应用COMI炼钢工艺控制转炉脱磷基础研究
转炉炼钢过程脱磷和吹氧模型的研究

转炉炼钢过程脱磷和吹氧模型的研究
本文在探讨转炉炼钢过程脱磷和吹氧模型这一课题上,采用相应的理论与方法,进行实质性的研究,以下为研究内容:
一、脱磷原理
1.1 基本原理
脱磷是指通过控制钢水的外部条件,如温度和含氧量,来通过催化、吸收、溶解等捕猎惰性气体硫气、氮气和磷气等来控制钢的含磷量的过程。
1.2产物的特点
脱磷控制的特征表现在钢中:能够改善钢的组织,增强钢各类性能。
此外,在循环利用时能够降低使用成本等,可以节约大量能源,以及节约原材料,节约环境资源。
二、吹氧原理
2.1基本原理
吹氧是指通过在转炉内注入氧气,改变熔炼中炉温、熔炼介质和各种杂质等,从而改变冶炼过程中的微观结构,改善钢液表面及内部性能的一种方法。
它的具体操作有保温、抽渣、预压力氧化等。
2.2产物的特点
吹氧这种技术有以下优点:促进了钢水的清洁化,达到精炼的目的;能够提高钢的物理力学性能;可以增强钢的抗蚀性,延长使用寿命,降低成本,更可以减少污染,改善周围环境。
三、在未来研究方向
未来研究将重点关注以下几个方面:一是通过对转炉炼钢过程脱磷和吹氧模型的进一步研究,完善控制入炉材料和排放检测。
二是将脱磷和吹氧的技术结合在一起,实现高效减污,提高入炉材料和钢水的质量。
三是重点研究不同材料的脱磷和吹氧技术,提高技术水平,以实现更有效的节能降耗、污染减排和优化产品。
转炉炼钢流程中的脱磷工艺

磷 在渣. %P
:
a ̄
7 C . ・ y4 a Q ) ( OP 0 2
欲提 高熔 渣 的脱磷 能力 ,必须增 大K 、 p ae、aa、f]口 F 0 co t 降低1 C .O) 由止 可 失 p , P 5 ( O2 , 4 匕 l J 利 于脱磷 反应 的基 本热 力学 条件 , 即低温 , 高 氧化 性 、高碱度 的炉 渣 【 3 。 1 低温 度 :脱磷 反应 是强 放热 反应 , ) KD 温 度 升 高 而 急 剧 减 小 。 在 10  ̄ 随 4 0C、
3 高碱 度 : 中的酸 性氧化 物如 SO2 ) 渣 i 对脱 磷 不利 , 高熔渣 碱 度是 提 高脱磷 率 的 提 有 效 途 径 ,增 加 渣 中 碱 性氧 化物 C O的 比 a 例 ,可 以增大 a ,降低 丫CO 25 co (a.o) 4 P ,使得三 p 增 大 。 熔渣碱 度 应控 制在 合适 的范 围 , 但 碱 度过 高 时渣 的流 动性差 而 不利 于脱磷 。 4 大 渣 量 :在 钢渣 成 分 一 定 的情 况 ) 下 ,增 大渣 量意 味着稀 释 了P05 2 的浓度 , 所 以增 加渣 量 可增 大脱磷 量 【。 o J 脱 磷 反应 是 典型 的渣 界 面 反应 ,渣 钢 的形 成 速 率对 脱 磷 有 关 键影 响 。熔 渣 形成 后 ,在渣 钢 界面上 的磷 的氧 化速 率很 快 , 脱 磷速 率 由界 面两侧 的传 质控 制 , 即反钢 液 中 【] P 的传 质 和渣相 中 的(2 ) Po5的传质 。 磷反 脱 应 在相 界面 进 行 , 炉渣 的状 态和 流动 性及其 与 铁 水 的接触 时 间 ,搅 拌程 度 等 动 力 学条 件 ,明显地 影响着 传质 速度 , 从而 影 响脱磷 反应 的速度 。 当热 力学条 件 发生 不利 的变化 时 ,如温 度升 高 、(e ) F O 降低 等原 因,都会 发 生 回磷 。在满足 热力 学条 件 的 同时 . 还必 须 创 造 良好 的脱 磷 反 应 的动 力 学 条 件 , 因 此 , 于脱 磷 反应 的动力 学 条件 是确 保脱磷 利 过 程 中渣 有 良好 的流 动性 , 并在 脱磷 前期加 强熔 池 的搅 拌 。
铁水转炉吹氧脱磷工艺-概述说明以及解释

铁水转炉吹氧脱磷工艺-概述说明以及解释1.引言1.1 概述铁水转炉吹氧脱磷工艺是钢铁生产中常用的一种去除磷元素的工艺方法。
在铁水中磷元素的含量对钢铁的性能有着重要影响,因此需要采取相应措施进行去除。
吹氧脱磷工艺通过向铁水中吹入氧气,利用氧气与磷元素的化学反应,在高温条件下将磷元素氧化移除,从而减少磷元素含量,提高钢铁的质量和性能。
本文将详细介绍铁水转炉吹氧脱磷工艺的原理、步骤以及其在钢铁生产中的应用。
通过对该工艺的深入探讨,可以更好地了解吹氧脱磷的作用机制和优势,为钢铁生产提供技术支持和参考。
1.2 文章结构1.3 目的本文旨在深入探讨铁水转炉吹氧脱磷工艺,通过对该工艺的原理、步骤、优势以及应用前景进行分析,旨在说明吹氧脱磷工艺在钢铁生产中的重要性和价值。
同时,通过总结工艺的特点和优势,为相关行业提供参考,促进该工艺的广泛应用,提高生产效率,降低成本,推动钢铁行业的可持续发展。
2.正文2.1 铁水转炉工艺概述:铁水转炉是一种用于炼钢的高炉,它是一种旋转的容器,通常由耐火材料和金属外壳构成。
在钢铁冶炼过程中,铁水转炉扮演着至关重要的角色。
铁水转炉工艺通常用于生产高品质的钢铁,其主要特点是操作简单,生产效率高,并能够满足不同规格和质量要求的钢铁生产。
在铁水转炉中,主要通过向铁水中吹入氧气使其氧化,从而提高炉内温度,促使不同元素的相互作用,达到脱除杂质的目的。
铁水转炉通常配有各种喷嘴和氧气喷嘴,以确保充分的氧化反应和高效的燃烧过程。
铁水转炉工艺的优点包括:1. 生产效率高:铁水转炉可以持续生产,操作简单,生产效率高。
2. 能够生产高品质钢铁:通过吹氧脱磷等工艺,可以去除杂质,生产高品质的钢铁。
3. 适用范围广:铁水转炉可以生产各种规格和质量要求的钢铁,适用性广泛。
总的来说,铁水转炉工艺在钢铁冶炼领域具有重要的地位,其优点包括高效、高质以及适用范围广泛,为钢铁行业的发展做出了重要贡献。
2.2 吹氧脱磷的原理2.3 吹氧脱磷的步骤:吹氧脱磷是铁水转炉炼钢过程中的关键环节之一,其步骤主要包括以下几个方面:1. 吹氧开始: 在铁水转炉底部喷入高纯度氧气,形成氧吹。
转炉深脱磷反应机理

转炉深脱磷机理:1.转炉脱磷热力学分析1.1气体与金属间的反应磷的气体与钢水的反应可用下式表示:1/2 P2(g)=[P]Lg(ap/p pc)=8240/T -0.2ΔG= -157700+ 5.4Te p=0.054式中,钢水中磷的浓度用质量分数表示,磷的活度基准取亨利定律,由此可知钢水中的磷对于亨利定律呈正偏差。
1.2熔渣与钢水之间的反应高炉冶炼过程是不能脱磷的,矿石中的磷几乎全部进入生铁,致使生铁的含磷量有时高达0.1—2.0%。
生铁中的磷主要是在炼钢时氧化作用下去除。
磷和氧的亲和力虽比铁和氧的亲和力大,但在炼钢温度下,铁液的磷不能仅依靠氧化的作用除去,因为氧化生成的P205气态([P]+5[O]=P205(g))。
可是,当有碱性氧化物出现时,磷氧化形成的P205能与之结合,成为稳定的磷酸盐的标准生成焙(2[P]+5[0]+3(MO)=M3P208(s)),可以大致估计它们的稳定性。
在炼钢的熔渣制度下,FeO和CaO是生成稳定磷酸鼎的最主要的氧化物。
氧化铁的脱磷反应为:2[P]+8(FeO)=3FeO·P205(s)+5[Fe]或2[P]+8[O]+3[Fe]=3 FeO·P205 (s)LgK=Lg(1/[%P]^2[%O]^8)=84200/T-31.1但是,磷酸铁只能在较低的温度(1400-1500。
C)下才能稳定存在。
在温度升高时,熔渣碱度提高,3FeO·P205可转变为较稳定的3CaO·P205(或4CaO·P205)。
所以脱磷主要是依靠磷酸钙的形成。
(1)分子理论的脱磷反应脱磷反应是界面反应,由下列反应组成5(FeO)=5[O]+5[Fe]2[P]+5[0]=(P205)(P205)+4(CaO)=(4CaO·P205)综合得:2[P]+5(FeO)+4(CaO)=4CaO·P205+5[Fe]LgK=Lg (a (4Ca0·P205)/[%P]^2 a FeO^5·a CaO^4)=40067/T-15.06式中:K------------------脱磷反应的化学平衡常数:T------------------钢水温度。
氧气转炉炼钢的脱磷问题

20
炼铁技术由中东向欧州南部传播
21
埃及古墓墙上的图画
大约公元前1500年
22
16世纪时的木炭炼铁炉 世纪时的木炭炼铁炉
18世纪时的鼓风炼铁炉 世纪时的鼓风炼铁炉
19世纪初时的炼铁炉 世纪初时的炼铁炉
空气底吹炼钢转炉诞生
H.Bessemer(1856), W.Kelly(1857) H.Bessemer(1856), W.Kelly(1857)
铸造生铁可用于生产铸管、机床等设备底座等; 铸造生铁可用于生产铸管、机床等设备底座等; 硬而脆,几乎没有塑性,不能进行轧制、 硬而脆,几乎没有塑性,不能进行轧制、锻压 等塑性变形加工。 等塑性变形加工。
钢材: 钢材:
具有良好塑性,能够进行轧制、锻压、 具有良好塑性,能够进行轧制、锻压、拉拔等 塑性变形加工; 塑性变形加工; 钢制品具有强度高、韧性好、易焊接、耐高温、 钢制品具有强度高、韧性好、易焊接、耐高温、 耐腐蚀等优良特性,因此被广泛利用。 耐腐蚀等优良特性,因此被广泛利用。
成渣较底吹转炉好; 成渣较底吹转炉好; 搅拌较顶吹转炉强; 搅拌较顶吹转炉强; 反应平衡程度高; 反应平衡程度高; 大多数大中型转炉采用了 复吹转炉炼钢。 复吹转炉炼钢。
32Leabharlann 底吹搅拌强度33氧气转炉炼钢主要设备
烟气净化 系统
渣料系统 氧枪系统
主原料装入系统
倾动系统
出钢、 出钢、出渣系统
34
35
3
生铁与钢的成分差别
元素 C P S Si Mn Cr Ni Mo Nb, Nb,V,Ti 生铁 3.5~5.0% 3.5~5.0% 0.06 1.50% 0.06~1.50% 0.015~0.06% 0.015~0.06% 0.25~1.20% 0.25~ 0.25~0.60 0.25~0.60% 钢 0.001~1.2% 0.001~1.2% 0.002~0.04 0.002~0.04% 0.0005~0.04% 0.0005~0.04% 0.01~6.5% 0.01~6.5% 0.12~13.0% 0.12~13.0% ~18% 18% ~10% 10% ~2% ~0.2% 0.2%
转炉熔渣气化脱磷循环炼钢关键技术开发及应用

转炉熔渣气化脱磷循环炼钢关键技术开发及应用转炉熔渣气化脱磷循环炼钢关键技术开发及应用近年来,随着工业化进程的不断发展,钢铁行业作为重要的基础产业之一,对环境保护和资源利用提出了更高的要求。
炼钢过程中的熔渣是一种含有大量磷元素的高温废弃物,若不能有效处理,将对环境造成严重的污染。
为了解决这一问题,转炉熔渣气化脱磷循环炼钢技术应运而生。
本文将深入探讨该技术的关键技术开发及应用。
一、转炉熔渣气化脱磷循环炼钢技术的概念与原理转炉熔渣气化脱磷循环炼钢技术是一种通过将炼钢过程中产生的熔渣进行气化处理,将熔渣中的磷元素转化为磷酸氢盐,并通过回收再利用的方式达到脱磷的目的的一种技术。
该技术主要包括气化反应、循环过程和脱磷回收等关键步骤。
在气化反应阶段,炼钢转炉熔渣经过预处理后注入气化炉中,与高温气体发生反应,产生气体燃料和磷酸氢盐。
这一阶段实质上是一种高温熔融质和气体的化学反应过程,需要掌握适当的气化温度和反应剂的选择。
在循环过程中,磷酸氢盐在炉内高温环境中发生水解反应,释放出磷酸和H2O。
磷酸部分被回收,用于炼钢过程中的脱磷处理,而水分则通过水蒸汽的形式排出。
这一过程实质上是一种有效的循环利用,使得磷元素得到了最大程度的回收再利用。
在脱磷回收阶段,磷酸与转炉熔渣中的磷元素发生反应,形成难溶性的磷酸盐,并通过物理分离的方式进行回收。
脱磷回收的效率与磷酸的浓度、反应时间和反应温度等因素密切相关,要实现高效的脱磷回收,需要综合考虑这些因素的影响。
二、转炉熔渣气化脱磷循环炼钢技术的关键技术开发转炉熔渣气化脱磷循环炼钢技术的关键技术开发主要包括反应器设计、催化剂研发、废气处理以及磷酸盐回收等方面。
反应器设计是该技术的核心环节。
反应器设计需要考虑到温度、压力、反应物料的流动性以及反应过程中产生的废气排放等因素,以确保反应器能够稳定运行,同时兼顾能效和安全性。
催化剂的研发对于反应过程中的效率和选择性具有重要影响。
催化剂的选择应考虑到催化活性、选择性和稳定性等因素,以提高反应速率和产物质量,并减少不良反应的产生。
转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践摘要:适当的磷可以提升钢的强度,但是对于大多数的钢种都是有害元素,磷含量过高会降低钢材的塑性、焊接性以及冲击韧性。
研究表明磷在钢液凝固过程中发生偏析现象比较集中地聚集在晶界处,导致较低温度下钢材性能变脆,通常成为“冷脆”现象。
磷含量对钢铁的影响极大,即使很少量的磷(0.01%)也会导致钢材的低温脆性。
因此对于普通的钢种磷含量要求在0.04%以内,在低温环境下应用的钢种要求含磷低到0.003%以下,如严寒地区的钻井平台、船舶、轨道、钢结构承重件、液化气管道等。
脱磷反应是转炉炼钢过程重要的物理化学反应,也是转炉炼钢的基本任务之一。
结合实践进行说明脱磷过程注意事项。
关键词:转炉炼;钢脱磷;工艺1转炉炼钢脱磷原理与条件1.1转炉炼钢脱磷原理转炉吹炼过程铁水中的磷被氧化生成P2O5进入炉渣中,P2O5是酸性氧化物,能与炉渣中的碱性氧化物FeO、CaO、MnO、MgO等生成磷酸盐化合物,更稳定的存在渣中,随炉渣一起除掉。
炉渣碱度较低时磷多以磷酸铁(3FeO•P2O5)的形式存在,炉渣碱度较高时磷多以磷酸钙(3CaO•P2O5或4CaO•P2O5)的形式存在。
1.1.1磷的氧化反应磷的氧化反应在钢—渣界面上进行,反应方程式一般有2种:4/5[P]+2[O]=2/5(P2O5)标准吉布斯能△Gθ=-384953+170.24T(J/mol)。
或者:4/5[P]+2(FeO)=2/5(P2O5)+2Fe(l)标准吉布斯能△Gθ=-142944+65.48T(J/mol)。
1.1.2P2O5在炉渣中的固定氧化生成的P2O5如要在渣中稳定存于炉渣中,必须与炉渣中的CaO等碱性氧化物反应生成稳定的磷酸盐化合物3CaO•P2O5或4CaO•P2O5,反应方程式为:2[P]+5[O]+3(CaO)=(3CaO•P2O5)标准吉布斯能△Gθ=-1486160+6360T。
由反应方程式可以看出,转炉炼钢脱磷原理在于磷的氧化进入渣中和转化为稳定的磷酸盐,脱磷速度主要取决于钢—渣界面磷的氧化反应。
转炉炼钢自动化控制技术探讨

转炉炼钢自动化控制技术探讨转炉炼钢是一种常见的钢铁生产工艺,其自动化控制技术的发展对于提高生产效率、降低能耗、提升产品质量具有重要意义。
本文将就转炉炼钢自动化控制技术进行探讨,分析其应用现状及发展趋势,以期为相关研究和生产实践提供参考。
1.1 转炉炼钢自动化控制技术的现状转炉炼钢自动化控制技术是指利用先进的自动化控制系统对转炉炼钢生产过程进行实时监控和控制,以实现生产过程的智能化和精细化。
目前,国内外许多钢铁生产企业已经实现了转炉炼钢自动化控制技术的应用,并取得了显著的经济效益和社会效益。
转炉炼钢自动化控制技术具有以下几个特点:(1)智能化:通过自动化控制系统,可以实现对转炉炼钢生产过程的智能化监控和控制,提高生产效率。
(3)灵活化:自动化控制系统能够根据生产需求进行灵活调整,提高生产线的适应性。
(4)信息化:自动化控制系统可以实现对生产过程数据的实时采集和分析,为生产决策提供依据。
二、转炉炼钢自动化控制技术的关键技术及发展趋势(2)精细化发展:未来转炉炼钢自动化控制技术将更加精细化,实现生产过程的精细化调控,以确保产品质量。
转炉炼钢自动化控制技术在应用过程中面临着一些挑战,主要包括以下几个方面:(1)技术集成难度大:转炉炼钢自动化控制技术需要集成物联网、人工智能、大数据等多种技术,技术集成难度大。
(2)系统稳定性要求高:转炉炼钢自动化控制技术对系统稳定性要求高,一旦出现故障将对生产造成严重影响。
(3)成本较高:转炉炼钢自动化控制技术的应用需要投入大量资金,成本较高。
(4)人才素质要求高:转炉炼钢自动化控制技术的应用需要具备高素质的技术人才,而这类人才相对稀缺。
四、总结转炉炼钢自动化控制技术是钢铁生产过程中的重要技术,其应用可以提高生产效率、降低能耗、提升产品质量。
目前,转炉炼钢自动化控制技术已经取得了显著的成果,但在应用过程中仍面临着一些挑战。
未来,随着物联网、人工智能、大数据等技术的不断发展,转炉炼钢自动化控制技术将迎来更加广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第46卷 第8期 2 0 1 1年8月钢铁Iron and Steel Vol.46,No.8August 2011应用COMI炼钢工艺控制转炉脱磷基础研究吕 明1, 朱 荣1, 毕秀荣1, 魏 宁1, 汪灿荣2, 柯建祥2(1.北京科技大学冶金与生态工程学院,北京100083; 2.福建三钢(集团)闽光股份有限公司,福建三明365000)摘 要:基于转炉炼钢过程脱磷的热力学分析和计算,以控制转炉冶炼过程脱磷期温度为出发点,提出一种利用CO2气体代替部分O2进行吹炼的转炉炼钢新工艺,即COMI炼钢工艺。
研究发现:COMI炼钢工艺能有效控制转炉熔池温度,降低半钢和一倒钢液磷含量,同时可有效减少炉渣铁损,为转炉高效脱磷提供了一种新思路。
关键词:转炉;脱磷;炼钢工艺;二氧化碳文献标志码:A 文章编号:0449-749X(2011)08-0031-05Fundamental Research on Dephosphorization ofBOF by COMI Steelmaking ProcessL Ming1, ZHU Rong1, BI Xiu-rong1, WEI Ning1,WANG Can-rong2, KE Jian-xiang2(1.Metallurgical and Ecological Engineering School,University of Science and TechnologyBeijing,Beijing 100083,China; 2.Fujian Sanming Iron and Steel(Group)Co.,Ltd.Minguang,Sanming 365000,Fujian,China)Abstract:Based on thermodynamic analysis and calculation of dephosphorization in converter steelmaking process,COMI steelmaking process,in which CO2was used as a substitute for part O2to control the temperature of dephos-phorization,was presented.It is discovered that the bath temperature can be effectively controlled and phosphoruscontent of liquid steel is reduced by COMI steelmaking process.Moreover,iron losses of slag are lowered.Theprocess will provide a new idea of converter dephosphorization with high efficiency.Key words:converter;dephosphorization;steelmaking process;carbon dioxide基金项目:国家自然科学基金资助项目(50974013)作者简介:吕 明(1986—),男,博士生; E-mail:lvmingsteel@163.com; 收稿日期:2010-09-17 磷是一般钢种中的有害杂质,容易在晶界偏析,造成钢材“冷脆”,显著降低钢材的低温冲击韧性[1-2]。
炼钢过程脱磷主要在冶炼前期的低温条件下进行,因此易受脱硅反应后熔池迅速升温的热力学条件限制,造成吹炼过程温度不易控制、脱磷率不稳定[3-4]。
因此,炼钢过程中如何实现转炉高效率脱磷,特别是高硅高磷铁水的脱磷问题一直是炼钢生产的技术难点之一。
炼钢厂通常在脱磷期加入适量的固体冷却剂,达到控制熔池升温速度、提高冶炼前期脱磷率的目的,但固体冷却剂易引起熔池局部冷却,以至均匀降温效果不佳且不易控制,同时冷却剂中含有大量的杂质元素,为生产高品质钢种增加负担。
本文基于二氧化碳气体与钢液元素相互作用的相关热力学理论及分析,提出在转炉冶炼前期的顶吹氧流中混吹部分二氧化碳气体,以此控制脱磷期升温速度,从而有利于控制转炉脱磷的COMI炼钢工艺。
1 COMI炼钢工艺及脱磷原理本课题组自2005年以来致力于研发一种将二氧化碳应用于控制转炉炼钢过程的新工艺即二氧化碳-氧气混合喷吹炼钢工艺,简称COMI(CO2andO2Mixed Injection)炼钢工艺。
1.1 脱磷原理脱磷过程是在钢-渣界面进行的,转炉熔池内的脱磷反应如下:2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]lg Kp=40 067/T-15.06(1) 脱磷反应为放热反应,影响反应进行的因素主要有温度、炉渣碱度、渣中(FeO)量以及渣量等。
由式(1)可知,当温度降低时,Kp增大,脱磷率提高。
因此,应合理控制转炉吹炼工艺过程,充分利用吹炼前期良好的低温脱磷条件,促进脱磷反应钢 铁第46卷的进行[5]。
1.2 热力学分析二氧化碳气体属于弱氧化性气体,根据热力学分析,在炼钢温度下,以下反应是完全可进行的,二氧化碳气体与C、Fe、Si及Mn反应生成氧化物[6-7],如表1所示。
表1 相关化学反应热力学数据表Table 1 Thermodynamic data of interrelated chemical reaction介质种类化学反应式ΔG°/(J·mol-1)1773KΔG/(J·mol-1)ΔH/(kJ·kg-1)CO2CO2(g)+[C]=2CO(g)34580-30.95T-20294.35 11602.67CO2(g)+Fe(l)=(FeO)+CO(g)11880-9.92T-5708.16 720.912CO2(g)+[Si]=(SiO2)+2CO(g)-3577967+357.27T-2944527.29-9299.21CO2(g)+[Mn]=(MnO)+CO(g)-261507.82+72.905T-132247.26-1512.40O21/2O2+[C]=CO(g)-22219.35-91.84T-185051.67-11639O2+[C]=CO2(g)-166666.534-40.80T-239004.93-34834O2(g)+Fe(l)=(FeO)-459400+87.45T-304351.15-4250O2+[Si]=(SiO2)-866510+152.30T-596482.10-292021/2O2+[Mn]=(MnO)-803750+171.57T-499556.39-6594 二氧化碳与铁、碳元素的反应虽是氧化反应但却是吸热反应;而与硅、锰的反应虽是放热反应,但相对于氧气与硅、锰元素的反应放热量仅有30%左右。
图1为其他条件不变的情况下,钢液元素与CO2反应比例对熔池温度的影响。
分析可知,与转炉常规冶炼工艺相比,随着钢液元素与二氧化碳反应比例的增加,熔池温度有所降低。
因此将部分二氧化碳掺入顶吹射流中进行混合喷吹,从而使CO2代替部分O2与熔池中C、Fe、Si、Mn等元素反应,减少冶炼前期化学反应放热量,有效控制脱磷期温度,为低温脱磷创造良好的热力学条件。
图1 钢液与CO2反应对熔池温度的影响Fig.1 Effect of reaction between liquid steel andcarbon dioxide on bath temperature1.3 动力学分析由表1中反应可知,2mol CO2可代替1mol O2与铁水中碳、硅、锰元素反应,因此,试验过程采用2mol CO2代替1mol O2参与反应,增加了顶吹总气量,增强了熔池的搅拌能力,增大钢渣反应界面,有利于钢渣反应过程传质、传热的进行,为脱磷反应创造了良好的动力学条件。
2 COMI炼钢工艺脱磷工业试验试验基于30t转炉常规设备,在供氧总管处焊接一条供二氧化碳气体管道。
试验所用二氧化碳气体由一个20m3的储气罐提供,CO2供气系统采用西门子WINCC(视窗控制中心)软件通过MPI(多点连接)接口与PLC进行通讯,控制生产现场仪表阀门站,以控制二氧化碳气体的压力及流量。
2.1 试验设备液态CO2气瓶,汇流排,低温液体汽化器,缓冲储气罐,仪表阀门站,DN25、DN32管道,法兰,30t转炉及其附属设备。
其工艺流程如图2所示。
2.2 试验方案试验冶炼方案基于30t转炉常规冶炼制度,同时结合其相关参数进行物料及能量平衡计算。
由此得出试验装料制度及供气方案,具体如表2~4所示。
2.3 取样方案根据铁水中各元素(C、Si、Fe、Mn、P等)氧化量确定半钢(冶炼过程中脱磷期结束倒炉取样,以下简称“半钢”)耗氧量,冶炼过程中氧气喷吹量达到计算耗氧值即刻停吹、提枪、倒炉,然后进行半钢样及半渣样的取样检测。
吹炼结束前倒炉取一倒钢液(补吹前倒炉取样,以下简称“一倒钢液”)和一倒渣样进行分析。
·23·第8期吕 明等:应用COMI炼钢工艺控制转炉脱磷基础研究图2 试验工艺图Fig.2 Technique drawing of the experiment表2 试验原料配比Table 2 Mass percent of raw materials for the experiment t铁水生铁废钢总计25 5.5 2.5 333 结果分析试验共计20炉次,其中COMI炼钢工艺12炉次,常规工艺8炉次。
表3 辅料加料方案Table 3 Feeding scheme of the secondary materials工艺模式脱磷期脱碳期常规工艺COMI工艺根据铁水硅含量确定石灰总加入量,留200kg石灰于脱碳期再加。
其余石灰分批加入,同时加入白镁球200kg左右,萤石50kg补加200kg石灰,根据温度和化渣情况加入矿石总量表4 供气方案Table 4 Gas supply scheme工艺模式气体供气流量/(m3·h-1)开吹~3min 3min~脱磷结束脱碳开始~9min 9min~终点常规工艺O28200 7800 7600 8000CO20000COMI工艺O27800 7400 7600 8000CO2800 800 0 03.1 半钢分析图3所示为试验炉次半钢温度与半钢磷含量的关系。
图中可以看出,当熔池温度在1 330~1 340℃时,半钢磷含量均较低,随着温度的升高,磷含量呈上升的趋势。
但当温度低于1 325℃时,由于温度过低不利于前期化渣,致使钢液磷含量偏高,当采用COMI炼钢工艺冶炼时,可以较好地控制转炉脱磷期温度,半钢温度集中在1 330~1 350℃之间,半钢磷的质量分数均在0.050%以下。