论1.设某0,某的相对误差为,求ln某的误差。

e某某某某某解:近似值某某的相对误差为=er某某某某1e某而ln 某的误差为eln某某ln某某ln某某某进而有(ln某某)2.设某的相对误差为2%,求某n的相对误差。

解:设f(某)某n,则函数的条件数为Cp|某n某n1|n,Cp|n某f'(某)|f(某)又f'(某)n某n1又r((某某)n)Cpr(某某)且er(某某)为2r((某某)n)0.02n3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个某某某单位,试指出它们是几位有效数字:某11.1021,某20.031,某3385.6,某某某456.430,某571.0.某解:某11.1021是五位有效数字;某某20.031是二位有效数字;某某3385.6是四位有效数字;某某456.430是五位有效数字;某某571.0.是二位有效数字。

某某某某某某某某4.利用公式(2.3)求下列各近似值的误差限:(1)某1,(2)某1.某2某4某2某3,(3)某2/某4某某某某其中某1均为第3题所给的数。

,某2,某3,某4解:121某(某2)10321某(某3)10121某(某4)10321某(某5)1012(某1某)104某某某(1)(某1某2某4)某某某(某1)(某2)(某4)1114331010102221.05103某某某(2)(某1某2某3)某某某某某某某某某某1某2(某3)某2某3(某1)某1某3(某2)1111.10210.0311010.031385.61041.1021385.61032220.215某某(3)(某2/某4)某某某某某2(某4)某4(某2)某某24110.03110356.4301032256.43056.4301055计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?4解:球体体积为VR33则何种函数的条件数为RV'R4R2Cp34VR33r(V某)Cpr(R某)3r(R某)又r(V某)121故度量半径R时允许的相对误差限为r(R某)10.3331783(n=1,2,…)6.设Y028,按递推公式YnYn1100计算到Y100。

精品数值分析第五版课后习题完整答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x ( k 1) x ( k )

10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
使用高斯-赛德尔迭代法:
x ( k 1) ( D L) 1Ux ( k ) ( D L) 1 b 5 0 0 1 4 0 2 3 10 0 2 1 5 0 0 (k ) 0 0 2x 1 4 0 0 0 0 2 3 10 1 1 0 0 0 5 0 2 1 5 1 1 1 1 0 0 0 2 x ( k ) 4 4 20 0 0 0 20 3 1 3 1 1 40 40 10 40 40 2 1 12 0 5 5 5 1 11 ( k ) 22 0 x 10 20 5 1 1 21 0 20 8 10
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k
迭代法的渐进收敛速度为
R( B) ln ( B)
1 0 .4 0 .4 1 0.8 可知, 由系数矩阵 A 0.4 0 .4 0 .8 1
1 0 0.4 0.4 0 0.4 0.4 B0 D ( L U ) 1 0.4 0 0.8 0.4 0 0.8 ,由 1 0 0 0.4 0.8 0.4 0.8
x ( k 1) D 1 ( L U ) x ( k ) D 1b 2 1 1 0 5 5 0 5 12 2 1 (k ) 1 1 1 0 1 0 2 x 20 4 4 4 2 3 0 3 1 1 1 3 10 10 10 5 1 12 5 5 , 1 (k ) x 5 2 3 0 10
1
0.4 0.4 I B0 0.4 0.8 ( 0.8)(2 0.8 0.32) 可知, 0.4 0.8 ( 0.8)( 0.4 0.48 )( 0.4 0.48 ) 0

( B0 ) 0.4 0.48 1,从而雅可比迭代法不收敛。
7. 将雅可比迭代、高斯-塞德尔迭代和具有最优松弛参数的 SOR 迭代,按收敛快慢排列。 解: 具有最优松弛参数的 SOR 迭代>高斯-塞德尔迭代>雅可比迭代 8.什么是解对称正定方程组 Ax=b 的最速下降法和共轭梯度法? 9.为什么共轭梯度法原则上是一种直接法,但在实际计算中又将它作为迭代法。 P207 共轭梯度法求解 n 维线性方程组,理论上最多 n 步便可求得精确解,可以说是一种直接法。 但在存在舍入误差的情况下,很难保证其正交性,另实际计算步数 k<<n,即可达到精度要 求。可以认为是一个迭代法,存在有收敛性问题。 10. 判断下列命题是否正确。 (1)雅可比迭代与高斯-塞德尔迭代同时收敛且后者比前者收敛快。 (对) (2)高斯-塞德尔迭代是 SOR 迭代的特殊情形。 (对) (3)A 对称正定则 SOR 迭代一定收敛。 (错,与松弛因子的选择有关) (4)A 为严格对角占优或不可约对角占优,则解线性方程组 Ax = b 的雅可比迭代与高 斯-塞德尔迭代均收敛。 (对) (5)A 对称正定则雅可比迭代与高斯-塞德尔迭代都收敛。 (6)SOR 迭代法收敛,则松弛参数 0< < 2。 (对) (7)泊松方程边值问题的模型问题,其五点差分格式为 Au=b,则 A 每行非零元素不超 过 5 个。 (8)求对称正定方程组 Ax=b 的解等价于求二次函数 ( x) 值。 (9)求 Ax=b 的最速下降法是收敛最快的方案。 (错) (10) 解 Ax=b 的共轭梯度法, 若 A Rnn , 则最多计算 n 步与 r ( n ) b Ax(n) 0 (对)
中,其分裂矩阵 M 选择为 D-L。因此,高斯塞德尔迭代法如下:
x Bx f
其中
B I M 1 A I ( D L) 1 A ( D L) 1 ( D L A) ( D L) 1U G, f ( D L) 1 b

收敛条件是
(G ) (( D L) 1U ) 1
0 0 1 1 G ( D L) U 0.4 1 0 0.4 0.8 1
1
0 0.4 0.4 0 0.8 0 0 0 0
0 0 0 0.4 0.4 0 0.4 0.4 1 0.4 1 0 0 0 0.8 0 0.16 0.64 0.4 0.8 1 0 0 0 0 0.16 0.8
试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
第6章
复习与思考题 本章关键在于矩阵的分裂,以及由于分裂矩阵 M 的选择带来的相关公式的变化和谱半径的 变化问题。 共轭梯度法需要了解其计算步骤。 1. 写出求解线性方程组 Ax = b 的迭代法的一般形式。并给出它收敛的充分必要条件。 迭代法的一般形式为 x(k 1) B0 x(k) f ,其收敛的充分必要条件是 ( B0 ) 1 。
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
A12 A22
其中 A11 为 r 阶方阵,A22 为 n-r 阶方阵( 1 r n ) ,则称 A 为可约矩阵。否则,如果不 存在这样置换矩阵 P 使得其成立,则称 A 为不可约矩阵。 6.给出解线性方程组的 SOR 迭代法计算公式,其松弛参数 w 的范围一般是多少?A 为对称 正定三对角矩阵式时最优松弛参数 W 是多少 P193 选取分裂矩阵 M 为带参数的下三角矩阵
1 ( Ax, x) (b, x) 的最小 2
习题
5 x1 2 x 2 x3 12 1、设方程组 x1 4 x 2 2 x3 20 , 2 x 3 x 10 x 3 2 3 1
(a)考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性; (b)用雅可比迭代法及高斯-赛德尔迭代法解此方程组,要求当
1 1
12 20 3
0 12 0 20 3 1 10
x1 0.4 x 2 0.4 x3 1 x1 2 x 2 2 x3 1 2. 设方程组(a) 0.4 x1 x 2 0.8 x3 2 ; (b) x1 x 2 x3 1 ; 0.4 x 0.8 x x 3 2 x 2 x x 1 1 2 3 2 3 1
M
1

( D L) ,其中 0 为可选择的松弛因子
超松弛迭代法为
x Bx f
其中
B I M 1 A I ( D L) 1 A ( D L) 1 ((1 ) D U ) f ( D L)1 b
当 1 时,为高斯-赛德尔迭代。 当 1 时,为超松弛迭代 当 1 时,为低松弛迭代 P197 A 为严格对角占优矩阵, 0 1 P201 A 为对称正定矩阵 0 2
1 1 1 1
x Bx f
其中 B I M A I D A D ( D A) D ( L U ) J , f D b 收敛条件是 ( J ) ( D ( L U )) 1
1 1 1 1 1 1
根据 p188,高斯-赛德尔迭代法,仍然是将矩阵 A 分解为 A=D-L-U,但是在经典的迭代公式
,由
0.4 0.4 I G 0 0.16 0.64 (2 0.96 0.1152 ) 可知, 0 0.16 0.8 ( 0.48 0.1152 )( 0.48 0.1152 ) 0

(G) 0.48 0.1152 1,从而高斯-塞德尔迭代法收敛。
x Bx f
其中 B M N M ( M A) I M A, f M b ,称 B I M 1 A 为迭代法的迭 代矩阵,选择了 M 阵,就得到了解 Ax=b 的各种迭代法。 4. 写出解线性方程组 Ax = b 的雅可比迭代法与高斯-塞德尔迭代法的计算公式,它们的基本 区别是什么? 根据 p187,雅可比迭代是将矩阵 A 分解为 A=D-L-U,在经典的迭代公式中,将分裂矩阵 M 选择为 D。因此,雅可比迭代公式如下:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
相关文档
最新文档