高等有机化学——反应机理(4)

合集下载

《高等有机化学—反应和机理》(Bernard Miller)笔记

《高等有机化学—反应和机理》(Bernard Miller)笔记

●Woodward-Hoffmann规则一:4n电子的热电环化反应,如果按照顺旋方式进行是允许的;4n+2电子的热电环化反应,如果按照对旋的方式进行时允许的。

●顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以相同方向(同为顺时针或同为逆时针)旋转成键或断键,这种方式称为顺旋。

顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以不相同方向旋转成键或断键,这种方式称为对旋。

●最高已占分子轨道(HOMO)在4n+2的体系中是对称的;最低未占分子轨道(LUMO)在4n+2的体系中是反对称的。

●前线轨道理论:忽略较低的能级轨道,只考虑HOMO。

前线轨道理论能简单、形象化,但是理论上不完善,在理论上应该有更精确的处理方法。

在电环化反应中,对旋是允许的,顺旋是禁阻的。

●轨道对称性守恒:反应物中的每个轨道的对称性,在反应后对称性保持不变。

●用相关图法处理电环化反应遵循轨道对称性守恒。

●相关图法处理4n+2体系的热环化反应(对旋):以1,3,5-己三烯为例:(1)形成6个分子轨道(2)用能量最低的形成键,和的对称性相同,都是镜面对称的。

(3)是由6个原子轨道组成,键是2个原子轨道组成,故转化为时,可以想象其中有4个原子轨道的系数降低为0。

(4) 1,3,5-己三烯的,不能转化为1,3环己二烯的,因为前者的的对称性是镜面反对称,后者的的对称性是镜面对称,对称性不匹配。

故1,3,5-己三烯的事转化为1,3环己二烯的,同理1,3,5-己三烯的事转化为1,3环己二烯的(5)能量分配很合理,故反应是允许的。

用相关图法处理4n体系的热环化反应(对旋):以1,3-丁二烯为例:(1)用能量最低的形成键(2)用1,3-丁二烯的形成环丁烯的;用1,3-丁二烯的形成环丁烯的。

理由同4n+2体系,因为对称性不守恒。

(3) 1,3-丁二烯的上有2个电子,而要形成的环丁烯的电子在上。

但是1,3-丁二烯要转化为环丁烯的,如果发生这样的转化,就会形成能量很高的环丁烯的激发态。

高级有机化学反应机理的讲解

高级有机化学反应机理的讲解

高级有机化学反应机理的讲解有机化学是研究碳元素及其化合物的学科,是化学中的一个重要分支。

在有机化学中,反应机理是理解和解释化学反应过程的关键。

本文将讲解一些高级有机化学反应的机理,帮助读者更好地理解有机反应的本质。

一、亲电取代反应机理亲电取代反应是有机化学中最基本的反应类型之一。

它是指一个亲电试剂攻击一个亲核试剂中的亲电位点,形成一个新的化学键。

亲电取代反应的机理可以分为三步:亲电试剂的攻击、亲电位点的断裂和新键的形成。

以酯水解为例,酯分子中的羰基碳是亲电位点,而水分子中的氧原子是亲核试剂。

在反应中,水分子的氧原子攻击酯分子的羰基碳,形成一个中间体,然后中间体断裂,生成醇和羧酸。

二、亲核取代反应机理亲核取代反应是另一种常见的有机化学反应类型。

它是指一个亲核试剂攻击一个亲电试剂中的亲核位点,形成一个新的化学键。

亲核取代反应的机理也可以分为三步:亲核试剂的攻击、亲核位点的断裂和新键的形成。

以卤代烷的亲核取代反应为例,卤代烷分子中的卤素是亲电位点,而亲核试剂(如氢氧根离子)是亲核试剂。

在反应中,亲核试剂的氧原子攻击卤代烷分子中的卤素,形成一个中间体,然后中间体断裂,生成醇和卤化物。

三、加成反应机理加成反应是有机化学中常见的反应类型之一。

它是指两个或多个分子中的两个亲电位点结合,形成一个新的化学键。

加成反应的机理可以分为两步:亲电位点的攻击和新键的形成。

以烯烃的加成反应为例,烯烃分子中的双键是亲电位点,而亲核试剂(如溴气)是亲核试剂。

在反应中,亲核试剂的溴原子攻击烯烃分子中的双键,形成一个中间体,然后中间体断裂,生成溴代烷。

四、消除反应机理消除反应是有机化学中常见的反应类型之一。

它是指一个分子中的两个官能团结合,形成一个双键或三键,同时释放一个小分子。

消除反应的机理可以分为两步:亲电位点的断裂和新键的形成。

以醇的脱水为例,醇分子中的羟基和氢原子是亲电位点,而酸催化剂是亲核试剂。

在反应中,酸催化剂攻击醇分子中的羟基和氢原子,形成一个中间体,然后中间体断裂,生成烯烃和水。

高等有机化学

高等有机化学

(1)环丁二烯 (1)环丁二烯
环丁二烯不稳定
环丁二烯的取代衍生物有较大 的稳定性。1,2,3-三叔丁基环 丁二烯可以在-70℃的溶液中 存在一段时间
2,3,4-三叔丁基环丁二烯甲酸甲酯在室 温下可以分离出来。
它们环中的键长是不相等的,明显有单 键、双键的区别。前者为0.1506nm,后者 为0.1376nm。
Fe
(4) 环庚三烯正离子
七元环的环庚三烯正离子含有6 电子,按照H ckel 七元环的环庚三烯正离子含有6个π电子,按照Hückel 规则应具有芳香性。 规则应具有芳香性。
环庚三烯与溴加成得到二溴化物,后者在70 环庚三烯与溴加成得到二溴化物, 后者在 700C时加热失 去一分子溴化氢得一黄色物质, 去一分子溴化氢得一黄色物质 , 在乙醇中重结晶得黄色棱 状晶体,NMR谱显示δ= 18ppm单峰,表明为芳香对称结构. ,NMR谱显示δ=9 ppm单峰 状晶体,NMR谱显示δ=9.18ppm单峰,表明为芳香对称结构.
Li
(6) 环辛四烯双负离子
环辛四烯与金属钠作用形成环辛四烯双负 离子,有10个π电子,符合Hückel规则,有芳 香性。
+ 2 Na 2 Na
+
2.轮烯
轮烯( annulene) 轮烯 ( annulene ) 是一类单键与双键交替的 环状多烯烃类。它们有的很稳定,有的不稳定。 环状多烯烃类。它们有的很稳定,有的不稳定。有 的在自然界存在,有的是实验室间接证明的东西。 的在自然界存在,有的是实验室间接证明的东西。 命名或书写时通常是把成环碳原子数置于词前 并定在方括弧内, 例如苯可以看作是[6] 轮烯, 环 并定在方括弧内 , 例如苯可以看作是 [ 轮烯 , 辛四烯是[ 轮烯, 但一般是把较大的环称作轮烯。 辛四烯是 [8] 轮烯 , 但一般是把较大的环称作轮烯 。 这类化合物如果是在一个平面上并含有4n+2 这类化合物如果是在一个平面上并含有4n+2π 电子的应具有芳香性。 电子的应具有芳香性。

化学有机反应机理

化学有机反应机理

化学有机反应机理在化学领域中,有机反应机理是研究有机化合物在反应中发生的各种化学变化的关键。

它揭示了反应的基本步骤和中间体的形成,从而有助于我们理解化学反应的本质。

在本文中,我们将深入探讨有机反应机理的重要性以及其在化学领域中的应用。

一、有机反应的基本概念有机反应是指有机化合物之间或者有机化合物与其他物质之间发生的化学变化。

这些反应可以涉及单个分子的转化,也可以涉及多个分子之间的相互作用。

有机反应机理描述了这些反应的详细步骤,包括反应物的进入、中间体的形成和最终生成物的生成。

二、反应机理的研究方法了解有机反应机理的研究方法对于理解和预测反应过程至关重要。

以下是一些常用的研究方法:1. 稳定性研究:通过研究反应物和中间体的稳定性,可以初步揭示反应的可能机理路径。

2. 碰撞理论:碰撞理论认为,反应在分子之间的碰撞下发生。

通过分析反应物分子之间的相互作用,可以推断反应的机理。

3. 动力学研究:动力学研究通过测量反应速率和活化能,可以揭示反应的机理和反应势垒。

4. 光谱学方法:光谱学方法如红外光谱、核磁共振等可以通过分析反应中物质的吸收光谱,来研究反应的机理和中间体的生成。

三、常见的有机反应机理1. 取代反应:取代反应是一种常见的有机反应,其中一个官能团被另一个官能团所取代。

常见的取代反应机理包括亲核取代和电子亲核取代。

2. 加成反应:加成反应是指两个或多个反应物结合形成一个反应物的反应。

加成反应的机理可以是电子亲和力或亲核。

3. 消除反应:消除反应是指一个分子中的两个官能团被去除,从而形成一个新的化合物。

消除反应的机理可以是酸碱催化、加热或者光照等。

4. 氧化还原反应:氧化还原反应是指有机化合物中的原子氧化态和还原态发生变化的反应。

这些反应通常涉及电子的转移。

四、有机反应机理的应用有机反应机理的研究和了解对于有机合成、药物设计和催化剂开发等领域具有重要意义。

通过深入了解反应机理,可以设计更高效、环保和高选择性的合成方法。

高等有机化学反应和机理

高等有机化学反应和机理

高等有机化学反应和机理
高等有机化学反应和机理是有机化学的重要分支之一,它涉及到有机化合物的合成、转化以及反应机理的研究。

在高等有机化学反应中,原子、分子或离子之间的相互作用导致了反应产物的生成,而反应机理则是研究这些化学反应发生的步骤和反应物、中间体以及产物之间的相互转化关系。

高等有机化学反应的种类繁多,包括加成反应、消除反应、置换反应、重排反应等。

这些反应都具有一定的特点和规律,可以通过实验研究和理论计算来揭示其反应机理和反应路径。

在高等有机化学反应中,反应条件和催化剂选择对反应产率和化学选择性具有重要影响。

因此,研究反应条件和催化剂的优化也是高等有机化学反应和机理研究的重要内容之一。

总之,高等有机化学反应和机理是有机化学领域中的重要研究方向,对于促进有机合成化学、药物研发等领域的发展都具有重要意义。

- 1 -。

南开大学高等有机化学课件第四章有机反应机理的研究和描述

南开大学高等有机化学课件第四章有机反应机理的研究和描述

Ea ln k ln A RT
R: 气体常数, A: 频率因数,
在不同温度下测速率常数, 可计算出 Ea: Arrhenius活化能
Ea ΔH RT ΔS Ea log k 10 .753 log T 4.576 4.576T
4.3.1 简单速率表达式的积分形式

正常情况下动力学数据用微分方程的积分形式来处理:
如简单的一级反应和二级反应:
1 C0 一级级反 : k ln( ) t C 1 b0(a) 二级反应 : k (a0 - b0)ln t a0(b)
a, b, c: 时间t时浓度
a0, b0, c0: 起始浓度
一些反应速率方程积分形式的推导:
4.2 动力学数据(Kinetic Data)
动力学数据使我们能更详细地洞察反应机理。用跟踪反 应物消失和产物出现的方法可以测定某一个反应的速度。波 谱技术提供了一个迅速又连续地监测浓度变化的方法,因而 往往被用来测量反应进行的程度。总之,任何与一种反应物 或产物的浓度有关而且能被测量的性质,都可利用来测定反 应速度。 动力学研究的目的是为了在反应物和催化剂的浓度以及 反应速度之间建立定量关系。
k1[A][B] [C] k -1
d[D] k1 k2[C] k2 [A][B] kobs.[A][B] dt k -1
大多数反应不止一步, 可以参考一些重要的多步反应例子来得出动 力学表达式, 例如在决速步之前可以有一个快速平衡:
ROH + H+
+ ROH2
快 k1 k -1
_
ROH2 RBr +H2O
计算出一个反应的自由能变化,就使反应平衡位置的计算有了 可能,也就指出了某一化学过程的可实现性。 有兴趣的反应大多数发生在溶液中,任何这种反应的焓、熵和 自由能都与溶剂介质有关。 但是,热力学数据并不能说明是否存在一个能量上有利的潜在 反应途径,即反应速度上的情报。因此,深入了解反应机理以及 有机反应进行是中间所经各步的速度和能量要求是极为重要的。

高等有机化学第四章有机反应中间体解析

高等有机化学第四章有机反应中间体解析

正电荷分散程度大
共轭体系的数目越多,正碳离子越稳定:
CH2 CH 3C > CH2 CH 2CH > CH2 CHCH2
当共轭体系上连有取代基时,供电子基团使正碳离子 稳定性增加;吸电子基团使其稳定性减弱:
CH3
CH2 >
CH2 > O2N
CH2
环丙甲基正离子比苄基正离子还稳定:
3C >
2CH > CH2 >
含有带负电荷的三价碳原子的原子团。 是最早被确认的活性中间体
1、碳负离子的结构
两种构型: 未共用电子对占据p轨道
未共用电子对占据sp3杂化轨道
有利构型!
桥头碳负离子 角锥结构可以快速翻转,不具有手性
三元环碳负离子难于翻转 得到构型保持的氘代产物
当碳负离子与相邻的不饱和体系共轭时,平面结 构变为有利结构
CH2
环丙甲基正离子的结构:
C
其结果是使正电荷分散
CH2
空的 p 轨道与弯曲轨道的交盖
随着环丙基的数目增多,
CH2
CH2
正碳离子稳定性提高。
直接与杂原子相连的碳正离子结构:
氧上未共有电子对所 占 p 轨道 与中心碳原子上的空的 p轨道 侧面交盖,未共有电子对离域, 正电荷分散。
CH3 O CH2
CH3O CH2
HC CH
NaNH3 液 NH3
HC CNa
NH3
Ph3C H
NaNH3 液 NH3
Ph3CNa
NH3
CH3COCH2COOEt NaOEt CH3COCHCOOEt
常用的碱 ■ 有机锂试剂:n-BuLi, PhLi, MeLi ■ KOBut ■ LDA

高等有机化学第十九章 自由基取代反应

高等有机化学第十九章 自由基取代反应

7
第二节 自由基取代反应影响因素 在链锁反应中,决定形成什么产品的步骤时常是 提取。自由基几乎从来也不提取四阶的或三价的原 子,也很少提取两价的原子。自由基提取的几乎全是 一价的原子, 因而从有机化合物提取的是氢或者是 卤素。
19.2.1 取代基的影响
a.取代基诱导效应的影响: 伯氢、仲氢和叔氢被提取的相对活性
第十九章 自由基取代反应
自由基取代反应是指自由基试剂与底物发生的 取代反应:
C X +
Y
C Y +
X
自由基反应机理包括四种类型: (1)自由基形成和转变:
1
(2)自由基袭击作用物(双分子反应) 自由基可以和稳定的有机分子作用,形成另 外一个自由基,后者自由基可以作为加成、聚合、 或取代反应中的引发剂。这种反应经常是链锁反应。 (3) 自由基消失过程
6
19.1.3 非经典自由基取代反应机理 例1,在光催化的卤代反应里,一般得到的是许多产品 的混合物。但是,溴代一个含有溴原子的碳链则位置 选择性很高。溴代烷烃的溴代反应,84∼94%取代在分 子中原有的溴的邻位碳原子上。
例2, Skell及同事报导在0∼72°C之间溴代光学活性1溴-2-甲基丁烷(α27=2.86°),得到了光学活性1,2-二溴2-甲基丁烷(α27=-2.33°)。再有,在DBr存在的情况下 进行这个反应时,则回收的1-溴-2-甲基丁烷中在2-位 置被重氢化,并且保持构型不变。又如,在顺式4-溴 权丁基环己的溴代反应里,取代发生在3-位置上。而 且是反式的:
在本章中仅就自由基取代反应进行讨沦。至于自 由基对不饱和化合物的加成,以及重排反应等将在有 关章节再行介绍。

第一节 自由基取代反应机理 19.1.1 脂肪族自由基取代反应机理 按自由基进行的脂肪族取代反应,在原则上可能 按两种途径进行: a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加成-消除反应的催化剂
(I- 也有类似作用)
Claisen 缩合反应
酯在碱的催化下缩合为β-酮酯。
逆Claisen缩合反应
格式试剂、金属负氢试剂对酯基的加成反应
格式试剂对酰胺的加成反应
α,β-不饱和羰基化合物的烯基碳上的取代反应
α,β-不饱和羰基化合物上的β碳上带有离去基团时,此碳 上可以发生加成——消除反应。
在此要注意两条规则: ⅰ.在吸电子基团的β位的C原子上具有亲电性。不是α位上的C原子。如:
β α β α
独特的C=C键(变色龙)
ⅱ.不要把正电荷与亲电性混淆
CH2=OCH3
+
CH2-OCH3
+
亲电性的原子是C原子,不是O原子。 Me2N=CH2
+
Me2N-CH2
+
酸性条件和碱性条件:pKa值
酸性条件和碱性条件:pKa值
路径依赖



马屁股决定航天飞机助推器的宽度; 道格拉斯.若思的伟大发现(1993年诺贝尔经济学奖); 自我强化和锁定效应; 可怕的沉没成本; 习惯——缠在你身上的铁链; 播种行为,收获习惯;播种习惯,收获性格;播种性格, 收获命运。 男怕入错行,女怕嫁错郎; 做正确的事比正确的做事更重要; 知错就改,善莫大焉。
亲核试剂(Nucleophiles)
亲核试剂可以分为三种类型:

孤对电子亲核试剂;


σ键亲核试剂;
π键亲核试剂。
孤对电子亲核试剂
孤对电 子亲核 试剂
σ键亲核试剂
σ键电子 亲核试 剂
π键亲核试剂
π键亲核 试剂
区域选择性
亲核性
大多数情况下,碱性增加则亲核性增加。
以下是一些特例:
ⅰ.在同族元素中,周期高的原子亲核性大,碱性则降低。
第二章 极性反应的基础知识
极性反应(Polar Reaction)
在极性反应中,亲核试剂与亲电试剂发生反应。
大部分极性反应是在酸性或碱性条件下进行的。
1. 亲核试剂(Nucleophiles)
亲核试剂是具有能量较高的电子的化合物,能够形成新 的化合键。
具有亲核性的原子可以是中性的,也可以带有负电荷。
O C H C R
酸和亲电试剂进攻富电子的氧 亲核试剂进攻缺电子的碳
碱进攻酸性的α-氢
羰基化合物的热力学稳定性顺序
羰基化合物的热力学稳定性与共振结构式R2C+-O-的稳定性有直接的
关系,羰基化合物的热力学稳定性顺序:
RCOCl < RCO2COR < RCHO < R2CO < RCO2R< RCONR2 <
是加成-消除反应机理,不是SN2反应机理。
酯与胺反应生成酰胺
酰氯和醇的酯化反应
羰基化合物在进行亲核取代反应中除了会发生加成-消除反应机理之外, 酰氯和酸酐还可以和醇进行消除-加成的反应机理的取代反应。
反应实例:
加成-消除反应机理:
酰氯和醇的酯化反应
消除-加成反应机理:没有α氢的羰基化合物不能进行此反应机理。
E1cb反应机理
(特点:两步完成,第一步是碱进攻酸性的 H原子,形成碳负离子。第二步是离去基团 离去,形成新的π键。 )
β消除反应中的E1cb反应机理
消除反应或取代反应的预测
在 C(sp3)-X 化合物的反应中,以消除反应或取代反应进行主要取决于 两个最主要因素:第一,亲核试剂的亲核性的强弱和含有孤对电子的 化合物的碱性的强弱。第二,反应底物是否 Me、 Bn 或是伯碳,仲碳, 叔碳卤代烷烃。
亲核性和碱性
1. 亲核性强,碱性弱的基团, 如:Br-, I-, R2S, RS, R3P, CN-, 丙二酸酯负离 子等基团。 2. 亲核性强,碱性强的基团,如:RO-, R2N-, RC≡C-, Cl-。 3. 亲核性弱,碱性强的基团,如:t-BuO, i-Pr2NLi (LDA), (Me3Si)2NK (KHMDS), i-Pr2NEt,DBU, DBN, TMG.
亲核性:I- > Br- > Cl- > F-;
碱性:I- < Br- < Cl- < F-;
RS- > RORS- < RO-
亲核性
ⅱ. 当亲核性原子的位阻变大时,亲核性大大下降,而碱 性 稍有增加。 亲核性:t-BuO- << EtO碱性:t-BuO- > EtO-;
iii 负电荷的离域使碱性大大下降;相对而言,亲核性则 只是部分下降
二级胺与羰基化合物反应
二级胺与羰基化合物反应,可以生成烯胺。反应历程如下:
羟醛缩合反应(Aldol reaction)
一分子醛或酮,在碱的作用下,形成碳负离子,此碳负离子与另一分子醛 或酮的羰基发生亲核加成反应。 反应历程如下:
羟醛缩合反应(Aldol reaction)
Aldol reaction的立体化学
杂原子的SN2反应机理
SN2反应机理中的特例
SN2反应机理中的立体化学
β消除反应中的E2反应机理
E2反应机理的立体化学
E2反应机理的立体化学
C(sp2)-X的E2消除反应机理
练习
β消除反应中的E2’ 反应机理
E2消除反应机理
β消除反应中的E1cb反应机理
(H原子的酸性很强,而且离去基团的离去性很弱时发生)
(反应性与酰氯相当)
带有强吸电子基团的芳基环上的取代反应
当苯环上带有强吸电子基团时,芳基碳上也可以发生加 成——消除反应。
烯基和芳基碳上的取代反应
消除——加成反应பைடு நூலகம்理:
金属插入反应
卤代烯烃和卤代芳烃可以与金属(Zn、Mg、Li)发生 插入反应,从C-X生成C-Metal。反应活性顺序: I>Br>>Cl

路易斯酸亲电试剂; π键亲电试剂; σ键亲电试剂。
路易斯酸亲电试剂
ⅰ. 路易斯酸式亲电性化合物含有价电子数不到8的原子, 具有能量低的空轨道,通常是P轨道。
π键亲电试剂
ⅱ. π键亲电试剂的亲电原子满足八偶体结构,但是π键与一 个能接受孤对电子的原子或官能团相连。 π键亲电试剂通常 含有C=O,C=N,C≡N。 C=C,C≡C键与具有亲电性的原子相连时具有亲电性。
ROCO2R < ROCONR2 < R2NCONR2 < RCO2-。
羰基上的加成反应
(CeCl3能促进羰基上的加成反应)
羰基加成反应的立体化学
羰基化合物与含氮亲核试剂的加成反应
醛、酮与可以与胺发生加成反应,也可以和胺的衍生物(羟氨、肼、苯肼)发 生反应。与一级胺反应,氮上还有氢,加成物失去一份子水,变为亚胺称为西佛 碱。亚胺在稀酸中水解,可得回原来的羰基化合物及其胺,因此可以用来保护羰 基化合物。反应过程如下:
亲核加成反应
羰基化合物上的加成反应
羰基化合物有两个主要的共振结构式,R2C=O R2C+-O-, 从第二个共振结构式 中,可以看出碳原子带有正电性,很容易发生羰基上亲核加成反应。 羰基化合物的α位上的氢有一定的弱酸性,在碱性条件下可被夺去,形成碳负离子。 -O-CR=CR O=CR--CR2 2 碳负离子是一个很好的亲核试剂。
Aldol reaction的立体化学
练习
(安息香缩合反应)
Retro-aldol 反应
Knoevenagel 缩合反应
Knoevenagel 缩合反应
(E1cb消除)
共轭加成反应
Michael 加成反应
Robinson annulation
Robinson annulation
反应实例:
金属插入反应
反应机理:
-NR 2的PKb为35,根据规则此基团的离去能力弱,但是它真正的离去基团是 HNR2,
PKb为10.所以此化合物具有强的亲电性。
独特的C=C键(变色龙)
C=C键既可以是亲核性的也可以是亲电性的,它的性质取决于所连的官 能团的性质。一般来说,C=C键连有亲核性官能团如RO–,R2N–,– CH2MgBr时,这个烯烃或芳香化合物是亲核性的;C=C键连有亲电性官 能团如–COR, –CO2R,–CN,–NO2,–CH2X时,这个烯烃或芳香化 合物是亲电性的。
第一步( Michael 加成反应)
Robinson annulation
第二步( Aldol 加成反应)
Robinson annulation
第三步( 脱水反应)
思考题
C(sp2)-X上的亲核取代反应
羰基碳上的取代反应
许多羰基化合物(如:酯、酰氯、酰胺、酸酐)里,羰基连有离去基团, 羰基碳上带有一定的正电性,有利于亲核试剂的进攻,发生亲核取代反应。
σ键亲电试剂
ⅲ. 含有σ键的亲电化合物,具有E-X结构。E为亲电性原子, 满足八偶体结构,因其与离去基团X相连,导致E具有亲电 性。
亲电原子为C原子
亲电原子为杂原子
离去基团
离去基团
注意:离去基团的PKb一般是可以反映离去基团的离去能力的,但个别是例外的,如: RCONR2可在强碱水溶液中水解。
碱性条件下的反应机理:
酸性条件和碱性条件:pKa值
酸性条件下的反应机理:
酸性条件和碱性条件:pKa值
第三章 碱性条件下的极性反应
C(sp3)-Xσ键的取代反应
C(sp3)-Xσ键的消除反应
SN2反应机理的亲核取代反应
SN2 和SN2’反应机理的亲核取代反应
区分SN2与SN2‫׳‬反应机制的关键在与,化学式中的双键的位置有 没有发生变化, SN2反应机制双键的位置不发生变化。
亲核性
iv. 非质子极性溶剂可以溶解阴离子,因此化合物的碱性 和亲核性都会增加,但亲核性增加得更多。
相关文档
最新文档