广东省肇庆市实验中学高中数学必修四校本教材教学设计:第十六课 三角函数函数的综合问题

合集下载

三角函数的概念教学设计一等奖4篇

三角函数的概念教学设计一等奖4篇

第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。

三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。

三角函数教学设计

三角函数教学设计

三角函数教学设计教学设计思路:新课程标准倡导积极主动、勇于探索的学习方式把学习的主动权还给学生。

以此为宗旨,我采用自主学习、合作探究方法引导学生自主学习、探究学习,努力做到教法、学法的最优组合,并体现以下几个特点(1)苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者”本节课正是抓住学生的这心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学。

(2)注重信息反馈,坚持师生间的多向交流。

当学生接触新知一周期性、单调性、值域等性质时以及利用性质画出图象时,要引导学生多思多说、多练,要充分暴露他们所遇到的知识障碍,并在师生之间的多向交流中,不断的得到解决,伸知识深化。

本节课是在学生掌握了单位圆中的正弦函数线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正余弦函数性质的'基础:对函数图像清晰而谁确的掌握也为学生在解题实践中提供了有力的工具,本小节内容是三角函数的图象与性质,是本章知识的重点。

有看求前启后的作用美国华盛顿一所大学有句名言:“我听见了,就忘记了我看见了,就记我做过了,就理解了”要想让学生深刻理解三角函数性质和图像,就生主动去探素,大胆去实践,亲身体验知识的发生和发展过程学生情况分析:知识上,通过高一对函数的学习,学生已经具绘图技能,能够类比推理画出图像,并通过观察图像,总结性质,心具备了一定的分语言表达能力,初步形成了辩证的思想。

一.教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

广东省肇庆市实验中学高中数学必修四校本教材教学设计:第十课 三角函数的诱导公式2 精品

广东省肇庆市实验中学高中数学必修四校本教材教学设计:第十课 三角函数的诱导公式2 精品
教学内容与教师活动设计
学生活动设计
一、知识点
1.正弦、余弦、正切的诱导公式
公式五: ,
公式六: ,
公式 : ,
公式 : ,
2.诱导公式的记忆
为了便于记忆,以上四组公式也可简单地说成:“函数名改变(互余),符号看象限”.
二、合作探究
1.公式二的应用
例1求下列各式的值
(1) ;(2) ;(3) ;
【思路分析】直接用公式化简求解.
因材施教:
教学后记:
【解析】(1) ;(2) ;
(3)
【点评】熟练和灵活运用公式,熟记特殊角的三角函数值,是解决此类问题的关键.
☆自主探究
1求下列各式的值
(1) ;(2) ;
(3) ;
例2(1)已知 , ,求 的值.
(2)已知 , 求 的值.
【思路分析】(1)用公式五和同角三角函数的平方关系进行求解;(2)用公式五和同角三角函数的系式进行求解;
【解析】(1)∵ ,∴ ,
又∵ ,∴
(2)∵ ,∴
又∵ ,∴ ,∴
【点评】三角函数公式较多,要注意对公式的记忆.
☆自主探究
1.已知 , ,求 的值.
三、总结提升
总结:诱导公式(5)、(6)可简单地说成:“函数名改变(互余),符号看象限”.
四、问题过关
1.已知 , ,求 的值.
2.已知 , ,求 的值.
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
授课题目
第十课三角函数的诱导公式(2)
拟课时
第课时
明确目标
借助单位圆中的三角函数线推导出诱导公式 的正弦、余弦、正切.
重点难点
重点:单位圆中的三角函数线推导诱导公式 的正弦、余弦、正切.难点:诱导公ຫໍສະໝຸດ 的正弦、余弦、正切的应用课型

最新高中数学三角函数教案设计(六篇)

最新高中数学三角函数教案设计(六篇)

最新高中数学三角函数教案设计(六篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、心得体会、演讲致辞、策划方案、职场文书、党团资料、教案资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as report summaries, contract agreements, insights, speeches, planning plans, workplace documents, party and youth organization materials, lesson plans, essay compilations, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!最新高中数学三角函数教案设计(六篇)作为一位无私奉献的人·民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。

《三角函数的诱导公式》教学设计方案

《三角函数的诱导公式》教学设计方案

课题:三角函数的诱导公式(一)一、教学内容分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.二、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.三、学习者特征分析本节课的授课对象是本校高一(4)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学策略选择与设计数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.五、教学重点及难点理解并掌握诱导公式.正确运用诱导公式,求三角函数值,化简三角函数式.六、教学过程教师活动学生活动设计意图1.复习锐角300,450,600的三 1. 让学生发现300角的由特殊问题的引角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课.终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系.入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.由sin3000= -sin600出发,用三角的定义引导学生求出sin (-3000),Sin150 0值,让学生联想若已知sin3000= -sin600,能否求出sin(-3000),Sin150 0)的值.1.探究任意角与的三角函数又有什么关系;2.探究任意角与的三角函数之间又有什么关系.遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.展示学生自主探究的结果七、教学评价设计三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)设计意图简便记忆公式.八、板书设计1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.2.体会数形结合、对称、化归的思想.3.“学会”学习的习惯.九.教学反思可以从如下角度进行反思(不少于200字):对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

人教版高中数学必修四教案三角函数

1.1. 1 任意角教学目标1、知识与技能目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念.2、过程与能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 3.探究:终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k·360 ° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z.⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30° 60o负角:按顺时针方向旋转形成的角 始边终边 顶点 A O B例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) .例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法.1.1.2弧度制(一)教学目标1、 知识与技能目标:理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.2、 过程与能力目标:能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题3、 情感与态度目标:通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点:“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗? (2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:︒=3602π; ︒=180π;rad 01745.01180≈︒=π;︒=n rad n 180π. 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式rl a =弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2kπ(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-Q 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180Rn l π=,O R l∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学_三角函数的概念教学设计学情分析教材分析课后反思

5.2.1三角函数的概念学校: 授课教师:班级: 姓名: 学习目标:1. 会利用单位圆上点的坐标定义三角函数,理解三角函数的定义,把握三角函数的本质。

2. 通过动笔求解、合作学习,体会数形结合、由特殊到一般的研究问题的思想方法.3. 经历三角函数定义的形成过程,能抽象出数学模型,发展数学抽象、直观想象等素养.学习重点:任意角的正弦、余弦、正切的定义学习难点:影响单位圆上点的坐标变化的因素分析,三角函数的定义方式的理解,三角函数内在联系性的认识.学习过程:一、设置情境,激发兴趣在单位圆⊙O 上一点P ,以A 为起点做逆时针方向旋转,能否建立一个数学模型, 刻画点P 的位置变化情况. 二、互助合作,形成概念探究一(请同学们动手操作→独立思考→互相讨论→共同交流→探究结论) 请同学们在练习本上作图,完成表格,并思考以下问题: 问题一:3226πππα=时P 的坐标分别是什么?是不是唯一确定的?问题二:任意给定一个角α,它的终边OP 与单位圆交点P 是否唯一确定?三角函数的定义:设α是一个任意角,R ∈α,它的终边OP 与单位圆相较于点P (x,y )正弦函数: 余弦函数: 正切函数:记为探究二、请同学们回忆一下初中锐角三角函数的定义并完成下列问题 问题一:求出346πππ的正弦、余弦、正切值问题二:请按照本节课学习的三角函数的定义求出问题一 你能得出怎样的结论呢?结论: 三、小试牛刀 例1 求35π的正弦、余弦和正切值 小结:变式训练一:完成下列表格四、学以致用例2如图,设α是一个任意角,它终边上任意一点P (不与原点O 重合)的坐标(x,y ),点探究三:请同学们讨论以下问题:问题一:正弦值是否随点P位置的改变而改变?问题二:余弦和正切值是否随点P位置的改变而改变?小结:变式训练二:已知角θ的终边过点P(-12,5),求角θ的三角函数值.五、课堂小结:六、当堂检测1.思考辨析(1)sin α表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sin α=yr,且y越大,sin α的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()2.已知角α终边过点P(1,-1),则tan α的值为()A.1B.-1 C.22D.-22八、作业布置 必做题:1.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________.2.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝⎛⎭⎫-15π4. 选做题:已知角α的终边上有一点P 的坐标是(3a,4a ),其中a ≠0,求αsin 、αcos 、αtan 的值.三角函数的概念的学情分析1. 学生的认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识。

《三角函数的概念》教学设计

《三角函数的概念》教学设计5.2.1 三角函数的概念(第一课时)一、教材分析:三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学、物理和天文等其他学科的重要基础。

传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数。

锐角三角函数的研究对象是三角形,是三角形中边与角的定量关系(三角比)的反映;任意角三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学刻画。

如果以锐角三角函数为基础进行推广,那么三角函数概念发生发展过程的完整性将受到破坏。

因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似,强调以周期变化现象为背景,构建从抽象研究对象(即定义三角函数概念)到研究它的图象、性质再到实际应用的过程,与锐角三角函数的联系可以在给出任意角三角函数定义后再进行考察。

一般地,概念的形成应按“事实—概念”的路径,即学生要经历“情境——共性归纳——定义———辨析———简单应用” 的过程。

二、目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系。

(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,提高数学抽象素养。

2.目标解析(1)学生能如了解前面所学幂函数、指数函数、对数函数的现实背景一样,知道三角函数是刻画现实世界中“周而复始””变化规律的数学工具,能体会到匀速圆周运动在周而复始变化现象中的代表性。

(2)学生在经历“”周期现象——圆周运动——单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三角函数概念;能根据定义求出定角的三角函数值。

教学重点:正弦函数、余弦函数、正切函数的定义三、学情分析前面已学函数的概念,在对幂函数、指数函数、对数函数的学习中,初步理解了研究函数的基本思路、方法,这些认知准备对于分析“周而复始””变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用。

高中数学必修四教学方案:《三角函数的图象与性质》

高中数学必修四教学方案:《三角函数的图象与性质》高中数学必修四教学方案:《三角函数的图象与性质》基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

下面跟着一起来看看吧。

高中数学必修4《三角函数的图象与性质》教案【一】教学准备教学目标1、知识与技能(1)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。

2、过程与方法通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化矛盾是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具投影仪教学过程【创设情境,揭示课题】同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?【探究新知】让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)它的最值情况如何?(4)它的正负值区间如何分?(5)?(x)=0的解集是多少?师生一起归纳得出:1.定义域:y=sinx的定义域为R2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|1(有界性)再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三四五”高效课堂教学设计:
(授课日期:年月日星期班级)
授课题目
第十六课三角函数函数的综合问题
拟课时
第课时
明确目标
求函数 的表达式
重点难点
重点:求函数 的表达式
难点:函数 的表达式的
课型
□讲授□习题□复习□讨论□其它
教学内容与教师活动设计
学生活动设计
一.合作探究
例1设函数 ( , ),且 .(1)求 的表达式;(2)已知 , ,求 的值.
☆自主探究
1.已知函数 .
(1)求 的值;(2)若 ,求 .
二、问题过关
1.已知函数 ,且 。
(1)求 的值;(2)求函数的最小正周期;
(3)设 , ;求 的值
2.已知函数
的部分图象如图所示。
(1)求函数 的表达式;(2)已知 , ,求 的值.
因材施教:
教学后记:
【思路分析】(1)利用已知先求A的值可得表达式;(2)由三角函数的诱导公式和同角三角函数关系式可得结果.
【解析】(1)∵ ,∴ ,解得 ,∴
(2)∵ ,∴ ,
∵ ,∴ ,∴
【点评】在近几年的高考中,广东卷对三角函数的考查主要以计算为主,知识有三角函数的性质、诱导公式、和差角公式、同角三角函数的关系。广东卷对三角函数解答题的考查比较稳定,有章可循.因此,在高考备考中要落实基础知识,对考试说明的知识点深刻理解,对知识之间的联系、来龙去脉要了然于胸。要关注重点题型,掌握一些常见类型的题目的解法,如先求 的解析式再求和两角和差的三角函数的值等。在解题过程中总结规律和数学思想方法,如化归与转化思想等。
相关文档
最新文档