高中数学新课程精品限时训练(11)

合集下载

高中数学新课程精品限时训练(25)

高中数学新课程精品限时训练(25)

2.“ a 1”是“函数 f x x a 在区间 1, 上为增函数”的(
D. a 3 ,b 1 22
).
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
3.要得到函数
y
tan
2x
π 3
的图像只需将
y
tan
2x
的图像(
).
A.向右平移 π 个单位长度 3
C.向右平移 π 个单位长度 6
D. c b a
8.在 R 上定义运算 a b a 1 b .若不等式 x y x y 1 对于任意实数 x 恒成立,则实
数 y 的取值范围是( ).
A. 2, 0
B. 1,1
C.
1 2
,
3 2
D.
3 2
,
1 2
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 把答案填在题中的横线上.
平面 AD1Q .由已知 A1F∥ 平面 AD1Q ,所以 A1F 平面 A1GE ,设 A1F 与平面 BCC1B1 所成的角为
,因为
A1B1
平面
BCC1B1 ,所以 tan
A1B1 B1F
,当点
F
与点 E
或点 G
重合时,B1F
最大,tan
有最小值,此时 tan
A1B1 B1F
1 1
2 ;当点 F
2
x
π 6
tan
2
x
π 3
的图像.故选
C.
4.解析 依题意,该程序框图的模拟分析如下表所示.
步骤 i 40? i i 3
1

4
2

7

高中数学新课程精品限时训练(50)

高中数学新课程精品限时训练(50)

限时训练(五十)
一、选择题
答案部分
题号
1 2 3 4 5 6 7 89
10Biblioteka 1112答案
BCAACACBB
A
D
D
二、填空题
2
13.
5
14. 3
15. x2 y2 1 y 0
16. 2017
25 16
2018
解析部分
1.解析 由题可得 z 2 i 2 i1 i 1 3 i ,所以 z 1 3 i .故选 B.
6.
若实数
x,y
满足
x
5
y
3
0 ,则 z 2x y 的最小值(
).
x 3y 3 0
A. 3
B.1
C. 6
D. 6
7. 有六名同学参加演讲比赛,编号分别为 1,2,3,4,5,6,比赛结果设特等奖一名,A,B,C,D
四名同学对于谁获得特等奖进行预测. A 说:不是 1 号就是 2 号获得特等奖; B 说:3 号不可能获得
i 3, S 1, A 2 i 4, S 2, A 1 i 5, S 1, A 1 i 6, S 1, A 2 ,由此可得 2
S 的值以 6 为周期循环,循环体为1, 2,1, 1, 2, 1 .因为 i 的初始值为 0 , i 2016 时结束循环,且
2017=6 336 1 ,所以 S 1 .故选 B.
D. 3 1 i 22
2. 已知全集U 1,2,3,4,5 ,集合 A 1,2,5, ðU B 1,3,5 ,则 A B 为( ).
A.2
B.5
C. 1,2,4,5
D. 3,4,5
3. 已知实数 1,x,y,z, 4 成等比数列,则 xyz ( ).

高中数学新课程精品限时训练(38)

高中数学新课程精品限时训练(38)

限时训练(三十八)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合413A x x ⎧⎫=-⎨⎬-⎩⎭…,(){}2log 21B x x =-<,则A B =I ( ).(A )()1,4- (B )()1,3- (C ) ()2,3 (D )()3,4(2)复数z 满足()12i 3i z +=+,则复数z =( ).(A )1i + (B )1i - (C )1i -+ (D )1i -- (3)已知函数()22f x x mx =+-,在区间[]2,4-上随机取一个实数x ,若事件“()0f x '<”发生的概率为23,则m 的值为( ). (A )2(B )2-(C )4(D )4-(4)在ABC △中,三个内角A ,B ,C 所对的边为a ,b ,c ,若cos cos 2cos a B b A c C +=,6a b +=且ABC S =△,则c =( ). (A) (B) (C )3 (D)(5)数列{}n a 满足11=a ,且11n n a a n +=++,对任意的*n ∈N 恒成立,则122017111a a a +++=L ( ). (A )20151008 (B )20171009 (C )40342017 (D )20152018(6)下列命题正确的个数是( ). ①“1x ≠”是“0232≠+-x x”的充分不必要条件② 若()()sin 2f x x θ=+,则“()f x 的图像关于π3x =对称”是“π6θ=-”的必要不充分条件 ③()0,0x ∃∈-∞,使0034xx <成立④命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题 (A )4 (B )3 (C )2 (D )1(7)过双曲线()222210,0x y a b a b -=>>的右焦点F 作直线by x a=-的垂线,垂足为A 交双曲线左支于B 点,若12OAF OBF S S =△△,则该双曲线的离心率为( ). (A(B )2 (C )(D(8)已知Rt AOB △的面积为1,O 为直角顶点.设向量OAOA=uu r uu r a ,OB OB=uuruur b ,2OP =+uura b ,则PA PB -uu r uu r 的最小值为( ). (A )1(B )2(C)(D )4(9)某三棱锥的三视图如图所示,该三棱锥的外接球半径是( ). (A(B(C(D(10)阅读如图所示的程序框图,运行相应的程序,输出的结果S =( ).(A )20172018 (B )20162017 (C )40332018 (D )40332017俯视图(11)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则π6y f x ⎛⎫=- ⎪⎝⎭图的单调递增区间为( ).(A )πππ,π,44k k k ⎡⎤-+∈⎢⎥⎣⎦Z (B )ππ2π,2π,44k k k ⎡⎤-+∈⎢⎥⎣⎦Z (C )πππ,π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z (D ) ππ2π,2π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z (12)设函数()e xxf x =,关于的方程()()210f x mf x +-=⎡⎤⎣⎦有三个不同的实数解,则实数m 的取值范围是( ).(A )1,e e ⎛⎫-∞- ⎪⎝⎭ (B )1e ,e⎛⎫-+∞ ⎪⎝⎭(C )()0,e (D )()1,e 二、填空题:本题共4小题,每小题5分.(13)若变量x ,y 满足约束条件200220x y x y x y +⎧⎪-⎨⎪-+⎩…„…,则2z x y =-的取值范围是________.(14)已知cos 212sin 2αα+=,()tan 2αβ+=,则tan =β .(15)设定义在R 的偶函数()y f x =,满足对任意x R ∈都有()()2f t f t +=-,且(]0,1x ∈时,()1xf x x =+.若20153a f ⎛⎫= ⎪⎝⎭,20165b f ⎛⎫= ⎪⎝⎭,20177c f ⎛⎫= ⎪⎝⎭,则 .(16)过抛物线22y x =的焦点F 的直线分别交抛物线于,A B 两点,交直线12x =-于点P ,若PA mAF =u u u r u u u r ,(),PB nBF m n =∈R u u u r u u u r,则m n +=____________.限时训练(三十八)答案部分一、选择题二、填空题13. []1,2- 14.3415. c b a << 16. 0 解析部分(1)解析 因为{}13A x x =-<„,()()2log 21022242,4x x x B -<⇒<-<⇒<<⇒=, 所以()2,3A B =I.故选C .(2)解析 根据题意可知()()3i 12i 3i 55i1i12i 55z +-+-====-+,所以1i z =+.故选A. (3)解析()20f x x m '=+<,2m x <-,22m -=,4m =-.故选D.(4)解析 由正弦定理得sin cos sin cos 2sin cos A B B A C C +=,()sin 2sin cos A B C C +=⋅,sin 2sin cos C C C =⋅, 因为sin 0C ≠,所以1cos 2C =. ()0,πC ∈,π3C =,又ABC S =△,则1sin 2ab C = 所以8ab =,又因为6a b +=,所以()()2222222cos 2363812c a b ab C a b ab ab a b ab =+-=+--=+-=-⨯=. 所以c =.故选B.(5)解析 因为11n n a a n +=++,所以1n n a a n -=+,即1nn a a n --=,121n n a a n ---=-,…,()2122a a n -=….以上1n -个等式分别相加得()()()11222n n n a a n -+-=….所以()()212122nn n n na -++=+=,所以2121121n a n n n n ⎛⎫==- ⎪++⎝⎭. 所以12201711111111201721223201720181009a a a ⎛⎫+++=-+-++-= ⎪⎝⎭L L .故选B.(6)解析 对于①1x ≠推不出2320x x -+≠,因为22320x x x =⇒-+=,但2320x x -+≠,可得1x ≠且2x ≠,故为必要不充分条件,①为假命题.对于②充分性明显不成立,对于π6θ=-时, ()sin 26f x x π⎛⎫=- ⎪⎝⎭,又sin 21336f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故π3x =是()f x 的对称轴,必要性成立,故②为真命题.对于③()003,0,14x x ⎛⎫∀∈-∞> ⎪⎝⎭,故③为假命题.对于④第一象限角不一定是锐角,原名题为假命题,则其逆否命题为假命题,故选D.(7)解析 设(),0F c ,则直线AB 的方程为()a y x c b =-代入双曲线渐近线方程by x a =-得2,a ab M cc ⎛⎫- ⎪⎝⎭,由2FB FA =u u u r u u u r ,可得2222,33c a ab B c c ⎛⎫+-- ⎪⎝⎭,把B 点坐标代入双曲线方程22221x y a b -=,即()222222224199c a a c a c +-=,整理可得c =即离心率ce a==.故选C. (8)解析 以O 为原点,直线OA 为x 轴建立直角坐标系.由已知2OA OB ⋅=,设()0OA t t =>,则点(),0A t ,20,B t ⎛⎫⎪⎝⎭,()1,0=a ,()0,1=b ,()1,2OP =u u u r . 从而()1,2PA t =--u u u r ,21,2PB t ⎛⎫=-- ⎪⎝⎭u u u r .2,PA PB t t ⎛⎫-=- ⎪⎝⎭u uu r u u u r所以PA PB -u u u r u u u r =2t =时取等号;所以PA PB ⋅u u u r u u u r的最小值为故选A . (9)解析 根据题意,可得出如图所示的三棱锥A BCD -,底面Rt BCD △中,BC CD ⊥,且5BC =,4CD =,侧面ABC △中,高AE BC ⊥于E ,且4AE =,2BE =,3CE =,侧面ACD △中,5AC =.因为平面ABC ⊥平面BCD ,平面ABC I 平面BCD BC =,AE BC ⊥,所以AE ⊥平面BCD ,结合CD ⊆平面BCD ,得AE CD ⊥,因为BC CD ⊥,AE BC E =I , 所以CD ⊥平面ABC ,结合AC ⊆平面ABC ,得AC CD ⊥,所以在ADB △中,AB ==BD ==AD ==设ABC △外心为O ,如图设G 为AB 中点, H 为BC 中点.过1O 的垂线与过CD 中点F 且平行1C C 的直线相交于O ,则O 为外接球球心.则1Rt RtCHO AEB△△:,故1O C HCAB AE=,故14O C=.所以R==.故选D.(10)解析由程序框图知,S可看成一个数列{}n a的前2017项和,其中()()*1,12017nannnn∈=+N„,所以1111111112017112122017201822320172018201820118 S⎛⎫⎛⎫++⋯+++⋯+-⎪ ⎪⎝⎛⎫==---==⎭⎪⎝⎭⎭⨯⨯⨯⎝.故输出的是20172018.故选A.(11)解析由图可知2A=,ππ4π312T⎛⎫=-=⎪⎝⎭,所以2π2πω==.因为由图可得点π,212⎛⎫⎪⎝⎭在函数图像上,可得:π2sin2212ϕ⎛⎫⨯+=⎪⎝⎭,解得ππ22π,122k kϕ⨯+=+∈Z,所以由π2ϕ<,可得π3ϕ=.所以()π2sin23f x x⎛⎫=+⎪⎝⎭.因为若将()y f x=的图像向右平移π6个单位后,得到的函数解析式为()ππ2sin22sin263g x x x⎡⎤⎛⎫=-+=⎪⎢⎥⎝⎭⎣⎦.所以由ππ2π22π,22k x k k-+∈Z剟,可得ππππ,44k x k k-+∈Z剟,所以函数()g x的单调增区间为πππ,π,44k k k⎡⎤-+∈⎢⎥⎣⎦Z.故选A.(12)解析11()()01e ex xx xf x f x x--'=⇒==⇒=,因此当1x„时,()1ef x„;当1x>时()1ef x<<,因此2()10g t t mt=+-=有两个根,其中110,et⎛⎫∈ ⎪⎝⎭,(]21,0et⎧⎫∈-∞⎨⎬⎩⎭U,因为()01g=-,所以110ee eg m⎛⎫>⇒>-⎪⎝⎭.故选B.(13)解析如图所示,2y x z=-,当2y x z=-过()0,1A时,z-取得最大值,此时z取得最小值;当2y x z=-过点()2,2B时,z-取得最小值,此时z取得最大值.故min max1,2z z=-=,故z的范围是[]1,2-.=0评注 2z x y =-的范围呢?这是基本类型,希望同学们滚瓜烂熟!(14)解析 依题意22cos 22sin cos ααα=,故1tan 2α=,故()()()tan tan 3tan tan 1tan tan 4αβαβαβααβα+-=+-==⎡⎤⎣⎦++.(15)解析 ()()()2f t f t f t +=-=,故()y f x =是周期为2的偶函数.()y f x =在(]0,1上为增函数,20151116723333a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,201644140515555b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,201711288777c f f f ⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为111753<<,所以c b a <<. 评注 在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f ”,把函数值的大小转化自变量大小关系.(16)解析 直线1x =-是抛物线的准线,如图设,A B 在直线上的射影分别是,M N ,AM AF =,BN BF =,PA PA AF AM =,PB PB BF BN=,因为//AM BN ,所以PA PBAF BF =,m n =, 又0,0m n <>,所以0m n +=.评注 抛物线问题中抛物线的定义在解题中常常用到.抛物线上点到焦点距离与点到准线的距离常用定义相互转化.利用定义还可得出与焦点弦有关的一些常用结论:(以下图为依据)(1)212y y p =-,1224x x p =;(2)1222sin AB x x p pθ=++=(θ为AB 的倾斜角); (3)11AF BF +为定值2p; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

高中数学新课程精品限时训练(10)

高中数学新课程精品限时训练(10)

限时训练(十) 文科参考答案与解析
一、选择题
题号
1
2
3
4
5
6
7
8
答案
A
B
D
D
B
B
D
D
二、填空题
9. 5 3 8 ; 4 11 5
10.① 0或 2;② 2
11. 9 2
12. 2, 2 2 2
13. 1
53
14.
9
解析部分
1. 解析
1
ai2
i
2
i
2ai
a
,由题意得
2 a 0 1 2a 0
e

3 8
,
4 9
,则双曲线
C2
的离心率取值范围是(
).
A.
5 4
,
5 3
B.
3 2
,
C. 1, 4
D.
3 2
,
4
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 把答案填在题中的横线上.
9.
已知 tan
2 ,那么 tan
π 3
________, sin 2
________.
14. 如图所示,某人在垂直于水平地面 ABC 的墙面角的点 A 处进行射击训练,已知点 A 到墙面的距 离为 AB ,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P ,需计算由点 A 观察 点 P 的仰角 的大小(仰角 为直线 AP 与平面 ABC 所成角).
若 AB 15m , AC 25m , BCM 30 ,则 tan 的最大值是________.
综上可知,由①不一定能推出②.由②一定可以推出①.所以①是②的必要不充分条件.故选 B.

高中数学新课程精品限时训练(7)

高中数学新课程精品限时训练(7)

① f a f b f a b ; ② af a bf b af b bf a ;
③ f a 3a 1;
2

f
a
2
b
f a f b
.
2
则上述命题中,正确的有
.
限时训练(七)
一、选择题
答案部分
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C D D D D A C C C D 二、填空题
对于 D, ex0 f (x0 ) 1 ex0 f (x0 ) 1 e e x0 x0 1 2 , x0 也不是其零点.
故选 C.
12.解析 分解问题,
y
2
x
1
1
y y
2x 1, 2x 3,
x 1

x1
x2 y2 2x 2 y 0 x 12 y 12 0
x yx y 2
点( ).
A. y f x ex 1 B. y f x ex 1 C. y ex f x 1 D. y ex f x 1
12.点 Q x,
y 在不等式组
y
x
2
2
x 1 1 y2 2x
2y
所确定的区域内运动,点 P 1, 0 为定点,
0
则线段 PQ 的长度的最小值是( ).
② af a bf b af b bf a aea beb aeb bea a b ea eb ,
不妨设 a b ,则 a b ea eb 0 ,故 af a bf b af b bf a .
同理可证 a b 成立,故 ② 正确;
③不妨设 g a e a 3 a 1 ,则 g 'a e a 3 .

高中数学新课程精品限时训练(20)

限时训练(二十)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.sin 240o的值为( ).AB .12C .12- D.- 2.已知双曲线C :22214x y b -=经过点()4,3,则双曲线C 的离心率为( ). A .12B.2 C.2 D.23.执行如图所示的程序框图,则输出的z 的值是( ).A .21B .32C .34D .644.已知命题p :x ∀∈R ,20x >,命题q :,αβ∃∈R ,使得()tan αβ+=tan α+tan β,则下列命题为真命题的是( ). A .p q ∧ B .()p q ∨⌝ C .()p q ⌝∧ D .()p q ∧⌝5.设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B ⊆,则实数a 的取值范围为( ).A .[]1,3B .()1,3C .[]3,1--D .()3,1-- 6.已知数列{}n a 满足13a =,且143n n a a +=+()*n ∈N ,则数列{}na 的通项公式为( ).A .2121n -+ B .2121n -- C .221n + D .221n -7.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x …成立的概率为( ). A .425B .12C .23D .18.设函数()3233f x x ax bx =++有两个极值点1x ,2x ,且[]11,0x ∈-,[]21,2x ∈,则点(),a b 在平面aOb 上所构成区域的面积为( ). A .14 B .12 C .34D .1二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上. 9.已知i 为虚数单位,复数1iiz -=,则z = . 10.已知向量(),1x =a ,()2,y =b ,若()1,1=-a +b ,则x y += .11.某种型号的汽车紧急刹车后滑行的距离y km 与刹车时的速度x km /h 的关系可以 用2y ax =来描述,已知这种型号的汽车在速度为60km/h 时,紧急刹车后滑行的距离 为b km .一辆这种型号的汽车紧急刹车后滑行的距离为3b km ,则这辆车的行驶速度12.在平面直角坐标系中,已知曲线1C 和2C 的方程分别为3212x ty t =-⎧⎨=-⎩(t 为参数)和242x ty t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个. 13. 一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体体积为 .14.设点()0,1M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=o,则0x 的取值范围是 .限时训练(二十)答案部分一、选择题二、填空题9.10. 3- 11.12. 1 13.1614. []1,1- 解析部分1. 解析 ()sin 240sin 18060sin 602=+=-=-o o o o .故选D. 2. 解析 由题可得216914b -=,解得23b =,所以2227c a b =+=,所以2c e a ==. 故选C.3. 解析 1x =,2y =,220z =<→2x =,2y =,420z =<→2x =,4y =,820z =<→4x =,8y =,3220z =>→输出32z =.故选B.4. 解析 因为x ∈R 时,20x …,所以命题p 是假命题;当tan 0α=或tan 0β=时,都有()tan tan tan αβαβ+=+,所以命题q 是真命题,所以()p q ⌝∧是真命题.故选C.5. 解析 由题可得{}15B x x =-<< ,若A B ⊆,则有2125a a --⎧⎨+⎩……,解得13a剟.故选A.6. 解析 因为143n n a a +=+,所以()1141n n a a ++=+.又因为14n a +=,所以{}1n a +是以4为首项,4为公比的等比数列,所以1214442n n n n a -+=⨯==,所以221n n a =-.故选D.7. 解析 令()0f x …,得2230x x -++…,解得1x -…或13x-剟,所以当[]01,3x ∈-时,()00f x …,根据几何概型知成立的概率()()311442P --==--. 故选B.8. 解析 由()3233f x x ax bx =++可得()2363f x x ax b '=++.因为()f x 有两个极值点1x ,2x ,所以()0f x '=有两个根1x ,2x ,且[]11,0x ∈-,[]21,2x ∈.又因为()f x '的图像开口向上,所以有()()()()10001020f f f f '-⎧⎪'⎪⎨'⎪⎪'⎩…………,即2102144a b b a b a b -⎧⎪⎪⎨+-⎪⎪+-⎩…………,对应的可行域如图阴影部分所示,所以点(),a b 在平面aOb 上所构成区域的面积111111121121222222S =⨯-⨯⨯-⨯⨯-⨯⨯=.故选D.9. 解析 221i i i 1i i iz --===--,所以z 10. 解析 ()()2,11,1x y +=++=-a b ,所以2111x y +=⎧⎨+=-⎩,解得12x y =-⎧⎨=-⎩,所以3x y +=-.11. 解析 由题意可得3600b a =,所以33360010800b a a =⨯=,所以这辆车的行驶速度/h x ==.12. 解析 曲线1C 和2C 的直角坐标系方程分别为20x y --=和28x y =,联立方程2208x y x y--=⎧⎨=⎩,消去y ,整理得28160x x -+=,解得4x =,所以1C 和2C 的交点只有1个. 13. 解析 由三视图可知该几何体是底面为直角三角形,高为1的倒置的三棱锥,将其放入正方体中如图所示,所以111111326V ⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭.414. 解析 解法一:如图所示,在圆O 上任取一点N ,连接ON ,在OMN △中,由正弦定理得sin sin ON OMOMN ONM =∠∠,即sin sin ON ONM OM ONM OMN∠==∠∠.又因为3π0,4ONM ⎛⎫∠∈ ⎪⎝⎭,所以(]sin 0,1ONM ∠∈,故(OM ∈,即2012x +…,得011x -剟,所以0x 的取值范围是[]1,1-.解法二:过点M 作圆O 的切线,切点为Q ,连接OQ ,如图所示,则)45,90OMQ ⎡∠∈⎣o o,所以sin sin 452OMQ ∠=o…又在Rt OMQ △中,1sin OQ OMQ OM OM ∠==,所以12OM …,即OM …11x -剟,即0x 的取值范围是[]1,1-.1CA。

高中数学新课程精品限时训练(33)

限时训练(三十三)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}1,0,1,2,3A =-,2{|30}B x x x =-<,则()A B =R I ð( ).A . {1}-B .{0,1,2}C .{1,2,3}D .{0,1,2,3} (2)已知复数2iia +-(其中a ∈R ,i 为虚数单位)是纯虚数,则i a +的模为( ). A.52B. C. 5D.(3)某产品在某销售点的零售价x (单位:元)与每天的销售量y (单位:个)的统计数据如下表所示( ).由表可得回归直线方程ˆˆˆybx a =+中的ˆ5b =-,根据模型预测零售价为20元时,每天的销售量约为( ). A. 30 B. 29C. 27.5D. 26.5(4)若非零向量,a b ,满足且()2-⊥a b a ,则a 与b 的夹角为( ). A.B. C.D. (5)ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若ABC △的面积22()S b c a =+-,则sin A =( ).A.517 B. 5C. 817D. 5(6)已知()f x 是定义在R 上的奇函数,且在()0,+∞上是增函数,若12log 3a f ⎛⎫=- ⎪⎝⎭,()4log 5b f =,(c f =,则a ,b ,c 之间的大小关系为( ).A. a b c <<B. a c b <<C. ba c << D. c ab <<(7).中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3 ,其体积为12.6(立方寸),则图中x 的为( )俯视图A. 2.5B. 3C. 3.2D. 4(8)将函数()22sin cos f x x x x =-(0)t t >个单位,所得图像对应的函数为奇函数,则t 的最小值为( ).A.B.D. (9)已知双曲线C : 2213y x -=的右顶点为A ,过右焦点F 的直线l 与C 的一条渐近线平行,交另一条渐近线于点B ,则ABF S ∆=( )A.B.4C. 8D. 2(10)斐波拉契数列0,1,1,2,3,5,8,L 是数学史上一个著名的数列,定义如下:()00F =,()11F =,()()()()122,F n F n F n n n =-+-∈N …,某同学设计了—个求解斐波拉契数列前15项和的程序框图,那么在空白矩形框和判断框内应分别填入的语句是( ).A. 14c a i =,…B. 14b c i =,…C. 15c a i =,…D. 15b c i =,…(11)如图所示,已知棱长为4的正方体ABCD A B C D -'''',M 是正方形BB C C ''的中心,P 是A C D ''△内(包括边界)的动点.满足PM PD =,则点P 的轨迹长度是( ).A1AA.2B.2CD (12)已知函数22,0()ln(1),0x x x f x x x ⎧-+=⎨+>⎩…,若a 的取值范围是( ).A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]-(13)若,x y 满足约束条件1020220x y x y x y -+⎧⎪-⎨⎪+-⎩………,则z x y =+的最大值为_____________.(14)若02απ<<,02βπ<<,3sin 35απ⎛⎫-= ⎪⎝⎭,cos 23βπ⎛⎫-= ⎪⎝⎭,则cos 2βα⎛⎫- ⎪⎝⎭的值为 .(15)已知抛物线2:8C y x =,点()0,4P ,点A 在抛物线上,当点A 到抛物线准线l 的距离与点A 到点P 的距离之和最小时,延长AF 交抛物线于点B ,则AOB △的面积为__________.(16)给出下列四个命题:①“若5x y +≠,则2x ≠或3y ≠”是假命题;②已知在ABC △中,“A B <”是“sin sin A B <”成立的充要条件;③若函数()()()()3141log 1a a x a x f x x x ⎧-+<⎪=⎨⎪⎩…,对任意的12x x ≠都有()()2121f x f x x x --<0,则实数a 的取值范围是1,17⎛⎫⎪⎝⎭;④若实数x , []1,1y ∈-,则满足221x y +…的概率为其中正确的命题的序号是__________(请把正确命题的序号填在横线上).限时训练(三十三)答案部分一、选择题二、填空题13.3214. 25 15. 16. ②④解析部分(1)分析 A 集合是具体的整数, B 集合是一元二次不等式,先求解,然后求出集合B 的补集,然后求交集. 解析 对于集合B ,由230x x -<,得230x x ->,解不等式得30x x ><或{|03}B x x =R 剟ð,所以(){}0123A B =R I ,,,ð.故选D.(2)分析 由已知条件利用复数代数形式的除法运算法则,再由纯虚数的概念,求出12a =,由此能求出i a +.再求模.解析 ()()()()()()22i i 212i2i i i i 1a a a a a a a ++-+++==--++是纯虚数,则21020a a -=⎧⎨+≠⎩,解得12a =,所以1i i 2a +=+==.故选B .(3)分析 由统计中回归直线方程的意义,先计算平均数,代入回归方程可求得ˆa,然后可以将20直接代入求解.解析 17.5,39x y == ,所以()39517.51.ˆ265a=--⨯=, 因此520126.526.5y =-⨯+=.故选D.(4)分析 . 解析 由()2-⊥a b a 得()20-⋅=a b a ,()2220-⋅=-⋅=a b a a a b ,即22a ab ⋅=r r r ,故选B.(5)分析 根据题意画出三角形,考虑用正弦定理和余弦定理求解,由于本题条件22()S b c a =+-可以用余弦定理化为2(cos 1)S bc A =+,因此选用1sin 2S bc A =,可进一步解出sin A 的值. 解析 由余弦定理222cos 2b c a A bc+-=,所以2222cos b c a bc A +-=,又因为22222()2S b c a b c a bc =+-=+-+2(cos 1)bc A =+,又由1sin 2S bc A =,12(cos 1)sin 2bc A bc A +=得,1cos 1sin 4A A +=所以,即1cos sin 14A A =-,221sin sin 114A A ⎛⎫+-= ⎪⎝⎭所以,8sin 17A =所以.故选C.(6)分析 根据函数的奇偶性,由于()f x 是定义在R 上的奇函数,且在()0,+∞上是增函数,则在(),0-∞上也是增函数,画出图像,再根据自变量的取值来判断.解析 因为()122log 3log 3a f f ⎛⎫=-= ⎪⎝⎭,()(42log 5log b f f ==,(c f =,所以由题设可得22log log 3<<b a c <<.故选C .(7)分析 根据三视图可得商鞅铜方升由一圆柱和一长方体组合而成.由此画出大致的立体图形来求解.解析 由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:()215.4 1.61 1.612.62x ⎛⎫-⋅⋅+π⋅⋅= ⎪⎝⎭,π=3,解得x =3.故选B.(8)分析为奇函数可得t .解析,平移后函数,0k = 时, t .故选D. (9)分析 根据双曲线方程可以求出右顶点F 为和焦点A ,再根据渐近线的特征,可求B 点,从而可要求面积.解析 因为()()2,1,0,2,0c A F ==0y ±=,所以直线l 的方程为)2y x =-,与0y +=联立可得(1,B ;又因为1AF =,所以112ABF S ∆=⨯=.应选答案D. (10)分析 根据算法的程序框图,准确进行循环代入计算解析 依题意知,程序框图中变量S 为累加变量,变量a b c ,,(其中c a b =+)为数列连续三项,在每一次循环中,计算出S 的值后,变量b 的值变为下一个连续三项的第一项a ,即a b =,变量c 的值为下一个连续三项的第二项b ,即b c =,所以矩形框应填入b c =,又程序进行循环体前第一次计算S 的值时已计算出数列的前两项,因此只需要循环12次就完成,所以判断框中应填入14i ….故选B.(11)分析 满足PM PD =的点P 的轨迹是过MD 的中点,且与MD 垂直的平面,根据P 是A C D ''△内(包括边界)的动点,可得点P 的轨迹是两平面的交线ST .T 在中点,S 在4等分点,利用余弦定理,求出ST 即可. 解析 满足PM PD =的点P 的轨迹是过MD 的中点,且与MD 垂直的平面,因为P 是A C D ''△内(包括边界)的动点,所以点P 的轨迹是两平面的交线ST .T 在中点,S 在4等分点时,SD =SM ==满足SD SM =所以SD =TD =,所以ST ==D .A 1A(12)分析 在直角坐标系内作出函数()y f x =的图像与直线y ax =的图像,结合导数的几何意义求解,充分体现图形的作用.解析 在直角坐标系内作出函数()y f x =的图像与直线y ax =的图像,因为当0x …时,2()2y f x x x ==-,22y x '=-,02x y ='=-,即当直线y ax =与2()2y f x x x ==-相切时,2a =-,a的取值范围是[2,0]-.故选D .(13)分析 根据题意在直角坐标系中作出可行域,再根据目标函数来求解. 解析 如图所示可得在11,2A ⎛⎫⎪⎝⎭处取得最大值,即max 13122z =+=.(14)分析 本题的解题关键在于根据已知条件进行拆分和揍角,注意角的范围.据题设条件,观察出角之间的关系,将cos 2βα⎛⎫-⎪⎝⎭表示cos cos 2323ββαα⎡ππ⎤⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43555525⨯+⨯= ,从而将问题进行等价转化,从而使得问题巧妙获解. 解析43cos cos 232355ββαα⎡ππ⎤⎛⎫⎛⎫⎛⎫-=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故填25. (15)分析 由题可知:当点A 到抛物线准线l 的距离与点A 到点P 的距离之和最小时,根据抛物线性质抛物线上一点到准线的距离等于到焦点的距离,所以当P A F 、、三点共线时达到最小值.解析 由0,42,0P F ()、(),可得:240AB l x y +-=,联立抛物线方程可得: 2640x x -+=,设点()()1122,,,A x y B x y ,故126410AB x x p =++=+=,原点到直线:240AB l x y +-=的距离为d ==AOB ∆的面积为11052⨯=,因此填:(16)分析 根据命题进行逐一判断.解析 因为 “若5x y +≠,则2x ≠或3y ≠”的逆否命题“若2x =且3y =,则5x y +=”是真命题,所以①是错误;因为sin sin a b A B A B <⇔<⇔<,所以②正确;若函数()()()()3141log 1a a x a x f x x x ⎧-+<⎪=⎨⎪⎩…,对任意的12x x ≠都有()()21210f x f x x x -<-可得函数为减函数,即310013140a a a a -><<+⎪-⎧⎪⎨⎩…,式可得实数x , []1,1y ∈-,则满足221x y +…的概率为.故答案为②④.。

高中数学新课程精品限时训练(13)

高考数学选择题、填空题限时训练文科(十三)一、 选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有 一项是符合题目要求的.1. 已知集合{}2320A x x x =-+=,{}2,1,1,2B =--,则A B =( ).A.{}2,1--B.{}1,2-C.{}1,2D.{}2,1,1,2--2. 下列函数中,既是奇函数又在区间()0,+∞上单调递减的是( ). A.22y x =-+B.1y x=C.2xy -=D.ln y x =3. 在复平面内,复数()21+2i 对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限 4. 某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( ).(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A.3B.2D.15. 执行如图所示的程序框图,则输出s 的值为( ). A.10 B.17 C.19 D.366. 设a ,b 是实数,则“a b >”是“a a b b >”的( ). A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7. 已知无穷数列{}n a 是等差数列,公差为d ,前n 项和为n S ,则(A.当首项10,0a d ><时,数列{}n a 是递减数列且n S 有最大值B.当首项10,0a d <<时,数列{}n a 是递减数列且n S 有最小值C.当首项10,0a d >>时,数列{}n a 是递增数列且n S 有最大值侧视图俯视图11222211D.当首项10,0a d <>时,数列{}n a 是递减数列且n S 有最大值8.如图a 对应于函数()f x ,则在下列给出的四个函数中,图b 对应的函数只能是( ).图a 图b A. ()1y f x =+B. ()1y fx =+C. ()1y f x =-D. ()1y f x =-二、填空题(本大题共6小题,每小题5分,共30分)9. 双曲线2214x y m -=的离心率为2,则m = ,其渐近线方程为 .10. 不等式组0,20,30x x y x y ⎧⎪+⎨⎪-+⎩所表示平面区域的面积为 .11.设向量)=a ,()2,2=-b ,若()()λλ+⊥-a b a b ,则实数λ= .12. 已知函数()3269f x x x x =-+,则()f x 在闭区间[]1,5-上的最小值为 , 最大值为 . 13.已知直线:l y =,点(),P x y 是圆()2221x y -+=上的动点,则点P 到直线l 的距离的最小值为 . 14. 已知函数()()π2sin 0,6f x x x ωω⎛⎫=+>∈ ⎪⎝⎭R .又()12f x =-,()20f x =且12x x - 的最小值等于π,则ω的值为 .限时训练(十三)文科参考答案二、填空题9. 1 ,12y x =±10. 3211. 12. 16- ,20 13.1 14.12解析部分1. 解析 集合{}1,2A =,所以{}1,2AB =.故选C.2. 解析对于A ,22y x =-+是偶函数,对于C ,2xy -=在R 上是减函数;对于D ,ln y x=是非奇非偶函数.故选B.3. 解析 ()212i 14i 434i +=+-=-+,故对应的点位于第二象限.故选B. 4. 解析 根据俯视图定底,侧视图定高可得三棱锥的底面积122S =⨯=,高h =113V ==.故选D.5. 解析 0,2,2102,3,3105,5,510S k S k S k ==<→==<→==<→10,S =9,91019,17,1710k S k =<→==>→输出. 19S =.故选C.6. 解析 令()f x x x =,则()22,0,0x x f x x x ⎧⎪=⎨-<⎪⎩.所以()f x 在R 上单调递增,所以a b a a b b >⇔>,即“a b >”是“a a b b >”成立的充要条件.故选C. 7. 解析 对于无穷的等差数列{}n a ,当0d >时,是递增数列,当0d <时,是递减数列,故排除D ;当10a >,0d <时,n S 有最大值,故A 正确;当10a <,0d <时,n S 无最小值,故B 不正确;当10a >,0d >时,n S 无最大值,故C 不正确.故选A.8. 解析 观察图b 与图a ,可知将图a 中的图像作出其关于y 轴对称的部分,可得()f x -的图像,再将()f x -的图像向右平移一个单位,可得()()11f x f x --=-⎡⎤⎣⎦的图像,即为图b.故选C.9. 解析 由双曲线的方程得24a =,2b m =.因为2c e a ==,所以2254c a =,所以22254a b a +=,即4544m +=,所以1m =,所以双曲线的渐近线方程为12y x =±. 10. 解析 不等式组所表示的平面区域如图所示阴影部分. 联立2030x y x y +=⎧⎨-+=⎩,解得()1,2A -,联立030x x y =⎧⎨-+=⎩,解得()0,3B ,所以11331222AOB A S OB x ==⨯⨯=△.11. 解析 由()()λλ+⊥-a b a b ,得()()0λλ+⋅-=a b a b ,即2220λ-=a b , 故222λ=a b ,且2=a,=b 248λ=,解得λ=12. 解析 ()()()23129313f x x x x x '=-+=--[]()1,5x ∈-,所以在区间()1,3内,()0f x '<,()f x 单调递减,在区间()1,1-和()3,5内,()0f x '>,()f x 单调递增,所以()f x 在区间[]1,5-的最大值为()(){}1,5f f 的较大者,最小值为()(){}1,3f f -的最小者.经计算比较得()()max 520f x f ==,()()min 116f x f =-=-. 13. 解析 圆心()2,0到直线:0l y -=的距离2d ==,所以点P 到直线l 的距离的最小值等于1d r -=.14. 解析 因为()12f x =-为()f x 的最小值,所以1x x =是()f x 的一条对称轴.因为()20f x =,所以()2,0x 是()f x 的一个对称中心.又因为12x x -的最小值为π,所以相邻的对称轴与对称中心的距离为π.所以=π4T,4πT =,所以2π12T ω==.。

高中数学新课程精品限时训练(40)


z
满足
z2
R
,则
z
R

p3 : 若复数 z1, z2 满足 z1z2 R ,则 z1 z2 ; p4 :若复数 z R ,则 z R .
其中的真命题为( ).
A. p1, p3
B. p1, p4
C. p2 , p3
D. p2 , p4
4.记 Sn 为等差数列an 的前 n 项和.若 a4 a5 24 , S6 48 ,则{an} 的公差为( ).
C. 220
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知向量 a , b 的夹角为 60 , a 2 , b 1,则 a 2b
D.110
.
x 2y 1
14.设 x,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值为
.
x y 0
15.已知双曲线 C :
3y f 3ln t , 5z f 5ln t .由 e<3<4<5 ,得 3y 2x 5z .故选 D.
12. 解析 设首项为第 1 组,接下来两项为第 2 组,再接下来三项为第 3 组,以此类推.
设第 n 组的项数为 n ,则 n 组的项数和为 n1 n ,由题意得, N 100 ,令 n1 n 100 ,
2
倍,纵坐标不变,再把得到的曲线向右平移
π 6
个单位长度,
得到曲线 C2
B.把
C1
上各点的横坐标伸长到原来的
2
倍,纵坐标不变,再把得到的曲线向左平移
π 12
个单位长度,
得到曲线 C2
C.把
C1
上各点的横坐标缩短到原来的
1 2
倍,纵坐标不变,再把得到的曲线向右平移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题、填空题限时训练文科(十一)
一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一 项是符合题目要求的.
1.设全集U =R ,集合{
}1
2A x x
=-,{}0
1B x x
=,则U
A B =( ).
A .{}01x x x <>或 B. {}102x x x
-<<或1
C .{
}1
02x x x
-或1
D. {}12x x x <->或
2.命题:p x ∀∈R ,2
10x +>,命题:q θ∃∈R ,2
2sin cos 1.5θθ+=,则下列命题中真命题是
( ). A .
p q ∧ B .p q ⌝∧ C .p q ⌝∨ D .()p q ∧⌝
3.某一棱锥的三视图如图所示,则其侧面积为( ).
A
.8+ B .20 C
. D
.8+
4.下列函数中,既是偶函数又在()0,+∞单调递增的函数是( ). A .1y x
=-
B .e x y =
C .2
3y x =-+ D .cos y x = 5.若x ,y 满足约束条件03003x y x y x +⎧⎪
-+⎨⎪⎩
,则2z x y =-的最小值为( ).
A .6-
B .9
2
-
C .3-
D .9 6.阅读下边程序框图,为使输出的数据为31,则判断框中应填入的条件为( ). A .4i
B .5i
C .6i
D .7i
左视图
主视图
俯视图
7.已知双曲线2
2
1y x m
-=与抛物线28y x =的一个交点为P ,F 为抛物线的焦点,若5PF =,则双曲线的渐近线方程为( ). A .20x y ±= B .20x y ±= C 0y ±= D .0x = 8.设集合W 由满足下列两个条件的数列{}n a 构成:
①2
12
n
n n a a a +++<;②存在实数M ,使n a M .(n 为正整数).
在以下数列(1){}
21n +;(2)29211n n +⎧⎫⎨⎬
+⎩⎭
;(3)42n ⎧⎫+⎨⎬⎩⎭
;(4)112n ⎧

-⎨⎬⎩⎭
中属于集合W 的数列编号为( ).
A .(1)(2)
B .(3)(4)
C .(2)(3)
D .(2)(4) 二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中的横线上. 9.i 是虚数单位,则
2
1i
=+ . 10.在平行四边形ABCD 中,若()1,3AB =,()2,5AC =,则向量AD 的坐标为 . 11.过原点且倾斜角为60的直线被圆2
2
40x y y +-=12.已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫
=+><< ⎪⎝

则ω= ,ϕ
= .
13.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为 千米时,运费与仓储费之和最小,最小值为 万元. 14.已知函数()2sin f x x ω=(其中常数0ω>),若存在12π,03x ⎡⎫∈-
⎪⎢⎣⎭,2π0,4x ⎛⎤
∈ ⎥⎝⎦
,使得()()12f x f x =,则ω的取值范围为 .
S =1,i =1
结束
输出S

1
2i
开始
限时训练(十一)文科参考答案
一、选择题
二、填空题
9. 1i - 10. ()1,2 11. 12. 2ω=,π
3
ϕ=
13. 20 14. 3,2⎛⎫+∞
⎪⎝⎭
解析部分
1. 解析
{}
01U
B x x x
=<>或 .借助数轴得
{
}
1
02U
A
B x x x
=-<<或
1.
故选B.
2. 解析 对于命题p ,2
1
10x +>,是真命题;对于命题q ,22sin cos 1θθ+=,是假命题.观
察4个选项,只有D 正确.故选D.
3. 解析 根据棱锥的三视图画出其直观图如图所示:
其底面是长为6,宽为4的矩形,棱锥的高为2,斜高PE =PF =所以棱锥的侧面积
11
624222
S =⨯⨯+⨯=
4. 解析 对于A ,1y x
=-
为奇函数;对于C ,2
3y x =-+在()0,+∞上递减;对于D ,cos y x =为周期函数,在()0,+∞上不具有单调性.故选B.
5. 解析 画出可行域如图所示.由图可得当直线2z x y =-经过点A 时,z 取得最小值.联立方程
30x x y =⎧⎨
-+=⎩
,得()0,3A ,所以min 2033z =⨯-=-.故选C. F
E
O
B
A
P
D C
6. 解析 2
1,113,2327,3S i S i i S i ==→=+==→=+==→3
7215,S =+=
4415231,5i S i =→=+==→输出S .因此4i
.故选A.
7. 解析 设P 点坐标为()00,x y .由抛物线性质可得052
p
PF x =+
=,又4p =,所以03x =,所以P
点坐标为(
或(3,-.将P 点坐标代入双曲线方程得24
91m
-=,即3m =,所以双
曲线的渐近线方程为y =.故选C.
8. 解析 对于数列(1),随着n 的增大,2
1n +的值不断增大,故不存在实数M ,使
21
n M +,故数列(1)不属于集合W .对于数列(3),由于()()2
21n n n +<+,所以
()()()()
2
442241412242222222211n n n n n n n n n n ++++++=++=+>+=+++++,故不符合条件①,所
以数列(3)不属于集合W .故选D. 9. 解析
()2
21i 2
1i 1i 1i -==-+-. 10. 解析 根据向量加法的平行四边形法则得()1,2AD AC AB =-=.
11. 解析 圆的方程化为标准方程为()2
2
24x y +-=,所以圆心坐标为()0,2,半径2r =.因为直
线过原点且倾斜角为60
0y -=.
所以圆心到直线的距离1d =
=,所
以弦长等于=
12. 解析 由函数()f x 的图像可得7ππ4123T =-,所以πT =,所以=2ω.因为图像过π,03⎛⎫ ⎪⎝⎭
点,所以
2ππ3ϕ+=,所以π
3
ϕ=. 13. 解析 设仓库距离为()0x x >,则运费11y k x =,仓储费2
2k y x
=.由题可得15k =,220k =,所以仓储费和运费之和202052520y x x x
x =+

=,当且仅当205x x
=即2x =时,等号成立,所以当工厂和仓库之间的距离为2千米时,费用之和最小,最小值为20万元. 14. 解析 由题知()2sin f x x ω=是奇函数,因为存在12π,03x ⎡⎫∈-
⎪⎢⎣⎭,2π0,4x ⎛⎤
∈ ⎥⎝⎦
,使()()12f x f x =,所以()f x 周期224233T ω
π
ππ=
<
⨯=
,解得32ω>,则ω取值范围为3,2⎛⎫
+∞ ⎪⎝⎭
.。

相关文档
最新文档