高中数学知识点大全(含常用公式)
高中数学常用公式及知识点总结

高中数学常用公式及知识点总结高中数学是一门重要的学科,也是一门需要深入理解和记忆大量公式和知识点的科目。
下面将对高中数学常用的公式和知识点进行总结,方便同学们复习和记忆。
一、代数知识点和常用公式1. 平方差公式:(a+b)(a-b)=a²-b²2. 二次方程求根公式:对于ax²+bx+c=0,若Δ=b²-4ac>0,则方程有两个不相等实根;若Δ=0,则方程有一个重根;若Δ<0,则方程无实根。
3. 高中数学中常见的一元二次方程:ax²+bx+c=0,其中a≠0。
4. 因式分解公式:a²-b²=(a+b)(a-b)5. 一次函数方程 y=ax+b,其中a为斜率,b为截距。
6. 二次函数方程 y=ax²+bx+c,其中a为抛物线开口方向和形状,b为对称轴方向上的平移,c为抛物线的位置偏移量。
7. 幂函数方程y=axⁿ,其中a为比例系数,n为指数。
8. 对数函数方程y=logₐx,其中a为底数,x为真数,y为对数。
二、几何知识点和常用公式1. 直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
即a²+b²=c²(a,b为两边,c为斜边)。
2. 等腰三角形的两底角相等,两腰相等。
3. 正弦定理:对于任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有sinA/a=sinB/b=sinC/c。
4. 余弦定理:对任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有c²=a²+b²-2abcosC。
5. 计算圆的面积公式:πr²,其中r为圆的半径。
6. 计算圆的周长公式:2πr,其中r为圆的半径。
7. 计算椭圆的面积公式:πab,其中a、b为椭圆的半长轴和半短轴。
8. 计算长方体的体积公式:V=lwh,其中l、w、h为长方体的长、宽、高。
高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)在高中数学学习中,掌握数学公式和知识点是至关重要的。
本文将为大家总结高中数学中常用的公式和知识点,旨在帮助同学们更好地学习和掌握数学知识,提高数学成绩。
一、基础知识点总结1. 直线与平面几何- 直线的方程:一般式、点斜式、两点式等- 直线与角的关系:平行线、垂直线等- 圆的性质:圆的方程、弧长、面积等2. 集合与不等关系- 集合的运算:并集、交集、差集等- 不等关系的性质:大于、小于、等于等3. 函数- 函数的性质:奇函数、偶函数、单调性等- 常用函数:一次函数、二次函数、指数函数等- 函数的图像及性质:拐点、极值点等二、常用公式总结1. 代数式与因式分解- (a+b)² = a²+2ab+b²- (a-b)² = a²-2ab+b²- a²-b² = (a+b)(a-b)2. 几何与三角函数- 三角函数基本关系:sin²θ+cos²θ=1- 角平分线定理:直角三角形中,垂直边上的高等于斜边上的高3. 二次函数与方程- 一元二次方程:ax²+bx+c=0- 二次函数顶点坐标:(-b/2a, -Δ/4a)三、高中数学实例应用1. 解析几何- 坐标系、直线、圆等的相关性质- 平面图形的运用:平行四边形、三角形、梯形等2. 统计与概率- 统计学基本概念:均值、方差、标准差等- 概率论基础知识:样本空间、事件的概率等通过本文的数学公式及知识点总结,希望能够帮助广大高中同学更深入地了解数学知识,提高学习成绩。
数学虽然有一定的难度,但只要勤奋学习、不断总结经验,相信大家一定能够在数学的道路上越走越远。
祝各位同学学习进步,取得优异成绩!。
高中数学公式及知识点总结大全

高中数学公式及知识点总结大全数学是一门基础学科,对于高中学生来说,掌握好数学公式和知识点至关重要。
以下是高中数学公式及知识点的全面总结,希望对学生们有所帮助。
一、代数1.1 一元一次方程(ax+b=0)- 方程求根公式:x=-b/a- 解方程步骤:去括号、合并同类项、移项、化简、求解1.2 二元一次方程组(ax+by=c,dx+ey=f)- 解方程步骤:消元法、代入法、等系数法、加减消法、图解法1.3 一元二次方程(ax^2+bx+c=0)- 二次根公式:x=(-b±√(b^2-4ac))/(2a)- 判别式:Δ=b^2-4ac,当Δ>0时有两个不相等实根,当Δ=0时有两个相等实根,当Δ<0时无实根1.4 二次函数- 标准式:y=ax^2+bx+c- 最值判定:当a>0时,函数的最小值为f(x)=-Δ/(4a),当a<0时,函数的最大值为f(x)=-Δ/(4a)1.5 不等式- 一元一次不等式:大于(<)、小于(>)、大于等于(≤)、小于等于(≥)- 一元二次不等式:大于、小于、大于等于、小于等于二、平面几何2.1 三角形- 三角形内角和定理:三角形内角和为180度- 三角形外角定理:三角形的外角等于相对内角的补角- 等边三角形:三条边相等,每个内角为60度2.2 圆- 弧度制:一周对应的弧度为2π- 弧长公式:L=θr- 扇形面积公式:S=θr^2/2- 圆的面积公式:S=πr^22.3 直线与坐标- 斜率公式:m=(y2-y1)/(x2-x1)- 点斜式:y-y1=m(x-x1)- 两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)三、立体几何3.1 体积与表面积- 立方体:体积V=a^3,表面积S=6a^2- 圆柱体:体积V=πr^2h,侧面积S=2πrh,表面积S=2πrh+2πr^2 - 球体:体积V=4/3πr^3,表面积S=4πr^2- 锥体:体积V=1/3πr^2h,侧面积S=πrl,底面积S=πr^2,表面积S=πr(r+l)3.2 三视图与投影- 正交投影:俯视图、正视图、左视图、右视图、前视图、后视图- 等轴投影:正等轴投影、侧等轴投影、俯等轴投影四、概率与统计4.1 概率- 事件概率:P(A)=n(A)/n(S)- 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)- 乘法公式:P(A∩B)=P(A)P(B|A)4.2 统计- 平均数:算术平均数、几何平均数、调和平均数- 中位数:数据中间的数值- 众数:出现频率最高的数值五、函数与导数5.1 常见函数- 幂函数:y=x^n- 指数函数:y=a^x,其中a>0且a≠1- 对数函数:y=loga(x),其中a>0且a≠1- 三角函数:正弦函数、余弦函数、正切函数5.2 导数- 导数定义:f'(x)=lim(h→0)(f(x+h)-f(x))/h- 导数的性质:和法则、差法则、积法则、商法则、链式法则以上是高中数学公式及知识点的全面总结,包括代数、平面几何、立体几何、概率与统计、函数与导数等内容。
高中数学知识点总结及公式大全(7篇)

高中数学知识点总结及公式大全(7篇)高中数学知识点总结及公式大全1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
面外直线的判定定理:用平面内一点与平面外一点之间的直线,平面内不经过该点的直线为面外直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面的夹角:平面的对角线与其在该平面上的投影所形成的锐角。
高中数学知识点总结及公式大全2(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为f(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1.函数与方程(1)函数的概念、性质及表示方法(2)一次函数、二次函数、幂函数、指数函数、对数函数的性质和图像(3)函数的运算(4)一次方程、二次方程、一元高次方程的解法(5)多项式方程、分式方程的解法(6)不等式的解法2.数列与数学归纳法(1)数列的概念及表示方法(2)等差数列和等比数列的性质和求和公式(3)递推数列与通项公式(4)数学归纳法的原理和应用3.几何与三角函数(1)平面几何的基本概念和性质(2)三角函数的基本概念和性质(3)三角恒等式与解三角方程(4)解三角形(5)平面向量的概念和运算(6)解向量的应用问题4.数与图的关系(1)直角坐标系与平面图形的性质(2)平面图形的对称性质与判定方法(3)空间图形的投影与视图(4)立体图形的表面积与体积5.概率与统计(1)概率的基本概念(2)古典概型与几何概型(3)事件的概率与计数原理(4)随机变量的概念和分布(5)统计的基本概念和方法(6)参数估计与假设检验1.一次函数的一般式方程:y=ax+b2.一次函数的斜率公式:a=(y2-y1)/(x2-x1)3.二次函数的一般式方程:y=ax^2+bx+c4.二次函数的顶点坐标公式:x= -b/(2a),y= -(b^2-4ac)/(4a)5.二次函数的判别式公式:△=b^2-4ac6.指数函数的定义域:(-∞,+∞)7.指数函数的性质:a^m * a^n= a^(m+n),a^(-n)=1/(a^n),(a^m)^n= a^(mn)8.对数函数的性质:log(xy)=log(x)+log(y),log(x/y)=log(x)-log(y),log(a^n)=nlog(a)9.等差数列的通项公式:an=a1+(n-1)d10.等差数列的求和公式:Sn=n/2(a1+an)11.等比数列的通项公式:an=a1*r^(n-1)12.等比数列的求和公式:Sn=a1(1-r^n)/(1-r)13.三角函数的互余关系:sin(π/2-θ)=cos(θ),tan(π/2-θ)=cot(θ),sec(π/2-θ)=csc(θ)14.三角函数的和差化积公式:sin(α±β)=sin(α)cos(β)±cos(α)sin(β),cos(α±β)=cos(α)cos(β)∓sin(α)sin(β)15.立体图形的表面积和体积的公式:长方体的表面积=2(ab+bc+ac),长方体的体积=abc,球体的表面积=4πr^2,球体的体积=(4/3)πr^3。
高中数学知识点总结及公式大全

高中数学知识点总结及公式大全一、代数1.一次函数及相关知识一次函数的一般式方程为y=kx+b,其中k为斜率,b为截距。
与x轴交点:x=-b/k与y轴交点:y=b斜率的计算: k=(y2-y1)/(x2-x1)2.二次函数及相关知识二次函数的一般式方程为y=ax^2+bx+c,其中a≠0。
二次函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。
二次函数的判别式为Δ=b^2-4ac,当Δ>0时,二次函数有两个实数解;当Δ=0时,二次函数有一个重复实数根;当Δ<0时,二次函数无实数解。
3.指数函数及对数函数指数函数的一般式方程为y=a^x,其中a>0且a≠1。
对数函数的一般式方程为y=logax,其中a>0且a≠1。
对数函数的性质:loga1=0,loga(a^x)=x,a^(logax)=x4.幂函数幂函数的一般式方程为y=x^a,其中a为常数。
5.绝对值函数绝对值函数的一般式方程为y=|x|。
6.组合函数组合函数即将一个函数的输出值作为另一个函数的输入值得到的新函数。
例如,若f(x)和g(x)均为函数,则(f∘g)(x)=f(g(x))。
7.多项式及相关知识n次多项式的一般式为:y=a_nx^n+a_(n-1)x^(n-1)+...+a1x+a0多项式的除法:对于多项式f(x)÷g(x),若g(x)≠0,则商多项式为q(x)、余式为r(x)且f(x)=g(x)q(x)+r(x)多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd8.解方程二元一次方程组求解:通过消元法、代入法、加减消去法等方法求解一元二次方程求解:可以通过配方法、公式法、因式分解等方法求解复杂方程求解:可以通过讨论函数单调性、先化为一次函数或二次函数等方法求解9.不等式一元一次不等式的解法:利用加减法、乘除法、绝对值法等方法求解一元二次不等式的解法:先将不等式化为标准形式,然后通过讨论函数的单调性、绘制函数图像、代数法等方法求解10.排列与组合排列:当n个人中取m个人,且彼此不考顺序,则排列数用P(m,n)表示,其计算公式为:P(m,n)=n!/(n-m)!组合:当n个人中取m个人,彼此不考顺序,则组合数用C(m,n)表示,其计算公式为:C(m,n)=n!/(m!(n-m)!)11.数列与数学归纳法数列的概念:数列是按一定顺序排列的一组数。
高中数学知识点总结及公式大全
高中数学知识点总结及公式大全关于高中数学知识点总结及公式大全空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高一必修二数学复习知识点总结空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。
高中数学知识点总结及公式大全
高中数学知识点总结及公式大全1. 代数1.1 代数运算1.1.1 加法运算•加法运算法则:如果a、b是实数,则a + b = b + a1.1.2 减法运算•减法运算法则:如果a、b是实数,则a - b ≠ b - a1.1.3 乘法运算•乘法运算法则:如果a、b是实数,则a * b = b * a1.1.4 除法运算•除法运算法则:如果a、b是实数且b≠0,则a / b ≠ b / a1.2 一元二次方程1.2.1 一元二次方程的定义•一元二次方程的标准形式为:ax^2 + bx + c = 0,其中a、b、c是已知实数,且a≠0。
1.2.2 一元二次方程求解公式•一元二次方程的求解公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.3 等差数列1.3.1 等差数列的定义•等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等。
1.3.2 等差数列的通项公式•等差数列的通项公式为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。
1.4 等比数列1.4.1 等比数列的定义•等比数列是指一个数列中,从第二项起,每一项与它的前一项的比都相等。
1.4.2 等比数列的通项公式•等比数列的通项公式为:an = a1 * r^(n - 1),其中a1是首项,r是公比,n是项数。
2. 几何2.1 平面几何2.1.1 直线与平面的位置关系•平面与直线的位置关系有三种情况:平面与直线相交、平面与直线平行、平面与直线重合。
2.1.2 平行线的性质•平行线的性质包括:平行线不相交、平行线上的任意两点到另一平行线的距离相等、平行线的斜率相等。
2.2 空间几何2.2.1 点、直线、平面的位置关系•点、直线、平面的位置关系有三种情况:点在直线上、点在平面上、直线与平面的位置关系。
2.2.2 空间几何中的立体图形•空间几何中的立体图形包括:球体、立方体、圆锥、圆柱、棱柱等。
高中数学重点知识点总结与常用公式整理
高中数学重点知识点总结与常用公式整理数学作为一门基础科学,对于高中学生来说,是一门重要的学科。
在学习数学的过程中,我们需要掌握一些重点知识点和常用公式。
本文将对高中数学的一些重点知识点进行总结,并整理常用的公式。
一、代数与函数1. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 二次根式化简:√(ab) = √a × √b√(a^2 + b^2) 通常化简成√a^2 + √b^2 = a + b3. 一元二次方程的求解公式:对于方程ax^2 + bx + c = 0,有:x = (-b ± √(b^2 - 4ac)) / 2a4. 三角函数的基本关系:sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = 1 / tanθsecθ = 1 / cosθcosecθ = 1 / sinθ二、数列与数学归纳法1. 等差数列的通项公式:a_n = a_1 + (n - 1)d2. 等比数列的通项公式:a_n = a_1 × r^(n - 1)3. 等差数列的前n项和公式:S_n = n/2 × (a_1 + a_n)4. 等比数列的前n项和公式:S_n = a_1 × (1 - r^n) / (1 - r)三、平面几何1. 三角形的内角和公式:α + β + γ = 180°2. 三角形的面积公式:S = 1/2 × a × hS = √[s(s - a)(s - b)(s - c)] (海伦公式)3. 直角三角形勾股定理:a^2 + b^2 = c^24. 三角形余弦定理:a^2 = b^2 + c^2 - 2bc × cosα5. 三角形正弦定理:a/sinα = b/sinβ = c/sinγ6. 直线与圆的位置关系:切线斜率 = 圆上点的斜率7. 长方形的性质:对角线相等,且相互垂直四、立体几何1. 立方体的体积和表面积: V = a^3S = 6a^22. 圆柱的体积和表面积:V = πr^2hS = 2πrh + 2πr^23. 圆锥的体积和表面积:V = 1/3πr^2hS = πr (l + r)4. 球的体积和表面积:V = 4/3πr^3S = 4πr^2五、概率与统计1. 基本概率公式:P(A) = 所求事件A的可能性数 / 总的可能性数2. 随机事件的相互关系:交集:A∩B并集:A∪B互斥事件:A∩B = ∅3. 正态分布:标准正态分布:μ = 0,σ = 1一般正态分布:μ为平均值,σ为标准差4. 统计指标:平均数: (x1 + x2 + ... + xn) / n中位数:将一组数据从小到大排列后的中间值众数:数据集中出现次数最多的数值极差:最大值与最小值之差方差:各个数据与平均数之差的平方和的平均数标准差:方差的平方根通过对以上重点知识点和常用公式的整理,我们可以更加方便地应用数学工具解决实际问题。
高中数学知识点总结及公式大全
高中数学知识点总结及公式大全1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,注:韦达定理。
(5)判别式1)b2-4a=0,注:方程有相等的两实根。
2)b2-4ac\u003e0,注:方程有一个实根。
3)b2-4ac\u003c0,注:方程有共轭复数根。
2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
x x x
0 .当 f
x0
0 时:
(1) 如果在 (2) 如果在
0 ,那么 f x0 是极大值; 0 ,那么 f x0 是极小值.
指数函数、对数函数 分数指数幂
m
(1) (2)
an
m
n
a (a
m
0, m, n
m
N ,且 n 0, m, n
1).
a
n
1
m n
1 a
(
a
N ,且 n 1 ) .
an
根式的性质 ( 1 )当 当
1
倍(纵坐标不变) ,得到函数
y
sin
x 的图象;再将函数
y
sin
x 的图象上所有点向左(右)平移
个单位长度,得到函数
y
sin
x
的图象;再将函数
y
sin x
x
的图象上所有点的纵坐标伸长(缩短)到原来的
倍
(横坐标不变) ,得到函数
y
sin
的图象.
13. 正弦函数、余弦函数和正切函数的图象与性质: 性 函 质 数
x1 x1
kx b (b 为直线 l 在 y 轴上的截距 ).
(
y1
y2 )( P 1( x 1 , y1 ) 、 P 2 ( x2 , y2 ) ( x1
a、 b 0)
x2 )).
(4) 截距式 ( 5)一般式 若 l1 :
a b Ax By
1 ( a、 b 分别为直线的横、纵截距, C 0 ( 其中 A 、 B 不同时为 0).
,
cos 2
sin
.
6 sin 2
cos
,
cos 2
sin
.
口诀:正弦与余弦互换,符号看象限.
10、和角与差角公式
sin( cos(
) )
sin cos
cos cos
cos sin sin sin
; ;
第 2 页(共 10 页)
tan(
)
tan 1 tan
tan tan
.
11、二倍角公式
sin 2 cos2 tan 2
: log a N
log a N
0, 且 a 0 ). 0 ).
0, 且m
N( a
0,且a 0, 且 a
1, N 1, N
log am b
n
n m
log a b ( a
常见的函数图象
y y
y y y
k<0
o
k>0
x o
a<0
x
2 -1
o
1 y=x+ x 1
x
y=a x
0<a<1 1
o x
y=log a x
a b |a| |b| x
2 1
0 ,则
2 2
cos
x1x2 y
2 1
y1 y2 x
2 2
( a = ( x1 , y1 ) ,
b = ( x2 , y2 ) ).
y
22、向量的平行与垂直 设 a = ( x1, y1 ) ,
b = ( x2 , y2 ) ,且 b a x 1 y2 a b 0 x2 y1
y1 ) , b = ( x2 , y2 ) ,则 a ・ b = x1x2
n 项的和的关系 ( 数列
y1 y2 .
三、数列
23、数列的通项公式与前
an
s1, sn
n 1 sn 1, n 2
{ an } 的前 n 项的和为 sn
a1
a2
an ).
24、等差数列的通项公式
an
a1
( n 1)d
dn a1
2
的正弦、余弦,等于
1 sin 2 k 2 sin 3 sin 4 sin
sin sin sin sin
,
,
cos 2k cos cos
cos cos
,
,
tan 2k tan tan
.
tan
.
k
.
,
,
tan
cos cos
tan
,
,
cos
tan
tan
.
口诀:函数名称不变,符号看象限.
5 sin
2
cos
(2) 设函数 y
函数 . 2、函数的奇偶性 对于定义域内任意的 对于定义域内任意的 3、函数 y 函数 y 程是
x ,都有 f ( x) x ,都有 f ( x )
f ( x ) ,则 f ( x) 是偶函数; f ( x) ,则 f ( x) 是奇函数。
y 轴对称。
奇函数的图象关于原点对称,偶函数的图象关于
或
sn
a1 anq ,q 1 . 1 q na1 , q 1
四、不等式
28、
x 2
y
xy 。必须满足一正 ( x, y 都是正数)、二定( xy 是定值或者 x
y 是定值)、三相等 ( x
y
第 5 页(共 10 页)
时等号成立)才可以使用该不等式) ( 1)若积 xy 是定值 p ,则当 x ( 2)若和 x
2
在
2k
,2 k 2 k ,2 k
上是减函数.
k
上是增 在
k
单调性
上是增函数;在 函数;在
k
2
,k
2
2k
2
,2 k
3 2
k
k
上是增函数.
k
对称中心 对称性
上是减函数.
k ,0
k
k
k
对称中心
k
,0 2
k
对称中心
k 2
,0
k
对称轴
x
2
对称轴
x
k
k
无对称轴
14、辅助角公式
y
a sin x
b cos x
:
a
d (n
N );
*
25、等差数列其前
n 项和公式为
sn
n( a1 2 a1q
n 1
an )
na1
n (n 1) 2 N );
*
d
d 2
n
2
( a1
1 2
d )n .
26、等比数列的通项公式
an
a1 q
n
q (n
n
27、等比数列前
n 项的和公式为
a1 (1 q ) sn 1 q na1, q 1
,q
1
;⑧ (ln x )
1 x
5、导数的运算法则 ( 1 ) (u
v)
'
u
'
v . ( 2) ( uv)
'
'
u v uv . ( 3) ( )
v
'
'
uv v
2
'
uv
'
(v
0) .
6、会用导数求单调区间、极值、最值 7、求函数
y
f x 的极值的方法是:解方程 x0 附近的左侧 f x0 附近的左侧 f x x 0 ,右侧 f 0 ,右侧 f
b = ( x2 , y2 ) ,则 a + b = ( x1 b = ( x2 , y2 ) ,则 a - b = ( x1 OB OA
R ,则 a = ( x, y) .
y1 ) , B ( x2 , y 2 ) , 则 AB
(4) 设 a = ( x , y ), (5) 设 a = ( x1 ,
b
); ( 2)焦点的坐标为
(
b 2a
,
4 ac
b 4a
1 )
4、几种常见函数的导数 ①C
'
0 ;② ( x )
x
n
'
nx
n 1
;
' x
③ (sin x)
cos x ;④ (cos x)
'
'
sin x ;
'
⑤ (a
)
'
a ln a ;⑥ (e )
x
x
e ;
⑦ (log a x)
1 x ln a u
'
p
a (a a b (a
0, r , s Q ) .
注: 若 a> 0, p 是一个无理数,则 指数幂都适用 . . 指数式与对数式的互化式 . 对数的换底公式 对数恒等式: a 推论 :
log a N
log m N log m a
b
( a
a
b
N (a
0, a 1, m
1, N
0) . 1, N 0 ).
c
2
2 bc cos A ; b aha 1 2 bhb 1 2
2
c
2ห้องสมุดไป่ตู้
a
2
2 ca cos B ; c
b
2
2 ab cos C .
17. 面积定理 ( 1) S ( 2) S
1 2 1 2
1 2
chc ( ha、 hb、 hc 分别表示 a、 b 、 c 边上的高) . 1 2 C 2 2( A ca sin B . (A B) . B)
ab sin C B
bc sin A
18、三角形内角和定理 在△ ABC中,有 A
C 2C
C 2
19、
A 2 2
B
a 与 b 的数量积 ( 或内积 )
a b | a | | b | cos
第 4 页(共 10 页)