4.2积分换元法

合集下载

B1-4.2换元积分法(第2类换元法)

B1-4.2换元积分法(第2类换元法)

(
)
• 原变量回代 所谓原变量回代就是从代换函数 x =( t ),t It 解
出相应的反函数并代入求得的积分结果中。
对三角代换,可通过辅助三角形确定相应反函数。 本例,由代换 x = ( t )= asin t,可作出辅助三角形:
由此写出相应反函数及相关三角函数。 t = ( x ) = arcsin x , a a cos t = a 2 − x 2 .
由复合函数微分关系式逆转可得积分关系式
f ( x)d x
x = ( t )
f ( t ) ( t ) d t .
将此关系式看成是积分转换式,其意义可理解为: 若右端积分∫ f[( t )] ( t )d t 易于积出,则可由其求出左端的
积分 ∫ f( x )d x .
此时有

=a
x 2 − a 2 d x = tan t a sec t tan t d t = a tan 2 t d t sec t x
= a ( sec 2 t − 1 ) d t = a ( tan t − t ) + C 1
x 2 − a 2 - a arccos a + C 1 . x
例. 求
), , 解: 令 x = a tan t , t ( − 则 2 2
x 2 + a 2 = a 2 tan 2 t + a 2 = a sec t
dx = a sec t d t a sec 2 t d t = sec t d t ∴ 原式 = a sec t = ln sec t + tan t + C1
−1 (t = + (C t )] )d t( tx=) −1 ( x ) t= [ft[]

高等数学-4_2换元法

高等数学-4_2换元法
4
(2) tan x d x
3
解(1): 原式 sec2 x sec2 x d x


(tan
(tan
1 3
3
2
x 1) sec x d x
2
2
x 1) d (tan x )

tan x tan x C
sec x d x d (tanx )
2
机动
目录
上页
下页
下页
返回
结束
例7. (1)

sec
2
x x
dx
2
(2)
xd
dx x (1 x )
解 (1) 原式 = (2) 原式 =
2
sec
x 2tan x 2
x c
1 d x
2
(1 x ) d
1
1 (
x)
2
2arctan
1 x d x 2d
x c
2 a x b)
x
x
x
1 e x e (1 ) dx x 1 e x e dx dx x 1 e
x

(1 e ) e
dx
e d x de
x
x
d (e 1 )
x
x ln(1 e x ) C
机动
目录
上页
下页
返回
结1 x

1 2
x
d(
1 2
2
x ) 2e
1

1 2
x
c
(4)
dx
2
1 d( 1 3 x )
(1 3 x )

微积分第一类换元法

微积分第一类换元法

定理1 设 f (u)具有原函数,u ( x)可导,
则有换元公式
f [ ( x)] ( x)dx [ f (u)du]u ( x)
第一类换元公式(凑微分法) 说明: 使用此公式的关键在于将
g( x)dx 化为 f [(x)](x)dx f [(x)]d[(x)].
例1 求 e5xdx
例12 求 csc xdx.
解(一) csc xdx
1 sin
x
dx
2sin
1 x cos
x
dx
tan
x 2
1 cos
x 2
2
d
x 2
1 tan
x
d
2 tan
x 2
2
2
ln
tan
x 2
tan x sin
1
1
x2
dx
d (
), x
exdx d (ex ),
cosxdx d(sin x),
1 (cot
x),
1 cos2x dx d (tan x).
例7 求 sin 2xdx.
解(一)
sin
1 2
2 xdx
sin 2
xd
1 2
(2
sin 2x(2x)dx
x) 1 cos 2x 2
5
例2 求 (3 2x)3dx
解 令u 3 2x, 则du 2dx,从而dx 1 du,
2
原式
1 2
u3du
1u4 C
8
1 (3 2x)4 C.
8
例2 求 (3 2x)3dx
解 Q (3 2x)3 1 (3 2x)3 (3 2x) 2
原式 1 (3 2x)3 (3 2x)dx 2

4.2 换元积分法

4.2 换元积分法

解:
(1)
a2
1
x2
dx

1 a
1 a2
1
1(ax1)21da(xax22)dx
1 a
arctan
x a

C
用类似的方法还可以求得
1 a2
x2
dx

arcsin
x a

C.
4.2.1 第一换元积分法 4.第一换元积分法的常见类型
例4
求不定积分 (2)
dx a2 x2
4.2.1 第一换元积分法 2.第一换元积分法
计算过程
f
[ ( x)] ( x)dx
凑微分


f
[ ( x)]d ( x)
令 ( x)u
积分
回代
f (u)du F (u) C F ((x)) C
利用复合函数求导公式,可以验证以上公式的正确性.
用这种方法的计算程序是:先“凑”微分式,再作变量置换。 我们将这类求不定积分的方法称为第一类换元积分法,也称凑微 分法。
4.2.1 第一换元积分法 3.第一换元积分公式的应用
例1 求下列不定积分
(1)

dx x 1
解: 令 x 1 u 则 dx du,于是

dx x 1


du u
ln u C
同理可得:
(2)
dx 1 x

ln
1
x

C
(3)
dx 1 x
2
1 x C
再将u x 1 代回,得
(2)

ln x x
dx
解:
(2)

换元积分法(第一类换元法)

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求:理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”,dx x x d )()(ϕ'=ϕ .掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容:一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+⎰.若u 是中间变量,()u x ϕ=,()x ϕ可微,则根据复合函数求导法则,有(())()[()]()dF x dF du duf u f x x dx du dx dxϕϕϕ'===。

所以根据不定积分的定义可得:()[()]()[()][][()]u x f x x dx F x C F u C f u du ϕϕϕϕ='=++=⎰⎰ 以上是一个连等式可以改变顺序从新写一遍,就有[][]()[()]()][()]()u x f x x dx f u du F u C F x C ϕϕϕϕ='=+=+⎰⎰.以上就是第一换元积分法。

从以上可以看出,虽然[()]()f x x dx ϕϕ'⎰是一个整体记号,但是被积表达式中的dx 可当作变量x 的微分来对待从而上式中的()x dx ϕ'可以看成是()x ϕ的微分,通过换元()u x ϕ=,应用到被积表达式中就得到()x dx du ϕ'=.定理1 设)(u f 具有原函数)(u F ,)(x u ϕ=可导,dx x du )(ϕ'=,则[()()()()[()]f x x dx f u du F u C F x C ϕϕϕ'==+=+⎰⎰ (1)如何应用公式(1),在求不定积分积分()g x dx ⎰时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ϕϕ'的形式 那么()()[()]()[()]x u g x dx f x x dx f u du ϕϕϕ='=⎰⎰⎰()()[()]u x F u C F x C ϕϕ==++.所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积[()]()f x x ϕϕ'来.例1 求33x e dx ⎰解33333=3x x x e dx e dx e x dx '=⎰⎰⎰(),可设中间变量x u 3=,dx x d du 3)3(== 3dx du ∴=,所以有3333x x u u x e dx e dx e du e C e C ===+=+⎰⎰⎰.首先观察被积函数的复合函数是什么样的,然后看是否有它的内函数的导数,若没有就去凑。

4.2_换元积分法

4.2_换元积分法

x x
dx 3
t2
t
3
2tdt
2
t2 3 dt 2 t3 6t C 3
再将t x 3代回整理得
x dx 2 x3 3
3
x3 6 x3C
补充例:求
1 dx
ex 1
解: 令 ex 1 t 则x ln(1 t 2 )
dx
2t 1 t2
dt , 于 是
1 dx
ex 1
Fu C
Fx C
由此可得换元法定理P103定理4.3
P103定理4.3 设 f (u)具有原函数,u ( x)可导,
则有换元公式
f [ ( x)] ( x)dx [ f (u)du]u ( x)
第一类换元公式(凑微分法) 说明 使用此公式的关键在于将
g( x)dx 化为 f [( x)]( x)dx.
2
2
xex2dx 1 ex2 x2 dx(直接凑微分) 2
1 ex2dx 2
2
1 2
eudu
堂上练习 P108-习题4.2----4、5、6、
4、
2x 1 x2 dx
1 1 x2
1 x2
dx
1
1 x2
d1
x
2
ln
1
x
2
C
5、 x x2 5dx 1 2
x2
1 t
2t 1 t2
dt
2
1 1 t 2 dt
2arctant C
2arctan ex 1 C
课堂练习: 求
x 1dx . x
解 : 令 x 1 t,则x 1 t 2 , dx 2tdt;于是有
x-1 dx. 2 x
t2 1 t 2 dt

换元积分法和分部积分法


对于含有根式的函数的 积分,原则上是设法去 掉根式。
有些含有根式的函数的 积分,直接令根式为新 变量 即可将问题转化为一般 的不含根式的函数的积 分。
补充例题11 计算
解:
1 6

dx . 3 x x
xx ,
1 2
3
xx ,
1 3
它们的指数部分的 分母的最小公倍数 为6 .
令 t x , t 0,
则 x t , d x 6 t d t, 故
6 5

t 3 1 1 dx 6 t3 dt d t 6 3 t 1 x x t 1
1 6 ( t t 1 )dt t 1
2
2 t 3 3 t 2 6 t 6 ln | t 1 | C 2 x 33 x 66 x 6 ln( 6 x 1) C .
第二类换元法常见类型:
(1)
(2)


f ( x , n ax b ) dx , 令
a x b n ( x , c x d ) dx ,
f
令 或
第 三 节 讲
(3) (4) (5)
f ( x , a 2 x 2 ) dx , 令 f ( x , a 2 x 2 ) dx , 令 f ( x , x 2 a 2 ) dx , 令

f (tan x)sec 2 xdx
补充例题4
1 解: 原式 = 1 2 ln x 2 1 2 ln x
自主学习课本P141例4.2.6、例4.2.7、例4.2.8
例4.2.9 求
tan xdx 和 cot xdx

解: cot xdx cos x dx 1 d sin x = ln sinx + C sin x sin x

不定积分的换元积分法4.2


f [j ( t )] j ( t )dt

最后将t =j1(x)代入f [j(t)]j(t) 的原函数中.
第二类换元法用于求特殊类型的不定积分.
例 21 例18

a
2
x
2
d x (a > 0 ).
x

2
a t
a x
2 2

设 x a sin t ,
a x
a
2
< t<
2 2
ln | x
x a
2
2
| C

三、积分公式小结
(1 ) kdx kx C ,
( 2 ) x dx
m
(k是常数),
x
m 1
1
m 1
C,
(m 1),
(3)
(4)
(5 )
1 x
dx ln | x | C ,
1 dx arctan x C ,
例 23 例21

dx x
2
x
2
(a > 0 ).
a
解 那么
当 x> a 时 , 设 x a se c t (0 < t<
x a
2 2

2
t
),
sec
2
a
t 1

a sec
2
2
ta
2
a
a tan t , 于是

dx x a
2 2

2

a sec t tan t a tan t
2
1 3
sin
3

§4.2换元积分法(第二类换元法)

§ 4.2 换元积分法(第二类)I 授课题目(章节):§ 4.2 换元积分法(第二类换元积分法)n 教学目的与要求:1.了解第二类换元法的基本思想2.掌握几种典型题的第二类换元积分法解法川教学重点与难点:重点:第二换元法中的三角代换及根式代换难点:积分后的结果进行反代换IV 讲授内容:第一类换元积分法的思想是:在求积分g(x)dx时如果函数g(x)可以化为f[ (x)] (x)的形式那么g(x)dx f[ (x)] (x)dx f[ (x)]d (x)u (x) f(u)duF(u) C F[ (x)] C所以第一换元积分法体现了“凑”的思想•把被积函数凑出形如f[ (x)] (x)函数来.对于某些函数第一换元积分法无能为力,例如a2x2 dx.对于这样的无理函数的积分我们就得用今天要学习的第二类换元积分法。

第二类换元的基本思想是选择适当的变量代换x (t)将无理函数f (x)的积分f (x)dx化为有理式f[ (t)] (t)的积分f[ (t)] (t)dt。

即f(x)dx f[ (t)] (t)dt若上面的等式右端的被积函数f[ (t)] (t)有原函数(t),则f[ (t)] (t)dt (t) C ,然后再把(t)中的t还原成1 (x),所以需要一开始的变量代换x (t)有反函数。

定理2设x (t)是单调、可导的函数,且(t) 0,又设f[ (t)] (t)有原函数(t),则1f(x)dx f[ (t)] (t)dt (t) C [ (x)] C分析要证明f(x)dx [ 1(x)] C,只要证明[1(x)]的导数为f(x),d 「1,、■, d dt dt[(x)] , ?dx dt dx dx可将原积分化作三角有理函数的积分x2例2求 . 2 dx4 x,),则 ' 4 x2 24sin 2t2costdt =2cost2cost,dx 2costdt(2 2cos2t)dt 2t si n2t C2 2证明x (t)单调、可导,x (t)存在反函数t-(x),且字dx1dxdt1It)Q —dx-J -JI A[1(x)]頁匸f[ (t)]⑴飞f(x)1 (x)]是f (x)是一个原函数f (x)dx [-(x)]第二换元法,常用于如下基本类型类型1 :被积函数中含有..a2x2( a 0) ,可令x asint (并约定例1求a2x2dx (a 0)解令x asint acost dx acostdt.a2x2dx a costa costdt a2 (21-cos2t)dt2at22 a sin 2t42at22a sin tcost2a2x x —C arcs in a2 a 2把sin t,cost用x表示.借助下面的辅助三角形2t 2sin tcost解令x 2sint,4—^dt2C 2arcsi n ——44x2 C2 2类型2 :被积函数中含有,a2x2(a 0)可令x ata nt 并约定t ( ,),则2 2asect ;dx 2a sec tdt ;可将原积分化为三角有理函数的积分dx(a 0)解令x atant,t ( , ),^V .”.:x a2 22asect, dx a sec tdtsectdt In sect tant C例4求解令xdxx 2 \ 42ta ntdxx2.4 x21 cost ,,2 dt4 sin t-^^dsi nt sint.4 x2 21 sect4 2dtant1 1 cC1dt414 sin t,),则2 22sec t24tan t 2sectdx(x2 9)2(分母是二次质因式的平方23sec tdt2dx 2 sec tdt1萼dtsin2tcos t4 x2Cdx 3sec21 工 127cos2 tdt(x29) 2481sec1 t 1 t—(1 cos2t)dt ——cos 2tdt —54 54 54 54t 1 t 1—sin 2t —一sin t cost C54 2 54 54 54解令x 3tant,贝U x2 9 9sec21, dx12 54cos2td2t3x(第二换兀积分法分)(x 2x 5)1x 1 arcta n —2 2解(x 2x 5)2 2 2[2 (x 1)],令x 1 2ta ntt (i ,2)则dx 2 2(x 2x 5)笄壬水1 (12 sec t 16cOs2t)dt1sin t cost C161 x 1 arcta n — 16 21 x 1 8 x 22x 类型3 被积分函数中含有(a 0),当 x a 时,可令x asect ,并约定I 2 2t (0,—),贝U x a ata nt , 将原积分化为三角有理函数的积分。

2第二节换元积分法


2 sin 2
x 2
1 cos x
csc x cot x.
2 cos x sin x
sin x
2
目录 上一页 下一页 退 出
解(二)
csc
xdx
1 sin
x
dx
sin x sin2 x
dx
1
1 cos2 x d(cos x) u cos x
1
1 u2
du
1 2
1
1
u
1
1
u
du
2 cos xd(cos x) cos x2 C.
目录 上一页 下一页 退 出
例2

3
1 dx. 2x

1 1 1 (3 2x),
3 2x 2 3 2x
3
1 2
dx x
1 2
3
1 2
x
(3
2
x)dx
1 2
1du u
1 ln u 2
C
1 2
ln(3
2x)
C.
一般地
f
(ax b)dx
例5 求
1 dx a 0.
a2 x2

1 dx 1
a2 x2
a
1 dx
1
x a
2
1
1
x a
2
d
x a
arcsin x C a
目录 上一页 下一页 退 出
例6 求 tan xdx.

tan xdx
sin cos
x x
dx
1 cos
x
d
cos
x
ln cos x C.
x4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
u arctanx
u arcsin x
求不定积分(第一换元法) 1. 3. 5. 7. 9.

dx 2x 1
3
x( x 2 3)5 dx 2.
sin x dx ;
tan xdx
dx x2 2x 5
2x 1 x2 5x 6dx4.1 a2 x2
2
f (cot x )d cot x
用公式
1 sin2 x cos2 x 1 cos2 x sin2 x
进行变换
化为倍角的三角函 数降幂后再积分
cos xdx 12. f (arctan x ) 1 dx f (arctan x )d (arctan x ) 1 x f (arcsin x ) 1 dx f (arcsin x )d (arcsin x ) 1 x
u tan x u cot x
利用积化和差 公式进行变换
第 f (cot x )csc 2 xdx 一 9. sin mx cos nxdx 类 sin mx sin nxdx 换 cos mx cos nxdx 元 10. sin m xdx 积 cos m xdx ( m 为奇数 ) 分 11. sin m xdx 法 m ( m 为偶数 )
(6)

f ( a x ) dx , 令 t a x
(7) 分母中因子次数较高时, 可试用倒代换
练习:求下列不定积分
1 (2) dx 1 x
例.

例. 求 例. 已 知

作业
习题4 4. 双号题
换元公式
u ax b
u x
u x
3. f ( x ) 1 dx 2 f ( x )d x x 4. f ( 1 ) 12 dx f ( 1 )d ( 1 ) x x x x 5. f (a x ) a x dx 1 f (a x )da x ln a 6. f (ln x ) 1 dx f (ln x )d ln x x 7. f (e x ) e x dx f (e x )de x
(7) cos xdx d (sin x ).
常见的凑微分方式 积分类型 第 一 类 换 元 积 分 法
1 1. f (ax b)dx f (ax b)d (ax b) (a 0) a ( 0) 2. f ( x ) x 1dx 1 f ( x )d ( x )
a
1 d ( x n1 ); n1
第一类换元法(凑微分法) 部分常用的凑微分公式: (1) dx 1 d (ax b ); (2) x n dx
1 d ( x n1 ); a n1 (3) 1 dx d ( x ); (4) 12 dx d ( 1 ); x 2 x x 1 dx d (ln x ); (6) e x dx d (e x ); (5) x
2
2. 4.
1 a2 x2 1
2
dx, ( a 0) dx, ( a 0)
x a
2
dx
6.
8.
1 x2 a2 x2
x5 x2 1 dx
dx, (a 0)
9.
7.
1 1 ex
dx
1 dx 7 x( x 2)
小结:
1. 第二类换元法常见类型:
(1)
(2)
4.2 换元积分法
第一类换元法(凑微分法)
问题
观察 从公式 e u du e u C ,令u 2x ,则有
e
2x
? dx e
2x
C e 2 x dx e 2 x C
e 2 x d (2 x ) e 2 x C
解法 可将微分dx 凑成 1 d ( 2 x )的形式,即

u 1 x
u ax
u ln x
u ex
8. f (sin x ) cos xdx f (sin x )d sin x
u sin x
u cos x
f (cos x ) sin xdx f (cos x )d cos x

f (tan x )sec 2 xdx f (tan x )d tan x
第一类换元法(凑微分法)
1 e 2 x d ( 2 x )u 2 x 1 e u du 1 e u C e dx 2 2 2 1 e2x C 2 一般地,设 f (u) 具有原函数 F (u),即
2x

f (u)du F (u) C , f [ ( x )] ( x )dx f [ ( x )]d ( x ) ( x ) u f ( u)du F ( u) C 换元


f ( x , n ax b ) dx , 令 t n a x b
n a x b ) dx , ( x , c xd
f
令 t
n a x b c xd
第 四 节 讲
(3) (4) (5)
f ( x , a 2 x 2 ) dx , 令 x a sin t 或 x a cos t f ( x , a 2 x 2 ) dx , 令 x a tan t 或 x a sh t f ( x , x 2 a 2 ) dx , 令 x a sec t 或 x a ch t
dx (a 0)
1 6. 2 dx ; 4x 4x 1 dx 8. 2 2 x a
10.
sec x dx
11.
arctan x 1 x2 dx
12. 14.
1 x(1 ln x) dx
1 13. x x dx e e
cos 3x sin 2 xdx
f [ ( x )] ( x )dx .
部分常用的凑微分公式: (1) dx 1 d (ax b ); (2) x n dx
a
1 d ( x n1 ); n1
第一类换元法(凑微分法)
部分常用的凑微分公式: (1) dx 1 d (ax b ); (2) x n dx
2 dx 1 d ( 2 x ) 2 e 2 x dx 1 e 2 x d ( 2 x )u 2 x 1 e u du 1 e u C 2 2 2 1 e2x C 2
第一类换元法(凑微分法)
e 2 x dx 1 e 2 x d ( 2 x )u 2 x 1 e u du 1 e u C 2 2 2 1 e2x C 2
u ( x)
回代
F [ ( x )] C ,
第一类换元法(凑微分法)
u ( x)
回代
F [ ( x )] C ,
第一类换元法(凑微分法)
u ( x)
回代
F [ ( x )] C ,
上述方法称为第一类换元法或凑微分法.
应用凑微分法求 g ( x )dx 的关键是将它化为
练习
1.
1 x(ln x)(ln ln x) dx, ( x 1)
2.
cos 4 xdx 3.
二、第二类换元法 第一类换元法解决的问题
f [ ( x)] ( x)dx f (u )d u u (x)
难求 易求
若所求积分 f (u )d u 难求,
则得第二类换元积分法 .
f [ ( x)] ( x)dx 易求,
定理2 设
是单调可导函数 , 且
具有原函数F(t) ,则有换元公式
其中 t ( x ) 是 x (t ) 的反函数.
求不定积分(第二换元法)
1. a 2 x 2 dx, ( a 0) 1 3. 2 dx, ( a 0) 2 2 (a x ) 5. 1 x x 1
小结 常用简化技巧:
(1) 分项积分: 利用积化和差; 分式分项;
1 sin 2 x cos 2 x 等 (2) 降低幂次: 利用倍角公式 , 如
万能凑幂法
n 1 1 f (xn ) 1 d xn f (x ) x dx n x
n
f ( x n )x n 1 dx 1 f ( x n ) d x n n
相关文档
最新文档