七年级下数学期末复习综合练习2
2022—2023学年人教版数学七年级下册期末综合训练

北师大版七年级下期末综合训练一.选择题(每题3分,共30分)1. “国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是 ( )2.若三角形底边长为a ,底边上的高为h ,则三角形的面积S =12ah .若h 为定长,则( )A .S ,a 是变量,12,h 是常量B .S ,h ,a 是变量,12是常量C .S ,12是常量,a ,h 是变量D .以上答案均不对3.抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是( ) A .B .C .D .4.某品牌计算器成本价为80元,销售商对其销量与定价的关系进行了调查,结果如下: 定价(元) 110 120 130 140 150 160 销量(个) 801101201108065为获得最大利润,销售商应将该品牌计算器定价为( )元. A .120 B .130 C .140 D .150 5.如图,下列条件中能判断 //AB CD 的是( )A .32∠=∠B .12∠=∠C .24∠=∠D .15∠=∠ 6. 已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m7.小强将一个球竖直向上抛起,球上升到最高点,然后垂直下落到地面.在此过程中,球的高度与时间的关系可以表示为( )A.B.C.D.8. 如图,AB=DB,BC=BE,要证△ABE≌△DBC,则需要添加的条件可以是 ()A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBC9.如图,点D,E分别在△ABC的AB,将△BDE沿DE对折,使点B与点C重合,若∠A=70°,AC=BD()A.45°B.60°C.35°D.40°10.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二.填空题(每题3分,共18分)11.已知△ABC≌△DEF,BC=6 cm,△ABC的面积是18 cm2,则EF边上的高是cm.12. 已知a+b=4,a-b=3,则a2-b2=______.13.某市倡导低碳生活,节约用电节能环保,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过150度时,按0.5元每度计费;月用电量超过150度时,其中的150x x 度度仍按0.5元每度计费,超过部分按0.65元每度计费.设每户家庭月用电量为(150)时,则应交电费y与x之间的关系式为____.14.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠EAC =49°,则∠BAE 的度数为 .15.一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=________度.16.如图,在△ABC 中,AB =4,沿过点A 的直线折叠△ABC ,使点B 落在AC 边上的点F 处,点E 是BC 的中点,则DE 的长为 .三.解答题(第17-19题每题6分,第20- 22题每题8分,第23题10分共52分) 17.计算:(1)()()222223366m mn m n m -÷--; (2)()()()2112+--+x x x .18.随着疫情的发展,“勤洗手,戴口罩”六字已深入人心,小华就某城区公众对在公共场合制止不戴口罩的态度进行了随机抽样调查,主要有四种态度:A .赞成保安对不戴口罩的出面制止;B .赞成群众对不戴口罩的出面制止;C .赞成防疫人员对不戴口罩的出面制止;D .无所谓,他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)求这次抽样的公众有多少人?(2)请将统计图①补充完整;(3)在统计图②中,求“无所谓”部分所对应的圆心角是多少度?(4)若该城区人口有20万人,估计赞成“防疫人员对不戴口罩的出面制止”的有多少万人?(5)小华在该城区随机对路人进行调查,请你根据以上信息,直接写出赞成“防疫人员对不戴口罩的出面制止”的概率是.19.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.20.如图1,一条笔直的公路上有A,B,C三地,甲,乙两辆汽车分别从A,B两地同时开出,沿公路匀速相向而行,驶往B,A两地,甲、乙两车到C地的距离y1、y2(千米)与行驶时间x(时)的关系如图2所示.(1)A,B两地之间的距离为千米;(2)图中点M代表的实际意义是什么?(3)分别求出甲,乙两车的速度,并求出他们的相遇点距离点C多少千米.21.已知在△ABC中,AE平分∠BAC(∠C>∠B),F为直线AE上一点,且FD⊥BC于D.(1)如图甲,若∠B=40°,∠C=60°,点F在AE上,求∠EFD的度数;(2)如图乙,当点F在AE的延长线上时,请猜想∠EFD与∠B,∠C之间的数量关系,并加以证明.22.如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥DF,交AB于点E,连接EG,EF.(1)试说明:BG=CF.(2)请你判断BE+CF与EF的大小,并说明理由.23.如图所示,点P在∠AOB内,点M,BO的对称点,MN分别交OA,F.(1)猜想△MON是哪种类型的三角形,并说明理由.(2)△PEF的周长与MN的长有什么关系,请说明理由.(3)拓展:若∠AOB=30°,OP=acm,点P在∠AOB内,N分别是点P关于AO,BO的对称点,F分别是射线OA、OB上的一点,连接PE、PF和EF.求△PEF周长的最小值.(用含a 的代数式表示)。
七年级下数学期末综合测试(2)

七年级下数学期末综合测试(2)(满分100分,时间90分钟)姓名一、选择题(每小题3分,共30分)1. 若点P (0,m -4)在y 轴的正半轴上,则有( ) A.m<4 B.m<-4 C m>-4 D. m>42. 如图,AB ∥CD ,点E 在BC 上,且∠CDE =∠CED =74°,则∠B 的度数为 ( ) A .68° B .32° C .22° D .16° 3. 下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-44. 若1x y k =⎧⎨=⎩是二元一次方程23x y -=的一个解,则k 的值是( )A .-1B .0C .1D .25. 实数,,a b c 在数轴上对应的点如图所示,则下列式子中正确的是( ) A.a c b c ->- B. a c b c +<+ C.ac bc > D.a cb b <6. 若不等式2x a +>的解集是3x >,则a 的值为( ) A. 3 B. 5 C. 1 D. -17. 实验中学七年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( ) A.抽取前100名同学的数学成绩 B.抽取后100名同学的数学成绩 C.抽取(1)、(2)两班同学的数学成绩D.抽取各班学号为3号的倍数的同学的数学成绩8.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( ) (8题图)A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 29. 若方程组2,3,x y m x y +=⎧⎨+=⎩的解是2,,x y n =⎧⎨=⎩则m 、n 表示的数分别是( )A . 5,1B .1,4C . 2,3D .2,410. 若方程335x m m x -=+-的解是负数,则m 的取值范围是( ) A. 45->m B. 45-<m C. 45>m D. 45<m 二、填空题(每小题3分,共24分)11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.在二元一次方程5316x y -=中,若x 、y 互为相反数,则x = ,y = . 13. 如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是 .abc x()5第题图E D C B A 第2题图(13题图)(18题图)14. 小鸣的妈妈叫他到农贸市场买猪肉,到了市场后他发现妈妈给的钱,若买1千克猪肉,则少4元;若买0.5千克猪肉,则余8元.那么猪肉每千克元,妈妈给他的钱是元.15.已知点A(m,-2),B(3,m-1),且直线AB//x轴,则m的值是.16.在一个样本中,40个数据分别落在4个组内,已知第一、二、四组数据个数分别为5,12,8,则第三组的频数为.17. 已知关于x的不等式组420x ax->⎧⎨-≥⎩的整数解共有3个,则a的取值范围.18. 如图,l1// l2,则∠1+∠2-∠3=.三、计算题19.将下列的值求出来(每小题4分,共8分)(1)3331632700.1251464---++-(2)()327364x-=-20.解方程组和不等式组(每小题5分,共10分)(1)()3155(1)3(5)x yy x-=+⎧⎪⎨-=+⎪⎩(2)⎪⎩⎪⎨⎧+<-≥--215124)2(3xxxx四、解答题 21.(6分)如下图,某校7年级的学生从学校O 点出发,要到某地P 处进行探险活动,他们先向正西方向走8km 到A 处,又往正南方向走4km 到B 处,又折向正东方向走6km 到C 处,再折向正北方向走8km 到D 处,最后又往正东方向走4km 才到探险地P ;取点O 为原点,取点O 的正东方向为x 轴的正方向,取点O 的正北方向为y 轴的正方向,以2km 为一个单位长度建立平面直角坐标系。
青岛版2020七年级数学下册期末综合复习基础训练题2(附答案)

青岛版2020七年级数学下册期末综合复习基础训练题2(附答案)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )A .5元B .10元C .20元D .10元或20元2.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°3.下列式子中,计算结果为2215x x +-的是( )A .(5)(3)x x +-B .(5)(3)x x -+C .(5)(3)x x ++D .(5)(3)x x -- 4.(2011•恩施州)下列运算正确的是( )A .a 6÷a 2=a 3B .a 5﹣a 3=a 2C .(3a 3)2=6a 9D .2(a 3b )2﹣3(a 3b )2=﹣a 6b 25.(x +3ab )(x -3ab )等于( )A .x 2 -9a 2b 2B .x 2 -9ab 2C .x 2 -ab 2D .x 2 -a 2b 26.下列说法正确的个数( )①线段有两个端点,直线有一个端点;②点A 到点B 的距离就是线段AB ;③两点之间线段最短;④ 若AB=BC ,则点B 为线段AC 的中点;⑤同角(或等角)的余角相等.A .4个B .3个C .2个D .1个7.平面直角坐标系内AB ∥y 轴,AB=5,点A 的坐标为(﹣5,3),则点B 的坐标为( )A .(﹣5,8)B .(0,3)C .(﹣5,8)或(﹣5,﹣2)D .(0,3)或(﹣10,3)8.如图,将一张正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为23m +,则原正方形边长是 ( )A .6m +B .3m +C .23m +D .26m +9.若12512'∠=o ,225.12∠=o ,325.2∠=o ,则下列结论正确的是( )A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1=∠2=∠3 10.下列各方程组中,不是二元一次方程组的是()A.2583x yx y-=⎧⎨+=⎩B.113x zx y+=⎧⎪⎨=⎪⎩C.3225x yx y-=⎧⎨+=⎩D.1122311332x yx y⎧+=⎪⎪⎨⎪-=⎪⎩11.-0.000031用科学记数法表示为:__________________________12.钟面上8 点30 分时,时针与分针的夹角的度数是________ .13.已知一点到圆上的最短距离是2,最长距离是4,则圆的半径为____.14.已知4x=2x+3,则x=_________.32÷8n-1=2n,则n=_________.15.(x+2y-3)(x-2y-3)=_____-_____.16.有长为20m的铁栏杆,利用它和一面墙围成一个矩形花圃ABCD(如图),若花圃的面积为48m2,求AB的长.若设AB的长为xm,则可列方程为______.17.若2330x y++=,则927x y⋅=________.18.把多项式4m2﹣16n2分解因式的结果是_____.19.已知方程132x y-=,用含x的代数式表示y=_________________________。
七年级数学(下)期末复习2

七年级数学复习作业一、你一定能选对!1、()32x 的计算结果为( )A .3x 2B .x 6C .x 5D .x 82、生物具有遗传多样性,遗传信息大多储存在DNA 分子上。
一个DNA 分子的直径约为0.0000002cm.,这个数量用科学记数法可表示为( ) A .0.2×10—6cm B . 2×10—6cm C . 0.2×10—7cm D . 2×10—7cm3、一个多边形的边数每增加一条,这个多边形的 ( )A .内角和增加360°B .外角和增加360°C .对角线增加一条D .内角和增加180°4、若,则的值为 ( )A .B .5C .D .25、如图,AB ∥CD ,下列关于∠B 、∠D 、∠E 关系中, 正确的是 ( ) A .∠B+∠D+∠E=90° B .∠B+∠D+∠E=180° C .∠B=∠E -∠DD .∠B-∠D=∠E6、一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C 点,那么∠ABC 等于 ( ) A .75°B .105°C .45°D .90°7、适合81272=-++a a 的整数a 的值的个数有 ( ) A .5 B .4 C .3 D .28、光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之 间来回反射,光线的反射角等于入射角.若已知∠1=55°, ∠3=75°,则∠2= ( ) A .50° B .55° C .66° D .65°9、下列调查方式合适的是 ( )))(3(152n x x mx x ++=-+m 5-2-(18)OCBA(19)EDCBAA 、为了解炮弹的杀伤力,采用普查的方式B 、为了解全国中学生的睡眠情况,采用普查的方式C 、为了解人们保护水资源的意识,采用抽样调查的方式D 、对载人航天器“神舟五号”零件的检查,采用抽样调查的方式 10、下列可以直接用平方差公式计算的是 ( ) A 、(1)(1)x x -+- B 、22a b - C 、()()a b a b ---+ D 、(1)(1)x x --+ 二、你能填得既快又准吗!11、若a m =2,a n =3,则a m+2n =________. 12、如果8162=÷y x ,那么=-y x 82 . 13、若H 是△ABC 三条高AD 、BE 、CF 的交点,则△HBC 中BC 边上的高是 ,△BHA 中BH 边上的高是 。
期末综合素质 评价练习(含答案)2024-2025学年苏科版七年级数学下册

期末综合素质评价一、选择题(每小题3分,共24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列运算正确的是()A.(−ab)2=−a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b23.下列命题中,是真命题的是()A.同位角相等B.0没有相反数C.若a2=b2,则a=b D.等角的余角相等4.如图,点E在AD的延长线上,下列条件能判断AB//CD的是()(第4题)A.∠3=∠4B.∠C+∠ADC=180∘C.∠C=∠CDE D.∠1=∠25.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45∘”时,首先应假设这个直角三角形中()A.两个锐角都大于45∘B.两个锐角都小于45∘C.两个锐角都不大于45∘D.两个锐角都等于45∘6.[2024扬州江都区期中]若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.−3B.3C.0D.17.[2024南通海门区二模]已知x,y满足2x+y=3,且x≥−2,y>2.若k=x −y,则k的取值范围是()(第8题)C.70∘,共30分)浸没式光刻机的成功问世,标志着我国在光刻机领域(第12题)已知a+b=7,ab=6若关于x,y的二元一次方程组(第15题)的逆命题是________________________________________________.(第18题))6分)计算:2|;(1)画出△A1B1C1,使△A1B1C1与△ABC关于直线l成轴对称;(2)画出△ABC向下平移5个单位长度得到的△A2B2C2;(3)画出△A3B3C3,使△A3B3C3与△ABC关于点O成中心对称.23.(8分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.某公司现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙,则一次可运送10t;若用1辆A型车和2辆B型车载满脐橙,则一次可运送11t.现有脐橙31t,计划同时租用A型车a辆,B型车b辆,一次运送完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1) 1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该公司设计租车方案.(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费用.24.[2024苏州吴江区模拟](8分)只用无刻度的直尺按要求完成下列作图,保留作图痕迹,不写作法.(1)如图①,过正方形的顶点A作一条直线平分这个正方形的面积;(2)如图②,过正方形边上一点P(非顶点)作一条直线平分这个正方形的面积;(3)如图③,五个边长相等的正方形组成了一个“L型”图形,点Q为其中四个小正方形的公共顶点,过点Q作一条直线平分这个“L型”图形的面积.25.(12分)如图①,正方形甲、乙、丙的边长分别为a,b,c,且a+b<c.(1)如图②,将正方形甲、乙拼接在一起,沿着外边框可以画出一个大正方形,用两种不同的方法表示这个大正方形的面积为______________或______________________,从而可以得到一个乘法公式:__________________________________;(2)如图③,将正方形甲、乙、丙拼接在一起,沿着外边框可以画出一个大正方形,类比(1)的思路进行思考,直接写出所得到的等式;(3)用正方形甲、乙、丙构造恰当的图形,说明(c−b−a)2<c2−b2−a2. 26.[2024南京鼓楼区期末](12分)在几何软件中,将△ABC和△DEF按图①所示的方式摆放,其中∠ACB=∠DFE=90∘,∠D=45∘,∠ABC=30∘,点D,A,F,B在同一条直线上.(1)如图①,将△DEF绕点F顺时针旋转,当BC第一次与DE平行时,∠DFA =________;(2)将图①中的△DEF绕点E逆时针旋转一定的角度使点D落在边BC上,过E 作EG//BC,DM平分∠FDB,EN平分∠GED交直线DM于点N.在图②中按以上叙述补全图形(无需尺规作图),并直接写出∠END的度数.(3)如图③,将图①中的△ABC绕点B逆时针旋转.①当BC//DE时,连接AF,BF,则∠DFA−∠FAB=________________________;②若∠DEF与∠ABC的平分线所在直线相交于点Q,∠EQB=27∘,直接写出∠D BA的度数.【参考答案】期末综合素质评价一、选择题(每小题3分,共24分)1.C 2.C 3.D 4.D 5.A 6.A 7.C 8.C 二、填空题(每小题3分,共30分)9.2.8×10−810.611.212.813.3714.−715.80∘16.如果一个数能被4整除,那么这个数是偶数17.−1或218.70[解析]点拨:设∠EDB=x∘,∵△ABC沿DE翻折,点B落在点B′处,∴∠B′DE=∠EDB=x∘ .∵∠B′DC′=40∘,∴∠EDC′=x∘−40∘ .∴∠CDC′=180∘−∠BDE−∠EDC′=220∘−2x∘ .∵△ABC沿DF翻折,点C落在点C′处,∴∠CDF=1∠CDC′=110∘−x∘ .2∵DE//AC,∴∠C=∠EDB=x∘ .∴在△DFC中,∠DFC=180∘−∠C−∠CDF=70∘ .∵DF//AB,∴∠A=∠DFC=70∘ .三、解答题(共66分)19.(1)解:原式=1+(−8)+2=−5.(2)原式=a6+4a6−a6=4a6.20.(1)解:{2x+y=7①,2x−3y=3②,①−②,得4y=4,∴y=1,即为所求.即为所求.型车载满脐橙一次可运送x=3,=4.型车载满脐橙一次可运送3t,1辆B型车载满脐橙一次可运送方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).因为940<980<1020,所以费用最少的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费用为940元.24.(1)解:如图①中,直线AC即为所求.(2)如图②中,直线OP即为所求.(3)如图③中,直线QT即为所求.25.(1)(a+b)2;a2+b2+2ab;(a+b)2=a2+b2+2ab(2)解:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)如图,正方形丁的面积为(c−b−a)2,阴影部分的面积为c2−b2−a2,由图可知(c−b−a)2<c2−b2−a2.26.(1)15∘[解析]点拨:将△DEF绕点F顺时针旋转至第一次BC//DE,延长DF交BC于点M,如图①.∵BC//DE,∠D=45∘,∴∠BMF=180∘−45∘=135∘ .∵∠ABC=30∘,∴∠BFM=180∘−135∘−30∘=15∘ .∴∠DFA=∠BFM=15∘ .(2)解:补全图形如图②.∠END=22.5∘ .[解析]点拨:如图②,过点N作NQ//BC,设∠END=α,∠DNQ=β,则∠ENQ =α+β .∵EG//BC,∴EG//BC//NQ.∴∠GEN=∠ENQ=α+β,∠MDB=∠DNQ=β .∵EN为∠GED的平分线,DM为∠FDB的平分线,∴∠GED=2∠GEN=2(α+β),∠FDB=2∠MDB=2β .∵∠EDF=45∘,∴∠EDB=∠EDF+∠FDB=45∘+2β .∵EG//BC,∴∠GED=∠EDB.∴2(α+β)=45∘+2β .∴α=22.5∘ .即∠END=22.5∘ .逆时针旋转至第二次BC//DE时,如图④,由题意可得,=135∘ .ABC绕点B逆时针旋转会有两种情况,如图=45∘,的平分线上,。
湘教版七年级下数学期末复习试卷(二)整式的乘法

期末复习(二) 整式的乘法考点一幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【分析】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等得到.【解答】由已知得a2m+n+1=a6,于是有2m+n+1=6,即2m+n=5,又因为m+2n=4,所以m=2,n=1. 【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.变式练习:1.下列计算正确的是( )A.a+2a=3a2B.(a2b)3=a6b3C.(a m)2=a m+2D.a3·a2=a62.若2x=3,4y=2,则2x+2y的值为__________.考点二多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【分析】先按多项式乘法法则展开,再合并同类项.【解答】原式=2(x2+2x-x-2)-3(6x2-9x-4x+6)=-16x2+41x-22.【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.如果(x+m)与(x+1)的积中不含x项,那么m是( )A.-2B.-1C.1D.24.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a、b为整数,则a+b的值为( )A.-4B.-2C.0D.4考点三乘法公式适用的多项式特点【例3】二次三项式x2-kx+9是一个完全平方式,则k的值是__________.【分析】先把x2-kx+9变形为x2-kx+32或x2-kx+(-3)2,根据两平方项确定中间项为±6x,即可确定k的值.【解答】±6【方法归纳】两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,即“首平方,尾平方,积的2倍在中央”.5.下列各式:①(a+b)(b+a);②(a-b)(a+b);③(-a+b)(a+b);④(-a+b)(-a-b),其中能用乘法公式计算的有( )A.1个B.2个C.3个D.4个考点四利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【分析】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.6.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a27.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是__________.8.计算:(1)(a+b)2-(a-b)2-4ab; (2)[(x+2)(x-2)]2; (3)(a+3)(a-3)(a2-9).考点五乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【分析】根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.9.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2D.a2-b2复习测试:一、选择题(每小题3分,共24分)1.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x3=x5B.(x-2)2=x2-4C.2x2·x3=2x5D.(x3)4=x73.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1B.a2-2a+1C.a2-2a-1D.a2+14.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6 C.p=1,q=-6 D.p=5,q=-65.若m的值使得x2+12x+m=(x+6)2-32成立,则m的值为( )A.2B.3C.4D.56.下列计算:①(a3)3=a6;②a2·a3=a6;③2m·3n=6m+n;④-a2·(-a)3=a5;⑤(a-b)3·(b-a)2=(a-b)5.其中错误的个数有( )A.1个B.2个C.3个D.4个7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8aD.6a3-8a28.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…猜想(1-x)(1+x+x2+…+x n)的结果是( )A.1-x n+1B.1+x n+1C.1-x nD.1+x n二、填空题(每小题4分,共16分)9.计算:2m2·m8=__________.10.已知有理数a,b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________.11.卫星绕地球运动的速度是7.9×103米/秒,那么卫星绕地球运行3×106秒走过的路程是__________米.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为__________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(10分)先化简,再求值:(1)(2019·河池)(x+2)2-(x+1)(x-1),其中x=1;(2)(2a+b)(3a-2b)-(a-2b)2,其中a=-2,b=1.15.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2; (2)a2-ab+b2.16.(10分)四个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,这个记号就叫做2阶行列式. 例如:=1×4-2×3=-2 . 若=10,求x的值.17.(10分)如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为__________;(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是__________; (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算x-y的值.参考答案变式练习1.B2.63.B4.D5.D6.D7.48.(1)原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)原式=(x2-4)2=x4-8x2+16.(3)原式=(a2-9)(a2-9)=a4-18a2+81.9.C复习测试1.D2.C3.A4.C5.C6.C7.D8.A9.2m10 10.1 000 11.2.37×101012.±4x或4x413.(1)原式=-8a6b3-8a6b3=-16a6b3.(2)原式=a2+4ab-(a2-4b2)-4ab=a2+4ab-a2+4b2-4ab=4b2.(3)原式=[2x-(3y-1)][2x+(3y-1)]=4x2-(3y-1)2=4x2-(9y2-6y+1)=4x2-9y2+6y-1.14.(1)原式=x2+4x+4-(x2-1)=x2+4x+4-x2+1=4x+5.当x=1时,原式=4×1+5=9.(2)原式=6a2-ab-2b2-a2+4ab-4b2=5a2+3ab-6b2.当a=-2,b=1时,原式=5×(-2)2+3×(-2)×1-6×12=8.15.(1)a2+b2=(a+b)2-2ab=1+12=13.(2)a2-ab+b2=(a+b)2-3ab=12-3×(-6)=1+18=19.16.(x+1)2-(x-2)(x+2)=10,解得x=2.5.17.(1)S=(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=5a2+3ab(平方米).阴影(2)当a=5,b=2时,5a2+3ab=5×25+3×5×2=125+30=155(平方米).18.(1)m2-2mn+n2或(m-n)2.(2)(m+n)2=(m-n)2+4mn.(3)(x-y)2=(x+y)2-4xy=36-11=25,所以x-y的值是±5.。
福建省厦门市集美区2023-2024学年下学期七年级数学期末综合练习(附答案)
福建省厦门市集美区2023-2024学年下学期七年级数学期末综合练习注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列实数中最大的是A.B.0C.1D.-232.点P (3,m )在平面直角坐标系中的位置如图1所示,则m 的值可能是A.3B.2C.0D.-33.下列调查中,适宜用全面调查的是A.调查某款LED 灯的使用寿命B.调查某批汽车的抗撞击能力C.了解某班学生的身高情况D.了解央视春节联欢晚会的收视率4.如图2,直线AB ,CD 相交于点O ,OA 平分∠COE ,若∠BOD =30°,则图中大小为60°的角是A.∠COEB.∠EODC.∠COBD.∠BOE 5.若a >b ,则下列变形错误的是A.a -3>b -3B.>C.-4a >-4bD.3a +1>3b +1a 4b46.如图3,点A ,E 在直线l 1上,点B ,C ,D 在直线l 2上,AB ⊥l 2于点B ,AC ⊥l 1于点A ,BE ⊥l 1于点E ,下列线段的长度是点A 到直线l 2的距离的是A.ADB.ABC.ACD.AE7.关于x ,y 的二元一次方程组 ,则下列代数式的值为1的是{3x +2y =1+a,x +2y =3−a A.x +yB.x -yC.2x +yD.2x -y8.小陈打算用一张长为5dm ,宽为dm 的长方形纸片裁出边长为2dm 的正方形纸片,她能5裁出符合要求的正方形纸片的张数是A.1B.2C.3D.49.某互联网公司为了解员工薪资情况,调查了2021-2023年期间公司的总支出、员工数及员工薪资占公司总支出的比例,调查结果如表一,并制作了这三年公司的员工薪资占比折线统计图(如图4),根据统计图表,下列说法正确的是A.该公司2021-2023年期间员工薪资总额逐年减少B.该公司2021-2023年期间员工薪资总额逐年增加C.该公司2021-2023年期间员工人均薪资逐年减少D.该公司2021-2023年期间员工人均薪资逐年增加10.在平面直角坐标系xOy 中,互不重合的四个点A (m ,n ),B (p +n ,2),C (p ,0),D (m +n ,n +2),直线AD 与x 轴交于E 点,直线BD 与x 轴交于F 点,折线段E →D →F 的长度记为l 1,E →A →B →F 的长度记为l 2,E →A →C →B →F 的长度记为l 3,对于l 1,l 2,l 3的大小关系,下列判断正确的是A.l 1<l 2=l3B.l 2<l 1<l3C.l 2<l 1=l3D.l 1=l 3<l 2二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)2+=;(2)=.223812.已知是关于x ,y 的二元一次方程ax +y =5的一个解,则a 的值为.{x =2,y =313.小高同学计划去文具店购买3支笔和x 本笔记本,笔的单价为2元,笔记本单价为8元,若购买的总金额少于30元,依题意可列不等式:.14.某工厂生产一批某款自行车,图5是这款自行车放在水平地面l 的示意图,AB ∥l ,CD ∥l.当 AM ∥BC 时,自行车是合格产品,若该款自行车质量检验合格,测得∠BCD =60°,∠BAC =50°,则∠MAC =.年份2021年2022年2023年总支出(单位:万)6000800010000员工数120100100表一15.菲尔兹奖是数学界最高荣誉,仅授予做出卓越贡献且不超过40周岁的青年数学家,下面数据是截至2022年菲尔兹奖得主获奖时的年龄,使用频数分布直方图对上述数据进行描述,如果取组距为5,则组数为.16.小庄和小范在玩猜扑克牌点数的游戏,小庄选了4张除数字不同之外,其他完全相同的扑克牌,每次让小范从中随机抽取2张,并将它们上面的数相加,然后放回.重复这样做,每次所得的和都是8,10,m ,14,16(10<m <14)的其中一个,则小庄选的这四张牌上的数字分别是_____________,m 的值为____________. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程组:{2x +y =16,x +y =10.18.(本题满分12分)(1)解不等式:2(x +1)≤3,并在图6的数轴上表示解集;(2)解不等式组:{2x +3≤x +11,2x +53+x >5.19.(本题满分8分)在平面直角坐标系xOy 中,已知三角形ABC 三个顶点的坐标分别为A (-1,2),B (3,2),C (2,-1).(1)在图7的平面直角坐标系中画出三角形ABC ;(2)若P (m -1,2)在AB 上,且CP ∥y 轴,求m 的值.2839353339293335313137323836313932383734293438323536332932353637393838383739383433403636374031403837353735403937304034363639404020.(本题满分8分)某快递公司为了提高工作效率,计划购买A,B两种型号的机器人来搬运货物.已知2台A型机器人和1台B型机器人每小时共搬运货物2750千克,1台A型机器人和2台B型机器人每小时共搬运货物2500千克.求每台A型机器人和每台B型机器人每小时分别搬运货物多少千克?21.(本题满分8分)如图8,在四边形ABCD中,AB∥CD,E是BC延长线上一点,AE与CD交于点F.(1)若∠DFE=100°,求∠BAE的度数;(2)若∠ACE=∠D+∠BAC,且AE平分∠CAD,判断∠ACB与∠E的数量关系,并说明理由.22.(本题满分9分)近年,随着电子产品的普及等因素,青少年视力健康状况产生明显下滑,受到社会广泛关注.教育部门为了解某校七八年级学生的视力健康状况,在某校随机抽取部分七八年级学生进行视力调查,四种视力健康状况的百分比如图9所示,并整理了七八年级学生视力健康状况表二的统计表(如表二).视力健康状况七年级八年级视力正常20a轻度视力2416中度视力b9高度视力55(1)直接写出a,b,c的值;(2)若该校有600名七年级学生,请估计七年级学生中未能达到“视力正常”的人数;(3)周同学说:“样本中七年级近视的人数比八年级更多,因此七年级整体视力健康状况比八年级差”.请结合以上数据,判断该观点是否正确,并说明理由.23.(本题满分9分)某家具厂接到一笔2160套组合餐桌订单,一套该款组合餐桌有1张餐桌和6把餐椅,需要在15天内完成该笔订单的生产.目前,该家具厂的组合餐桌生产车间有100名工人,每个工人每天能制作6张餐桌或9把餐椅,该家具厂计划让一部分工人专门制作餐桌,剩下的工人专门制作餐椅.(1)若每天有20名工人制作餐桌,则每天生产餐桌和餐椅的数量能否恰好配套?请说明理由;(2)若使用(1)中的方案安排工人制作餐桌和餐椅,能否如期完成该笔订单?若能请说明理由.若不能,家具厂还可从其他车间调用工人参与该款组合餐桌的生产,新调入的工人由于操作不熟练,只会制作餐椅,并且每人每天只能制作6把,则至少需要调用多少人?在平面直角坐标系xOy 中,正方形ABCD 的顶点A (m ,3),B (4-3m ,3),点B 在点A 的右侧,点C ,点D 在AB 的下方.(1)直接写出AB 的长度(用含m 的式子表示);(2)若三角形AOB 的面积为3.①求m 的值;②在平面直角坐标系中,二元一次方程的图象都是一条直线,直线上每个点的坐标(x ,y )都是这个方程的一个解.记二元一次方程x -y +n =0(0<n <2)的图象为直线l ,直线l 与正方形的边AB ,AD 分别交于点E ,点F ,如图10所示,且三角形AEF的面积为(4-2n )2.现将正方形进行平移,使得直线l 与正方形12的边CD ,BC 分别交于点P ,点Q ,在平移过程中,是否存在三角形CPQ 的面积也为(4-2n )2的情形?若存在,请探究如何平移;若不存在,请说明理由.12如图,在四边形ABCD中,AE⊥BC于点E.(1)如图11,延长AE交DC的延长线于点F,延长AB至点G,连接FG,使得∠G=∠ABC,求∠AFG的度数;(2)如图12,连接AC,BD,延长BD至点H,使得AD平分∠CAH.将三角形ABD 沿射线DB方向平移,使点A的对应点A´在CB的延长线上,点B,点D的对应点分别为点B´,点D´,作CQ⊥AA´于点Q.①若BH=AA´,请在图中找出一条线段的长度与DH相等,并说明理由;②当∠D´A´B=∠DAH,∠A´BB´+∠DAB=130°,2∠BAC=∠CAH +80°时,判断AE和CQ的大小关系,并说明理由.数学答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)3;(2)212.1.13.6+8x <30.214. 70°. 15. 3.16.3,5,7,9;12.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程组:{2x +y =16,①x +y =10.②解法一(代入消元):解:由②得y =10-x .③……………………………3分把③代入①,得2x +(10-x) =16,x =16-10,x =6.……………………………5分将x =6代入②,得y =4.……………………………7分所以这个方程组的解为……………………………8分{x =6,y =4.解法二(加减消元):解:①-②,得题号12345678910选项ADCACBABDCx =6.……………………………5分将x =6代入②,得y =4.……………………………7分所以这个方程组的解为……………………………8分{x =6,y =4.18.(本题满分12分)(1)(本小题满分6分)解:2x +2≤3 ……………………1分2x ≤3-2 ………………2分2x ≤1……………………3分x ≤ (4)分12这个不等式的解集在数轴上表示如下:12……………………6分(2)(本小题满分6分)解:解不等式组:{2x +3≤x +11,①2x +53+x >5.②由①得∶2x -x ≤11-3……………………1分x ≤8……………………2分由②得∶2x +5+3x >15……………………3分5x >15-5……………………4分5x >10 x >2……………………5分所以不等式组的解集为∶2<x ≤8 ……………………6分19.(本题满分8分)解:(1) 所以如图所示,即为所求.…………4分x yABC–1–2123–1–2123O(2) 因为若P (m -1,2)在AB 上,且CP ∥y 轴,又因为C (2,-1),所以 m -1=2, ………………7分m =3.…………8分20.(本题满分8分)解:设每台A 型机器人每小时搬运x 千克,每台B 型机器人每小时搬运y 千克…………1分………………5分{2x +y =2750x +2y =2500解得………………7分{x =1000,y =750.答:A 型机器人每小时搬运1000千克,B 型机器人每小时搬运750千克.………………8分21.(本题满分8分)(1)(本小题满分4分)∵∠DFE =100°,∴∠AFC =∠DFE =100°. …………2分又∵AB ∥CD ,∴∠BAE +∠AFC =180°…………3分∴∠BAE =80° …………4分(2)(本小题满分4分)∵AB ∥CD ,∴∠BAC =∠ACD .……………………5分∴∠ACE =∠ACD +∠DCE,∵∠ACE =∠BAC +∠D,∴∠DCE =∠D∴AD ∥BE ,……………………6分∴∠E =∠DAE ,∠BCA =∠CAD .∵AE 平分∠CAD ,∴∠CAD =2∠DAE ,∴∠CAD =2∠E ,……………………7分∴∠BCA =2∠E .……………………8分22.(本题满分9分)解:(1)(本小题满分3分)a =10,b =11,c =10.………………3分根据统计图表可知轻度视力的学生的人数为24+16=40,占样本容量的40%,所以总人数40÷40%=100.视力正常的人数所占的百分比30%,100×30%=30,30-20=10,所以a =10.中度视力的人数所占的百分比20%,100×20%=20,20-9=11,所以b =11.高度近视的人数所占的百分比为×100%=10%,5+5100所以c =10.(2)(本小题满分3分)七年级未达到视力正常的人数为24+11+5=40, ………………4分近视的人数的占比为40÷60=,………………5分23由样本估计总体得600×=400.23答:估计七年级学生未能达到“视力正常”的人数有400人.………………6分(3)(本小题满分3分)不正确,原因如下.抽样调查七年级中,样本容量为60,八年级样本容量为40,因此不能直接比较近视人数.根据样本估计总体:估计七年级近视的近视率为= (7)分24+11+56023估计八年级近视的近视率为=.………………8分16+9+54034因为<,因此八年级整体视力情况较差,故他的说法不正确 (9)分233423.(本题满分9分)(1)(本小题满分4分)因为20×6=120(张),……………………………1分(100-20)×90=720(把), ……………………………3分所以120×6=720,答:每天生产餐桌和餐椅的数量能恰好配套. ……………………………4分(2)(本小题满分5分)由(1)知,一天能够生产120套组合餐桌,所以120×15=1800(套),因为1800<2160,所以不能如期完成该笔订单.. ……………………………5分解法一:设安排(20+k)人制作餐桌,(80-k)人制作餐椅,调入a个工人制作餐椅.若要使得生产速度更快,则生产的餐桌和餐椅需要配套,则6×6(20+k)=9(80-k)+6a,化简得a=7.5k.……………7分若要在15天内完成该笔订单,则15×6(20+k)≥2160,解得k≥4,因为k是正整数,要使得调入的人最少,所以取k=4.所以a≥30,至少需要调用30人……………9分解法二:设:x人制作餐桌,(100-x)人制作餐椅,调入a个工人制作餐椅.若要在15天内完成该笔订单,则餐桌的生产量满足15·6x≥2160,解得x≥24,……………7分要使得调入的人最少,所以取x=24.若要在15天内完成该笔订单,则餐椅的生产量满足15×9(100-24)+15×6a≥2160×6解得a≥30.至少需要调用30人……………9分解法三:设:x 人制作餐椅,(100-x )人制作餐桌,调入a 个工人制作餐椅.若要使得生产速度更快,则生产的餐桌和餐椅需要配套,则6×6(100-x )=9x +6a ,化简得x =80-.……………7分2a15若要在15天内完成该笔订单,则餐椅的生产量满足15×9(9x +6a )≥2160×6将x =80-代入上述不等式,解得a ≥30.2a15当a 取30时,x =80-=76,为整数,满足题意.2a15至少需要调用30人……………9分24.(本题满分12分)解:(1)(本小题满分4分)AB =4-4m .……………………4分(2)(本小题满分8分)①因为S 三角形AOB =y A ·AB =·3·(4-4m )=3 …………6分1212所以4-4m =2,所以m =. ……………………8分12②因为正方形ABCD 中,AB ∥x 轴,AD ∥y 轴,且E 在AB 上,F 在AD 上,所以y A =y E =3,x A =x F =m .因为E 、F 在二元一次方程x -y +n =0的图象上,所以将y E =3代入方程x -y +n =0,得:x -3+n=0,将x F =代入方程x -y +n =0,得:-y +n=0,1212所以x E =3-n ,即E (3-n ,3),所以y F =+n ,即F (,+n ),……………………9分121212所以AE =-n ,AF =-n .5252因为S三角形AEF =AF ·AE =(4-2n)2,1212所以(-n)2=(4-2n)2,125212因为0<n <2,所以-n =4-2n ,52所以n =,32所以C (,1). ……………………10分52设点C 平移后的坐标C’(+h ,1+k ),52所以y P =1+k ,x Q =+h .52因为P ,Q 两点都在二元一次方程x -y +=0的图象上,32所以x P =k -,y Q =4+h , (11)分12所以C’P =3+h -k ,C’Q =3+h -k .因为S 三角形C’PQ =(3+h -k)2=(4-3)2,1212所以3+h -k =1所以k -h =2上下平移距离与左右平移距离之差为定值2.……………………12分25.(本题满分12分)解:(1)(本小题满分4分)∵∠G =∠ABC ,∴CB ∥FG .……………………2分∵AE ⊥BC,∴∠AEB =90°.……………………3分∴∠AFG =∠AEB =90°.…………4分(2)①(本小题满分4分)DH =BD ´,理由如下:∵三角形ABD 沿DB 平移得三角形A ´B ´D ´,x y A D BC Q P O∵BH =AA ´,∴BH =DD ´. …………………7分∵BH =HD +DB ,DD ´=BD ´+DB ,∴HD =BD ´. ……………………8分(2)②(本小题满分4分)AE <CQ ,理由如下:∵AD 平分∠CAH ,∴∠HAD =∠DAC =∠CAH .12设∠HAD =∠DAC =x ,∴∠BA ´D ´=∠HAD =x .∵2∠BAC =∠CAH +80°,∴2∠BAC =2x +80°,∴∠BAC =x +40°. ……………………9分∵∠A ´BB ´+∠DAB =130°,∴∠A ´BB ´+x +(x +40°)=130°,∴∠A ´BB ´=90°-2x .∵三角形ABD 沿DB 平移得三角形A ´B ´D ´,∴∠ADB =∠A ´D ´B ´,D D ´∥AA ´,∴AD ∥A ´D ´,∴∠BA ´A =∠A ´BB ´=90°-2x ,∠DAA ´+∠AA ´D =180°,……………………10分∴∠DAC +∠CAB +∠BAA ´+∠AA ´B +∠BA ´D ´=180° ,∴x +(x +40°)+∠BAA ´+(90°-2x)+x =180°,∴∠BAA ´=50°-x ,∴∠CAQ =∠BAA ´+∠CAB =(x +40°)+(50°-x)=90°,∴CA ⊥AA ´,∴点A 与点Q 重合.……………………11分∵AE ⊥BC ,根据连接直线外一点与直线上各点的所有线段中,垂线段最短。
浙教版七年级数学下期末复习练习二
1.在如图的方格纸中,每个小方格都是边长为1的正方形, 点A、B是方格纸中的两个格点(即正方形的顶点),在这个 5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位, 则满足条件的格点C的个数是( )
A. 5 B. 4 C. 3 D. 2
C
2.已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立, 则A= ,B= .
Байду номын сангаас
有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新
的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B
的面积之和为 。
3
分析:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽 为ycm,建立关于h,x,y的方程组求解. 解答:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽 为ycm, 由第一个图形可知桌子的高度为:h-y+x=80, 由第二个图形可知桌子的高度为:h-x+y=70, 两个方程相加得:(h-y+x)+(h-x+y)=150, 解得:h=75cm. 故选C. 点评:本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能 力.
新北师大版七年级数学下册期末数学复习试卷2
七年级数学(下)期末数学复习试卷(2)一、填空题(每题3分,共30分)1.计算 11()2--= 。
2.若212a b x y xy --与3是同类项,则a+b= 。
3.如图1,已知直线a//b,若∠1=70°,则∠2= 。
4.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图2所示, 则该汽车的号码是 。
5.2000年我国第五次人口普查总数是1295330000人,用科学记数法精确到百万位是 。
的发6.等腰三角形顶角的度数为x,底角的度数为y ,则y 与x 的关系式可写成 y= 。
7.如图3,要使△ABC 和△ABD 全等,请补充条件 (填上一种即可)。
8.某商店在一次有销售活动中共发行奖券10000张。
设一等奖1名,二等奖2名,三等奖10名,小明购买了10张奖券,那么他中奖的概率是 。
9.若1(2)1a a +-=,则a= 。
10.如图4,直线m 过点-1,且垂直于数轴,则点1关于直线m 的对称点是-3,点2关于直线m 的对称点是-4,那么数轴上的点表示的数a 关于直线m 的对称点是 。
(用含a 的代数式表示。
) 二、 选择题(每题2分,共20分)11.苹果熟了,从树上落下,下列几副图中,可以大致反映苹果下落过程的是( )12.下列计算错误的是( )A.4x 2·5x 2=20x 4B.5y 3·3y 4=15y 12C.(ab 2)3=a 3b 6D.(-2a 2)2=4a 4 13.在下列20个汉字中,属于轴对称的汉字共有( )A.12B.13C.14D.1514.在1、2、3、4、5这五个数中,任取三个数作为三角形的边,能围成几种不同的三角形( )A .1种 B.2种 C.3种 D.4种 15.下列能用平方差公式计算的是( )A.))((b a b a -+-B.)2)(2(x x ++C.)31)(31(x y y x -+ D.)1)(2(+-x x16.在等腰△ABC 中,AB=AC=9,BC=6, DE 是AC 的垂直平分线,交AB 、AC 于点D 、E ,则△BDC 的周长是( )A.6 B.9 C.12 D.15 17.如图6表示某地区某年从1月1日到12月26日的日照时间,下列结论错误的是( ) A.这年12月26日的日照时间最短 B.这年第60天的日照时间为11小时 C.大约前180天日照时间逐渐增加 D.这条曲线是轴对称图形18..如图,△ABC 的角平分线、中线、高的画法错误的是( )A:0 B:1 C:2 D:319、已知如图,AC 和BD 相交于O ,且被点O吗?20、如图,已知AB=AC ,AD=AE ,BE 与CD 相交于O ,ΔABE 与ΔACD 全等吗?说明你的理由。
人教版七年级数学下册期末综合素质评价含答案 (2)
人教版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【教材P 140练习T 3变式】下列调查中,适宜采用全面调查方式的是( )A .调查春节晚会的收视情况B .调查一批新型节能灯泡的使用寿命C .调查我校某班学生喜欢上数学课的情况D .调查某类烟花爆竹燃放的安全情况2.【教材P 61复习题T 6变式】在实数π,-227,9,38中,是无理数的是( )A .πB .9C .-227D .383.【2022·广东】如图,直线a ∥b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°4.已知a ,b 两个实数在数轴上的对应点的位置如图所示,则下列各式一定成立的是( )A .a -1>b -1B .3a >3bC .-a >-bD .a +b >a -b5.【2022·梧州】不等式组⎩⎨⎧x >-1,x <2的解集在数轴上表示为( )6.【教材P 86复习题T 9变式】如图,将四边形ABCD 先向左平移3个单位长度,再向下平移3个单位长度,那么点D 的对应点D ′的坐标是( )A .(0,1)B .(6,1)C .(6,-1)D .(0,-1)7.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用135米这种布料生产这批盲盒(不考虑面料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A.⎩⎨⎧x +y =135x =3yB.⎩⎨⎧x +y =135x =2×3yC.⎩⎨⎧x +y =1353x =yD.⎩⎨⎧x +y =1352×x =3y 8.若关于x 的不等式组⎩⎪⎨⎪⎧2x <3(x -3)+1,3x +24>x +a 有四个整数解,则a 的取值范围是( ) A .-114<a ≤-52 B .-114≤a <-52 C .-114≤a ≤-52 D .-114<a <-529.某校现有学生1 800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试.现抽取部分测试成绩(得分取整数)作为样本,进行整理后分成五组,并绘制成频数分布直方图(如图).根据图中提供的信息,下列判断不正确的是( )A .样本容量是48B .估计本次测试全校在90分以上的学生约有225人C .样本中70.5~80.5分这一分数段内的人数最多D .样本中50.5~70.5分这一分数段内的人数所占百分比是25%10.已知方程组⎩⎨⎧x +y =1-a ,x -y =3a +5的解x 为正数,y 为非负数,给出下列结论:①-1<a ≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.下列命题:①不相交的直线是平行线;②同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④对顶角相等.其中是真命题的有________(填序号).13.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P 的坐标是________.14.某冷饮店一天售出各种口味雪糕量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味的雪糕________支.15.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是________.16.【教材P31习题T6变式】如图是一块长方形场地,AB=18米,AD=11米,A,B两个入口处的小路的宽都为1米,两小路汇合处的路宽为2米,其余部分种植草坪,则草坪面积为________平方米.17.【2022·贺州】若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.18.杭州市将举办亚运会,为加强学校体育工作,某学校决定购买一批篮球和足球共100个.已知篮球和足球的单价分别为120元和90元,根据需求,篮球购买的数量不少于40个.学校可用于购买这批篮球和足球的资金最多为10 260元,则有________种购买方案.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.【教材P57习题T5变式】计算下列各题:(1)35+23-|35-23|;(2)(-2)2-327+|3-2|+ 3.20.解方程组或不等式组:(1)⎩⎨⎧6x +5y =31,①3x +2y =13;② (2)⎩⎪⎨⎪⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②21.如图,已知AD ⊥BC 于点D ,点E 在AB 上,EF ⊥BC 于点F ,∠1=∠2,试说明DE ∥AC .22.【2022·武汉】为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动,该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如图所示两幅不完整的统计图.(1)本次调查的样本容量是________,B 项活动所在扇形的圆心角的大小是________,条形统计图中C 项活动的人数是________;(2)若该校约有2 000名学生,请估计其中意向参加“参观学习”活动的人数.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点分别为A(3,2),B(-3,1),C(2,-2),则“水平底”a=6,“铅垂高”h=4,“矩面积”S=ah=24.根据所给定义解决下列问题:(1)若已知点D(1,2),E(-2,1),F(0,6),则这三点的“矩面积”S=________;(2)若点D(1,2),E(-2,1),F(0,t)三点的“矩面积”S为18,求点F的坐标.24.某冬奥会纪念品专卖店计划同时购进“冰墩墩”和“雪容融”两种毛绒玩具,据了解,8只“冰墩墩”和10只“雪容融”的进价共计2 000元;10只“冰墩墩”和20只“雪容融”的进价共计3 100元.(1)求“冰墩墩”和“雪容融”两种毛绒玩具每只进价分别是多少元.(2)该专卖店计划恰好用3 500元购进“冰墩墩”和“雪容融”两种毛绒玩具(两种均购买),求专卖店共有几种采购方案.(3)若“冰墩墩”和“雪容融”两种毛绒玩具每只的售价分别是200元,100元,则在(2)的条件下,请选出利润最大的采购方案,并求出最大利润.答案一、1.C 2.A 3.B 4.C 5.C6.D 点拨:由题图可知D 点的坐标为(3,2),向左平移3个单位长度,再向下平移3个单位长度,即横坐标减3,纵坐标减3,∴即D ′(0,-1),故选D .7.D8.B 点拨:先解不等式组,得8<x <2-4a .在这个解集中,要包含四个整数,在数轴上表示如图.则这四个整数解为9,10,11,12.从图中可知12<2-4a ≤13.即-114≤a <-52.9.D10.B 点拨:解方程组得⎩⎨⎧x =3+a ,y =-2a -2.①由题意得,3+a >0,-2a -2≥0,解得-3<a ≤-1,①不正确;②当a =-53时,x =3+a =43,y =-2a -2=43,∴x =y ,②正确;③当a =-2时,x +y =1-a =3,5+a =3,③正确.二、11.5;14 12.④ 13.(-3,2) 14.150 15.35°16.160 点拨:由题图可知,长方形ABCD 中去掉小路后,草坪正好可以拼成一个新的长方形,且它的长为(18-2)米,宽为(11-1)米.所以草坪的面积应该是长×宽=(18-2)×(11-1)=160(平方米).17.7 18.3三、19.解:(1)原式=35+23-35+23=4 3.(2)原式=2-3+2-3+3=1.20.解:(1)②×2,得6x +4y =26,③①-③,得y =5.将y =5代入①,得6x +25=31,则x =1.所以原方程组的解为⎩⎨⎧x =1,y =5.(2)解不等式①,得x <2;解不等式②,得x ≥-3.所以原不等式组的解集为-3≤x <2.21.解:因为AD ⊥BC 于点D ,EF ⊥BC 于点F ,所以∠EFB =∠ADB =90°,所以AD ∥EF ,所以∠1=∠ADE .又因为∠1=∠2,所以∠2=∠ADE ,所以DE ∥AC .22.解:(1)80;54°;20;(2)2 000×3280=800(人).答:该校意向参加“参观学习”活动的人数约为800人.23.解:(1)15(2)由题意可得“水平底”a =1-(-2)=3.当t >2时,“铅垂高”h =t -1,则3(t -1)=18,解得t =7,故点F 的坐标为(0,7);当1≤t ≤2时,“铅垂高”h =2-1=1,此时“矩面积”S =3≠18,故此种情况不符合题意;当t <1时,“铅垂高”h =2-t ,则3(2-t )=18,解得t =-4,故点F 的坐标为(0,-4).综上所述,点F 的坐标为(0,7)或(0,-4).24.解:(1)设“冰墩墩”毛绒玩具每只进价为x 元,“雪容融”毛绒玩具每只进价为y元,由题意得⎩⎨⎧8x +10y =2 000,10x +20y =3 100解得⎩⎨⎧x =150,y =80.答:“冰墩墩”毛绒玩具每只进价为150元,“雪容融”毛绒玩具每只进价为80元.(2)设购进“冰墩墩”毛绒玩具m 只,购进“雪容融”毛绒玩具n 只,由题意得150m +80n =3 500,整理得15m +8n =350.因为m ,n 为正整数,所以⎩⎨⎧m =2,n =40或⎩⎨⎧m =10,n =25或⎩⎨⎧m =18,n =10.所以专卖店共有3种采购方案.(3)当m =2,n =40时,利润为2×(200-150)+40×(100-80)=900(元);当m =10,n =25时,利润为10×(200-150)+25×(100-80)=1 000(元); 当m =18,n =10时,利润为18×(200-150)+10×(100-80)=1 100(元). 因为900<1 000<1 100,所以利润最大的采购方案为购进“冰墩墩”毛绒玩具18只,购进“雪容融”毛绒玩具10只,最大利润为1 100元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学期末复习综合练习2 七年级 班 号 姓名 1. 在 201201201.0,
722,-2,2
π,3.14,2+3,-9 ,0,35,1.2626626662…中,属于无理数的个数是( )
A.3个
B. 4个
C. 5个
D.6个
2. 将点A (2,-2)向上平移4个单位得到点B ,再将点B 向左平移4个单位得到点C ,则下列说法正确的是( )
①点C 的坐标为(-2,2) ②点C 在第二、四象限的角平分线上; ③点C 的横坐标与纵坐标互为相反数; ④点C 到x 轴与y 轴的距离相等 A.1个 B.2个 C.3个 D.4个 3. 如图,直线AB 与直线CD 相交于点O , AB OE ⊥,垂足为O 。
若AOC EOD ∠=∠2
1
,则=∠BOC ( ) A. 120° B. 130° C. 140° D. 150°
4.如图,l l 1211052140//,,∠=∠=
,则∠=α( )
A . 55
B . 60
C . 65
D . 70
5.若方程组⎩
⎨
⎧=--=+8)1(5
34y k kx y x 的解中,x 的值比y 的值的相反数大1,则k 为( )
A .3
B .-3
C .2
D .-2 6.已知⎩⎨
⎧=--=--0
30
334z y x z y x ,那么x :y :z 为( )
A .2:(-1):3
B .6:1:9
C .6:(-1):9
D .
1:)9
1
(:32- 7.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )
A. 10组
B. 9组
C. 8组
D. 7组
8. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见下图.根据此条形图估计这一天该校学生平均课外阅读时长不低于1.2小时人数占总体的( ) A. 35% B.24% C. 38% D.62%
9. 已知x 满足3351,1 1.4
x x x +>-⎧⎪
⎨+>-⎪⎩ 则52+--x x 值为( )
A .-2x -3 B. 7 C .-7 D .2x +3 10.不等式
211133x ax +-+>
的解集是5
3
x <,则a 应满足( ) A .5a > B .5a = C .5a >-
D .5a =-
11.__.__________2,2=--=a a a a 则若
12.比较
7
215- 21 216- 3
2
13.如图,a ∥b ,∠1与∠2互余,∠3=1150
,则∠4= .
14. 如图:在平面直角坐标系中已知长方形ABCD 的顶点坐标:A (-1,-1)B (3,1.5)
D (-2,0.5),则C 点坐标为______ .
15. 已知⎩
⎨
⎧==12y x ,是二元一次方程组⎩⎨⎧=-=+18
my nx ny mx 的解,则2m -n 的平方根为 .
16.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是 .
17. 七年级6班组织有奖知识竞赛,小强用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支. 18. 已知不等式
711326x +<的解都是不等式413232
x x a
-<+的解,则a 的取值范围是 .
F
E
2
1
D
C
B
A
19. 解方程组 ()()344126x y x y x y x y
⎧+--=⎪
⎨+-+=⎪
⎩
20. 解不等式组 3
31213(1)8x x x x -⎧++⎪
⎨⎪--<-⎩,,
≥ 并把它的解集表示在数轴上
21.据以往的统计资料,甲、乙两种作物的单位面积产量的比是 1:1.5,•现要在一块长200m ,宽100m 的长方形土地上种植这两种作物,从长方形长边的中点出发引出一条线段怎样把这块地分为两部分,使甲、乙两种作物的总产量的比是 1 : 2 ?
22. 如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF .求证:BC 平分∠DBE
23. 已知不等式组⎪⎩
⎪⎨⎧-≥-<-+>+a a a a a a 6237121)1(315 的整数解a , 满足方程组⎩⎨⎧=+-=-43272y x y ax 求: (
)
)(3
32
2y xy x y x +-+
24. 小龙在学校组织的社会调查活动中负责了解他所居住的小区500户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图. 根据以上提供的信息,解答下列问题:
(1)补全频数分布表.(2)补全频数分布直方图.(3)绘制相应的频数分布折线图. (4)请你估计该居民小区家庭属于中等收入 (不小于1000不足1600元)的大约有多少户?
20161800
120
84元
户数
1400160012001000800600。