运算放大器电路固有噪声的分析与测量

合集下载

运算放大器的噪声分析

运算放大器的噪声分析

运算放大器的噪声分析07-06-04 10:37 发表于:《活石家园》分类:未分类问:有关运算放大器的噪声我应该知道些什么?答:首先,必须注意到运算放大器及其电路中元器件本身产生的噪声与外界干扰或无用信号并且在放大器的某一端产生的电压或电流噪声或其相关电路产生的噪声之间的区别。

干扰可以表现为尖峰、阶跃、正弦波或随机噪声而且干扰源到处都存在:机械、靠近电源线、射频发送器与接收器、计算机及同一设备的内部电路(例如,数字电路或开关电源)。

认识干扰,防止干扰在你的电路附近出现,知道它是如何进来的并且如何消除它或者找到对干扰的方法是一个很大的题目。

如果所有的干扰都被消除,那么还存在与运算放大器及其阻性电路有关的随机噪声。

它构成运算放大器的控制分辨能力的终极限制。

我们下面的讨论就从这个题目开始。

问:好,那就请你讲一下有关运算放大器的随机噪声。

它是怎么产生的?答:在运算放大器的输出端出现的噪声用电压噪声来度量。

但是电压噪声源和电流噪声源都能产生噪声。

运算放大器所有内部噪声源通常都折合到输入端,即看作与理想的无噪声放大器的两个输入端相串联或并联不相关或独立的随机噪声发生器。

我们认为运算放大器噪声有三个基本来源:★一个噪声电压发生器(类似失调电压,通常表现为同相输入端串联)。

★两个噪声电流发生器(类似偏置电流,通过两个差分输入端排出电流)。

★电阻噪声发生器(如果运算放大器电路中存在任何电阻,它们也会产生噪声。

可把这种噪声看作来自电流源或电压源,不论哪种形式在给定电路中都很常见)。

运算放大器的电压噪声可低至3 nV/Hz。

电压噪声是通常比较强调的一项技术指标,但是在阻抗很高的情况下电流噪声常常是系统噪声性能的限制因素。

这种情况类似于失调,失调电压常常要对输出失调负责,但是偏置电流却有真正的责任。

双极型运算放大器的电压噪声比传统的FET运算放大器低,虽然有这个优点,但实际上电流噪声仍然比较大。

现在的FET运算放大器在保持低电流噪声的同时,又可达到双极型运算放大器的电压噪声水平。

运算放大器电路的噪声分析和设计_何峥嵘

运算放大器电路的噪声分析和设计_何峥嵘

Noise Analysis and Design of Operational Amplifier Circuits
H E Zheng2rong
( Sich uan Inst it ut e of Sol id2St ate Ci rcuit s , Chi na El ectr oni cs T ech nol ogy Grou p Corp or ati on, Chongqi ng 400060, P . R. China)
Abstr act: Diff er ent noise types in oper ational amplifier ( op2amp) circuits are described. Standard circuit theory
and noise models are used to calculate noises in op2amp cir cuits. With inverting, noninverting and differ ential op2 amp cir cuits as examples, methods to noise calculations are illust rated. Finally, useful advices and techniques for noise design ar e pr ovided.
爆裂噪声和雪崩噪声在运算放大器电路中通常 没有太大影响, 即使有, 也能够消除, 在噪声分析中 可以不予考虑。下面逐一介绍各种噪声源。 2. 1 散粒噪声
散粒噪声总是与电流流动相联系的。无论何时 电荷流过势垒(如 pn 结), 导体不再处于热平衡状 态, 都会导致散粒噪声产生。流过势垒纯粹是随机 事件, 因此, 大量随机、独立的电流脉冲的平均值 iD

运放的噪声特性和放大电路的噪声分析

运放的噪声特性和放大电路的噪声分析

也只规定 了 电压 噪声 的参 数 作 为电压性 噪声 的参数在数
21年 第1 期 <6 00 1 、 ◇
域.分别用下面的方法换算成有效值。然后再用两个有效
值的平方 和开平 方根 的方法 求 出总噪声 。
lN = . / O 1 2 、 9x 0 2  ̄ s2 、 l5 = . /9 1 2 - 2
E ̄ Gn・ o = Vn
五 、 目标 信 噪 比特 性 的噪 声 电平
表2 相对 于基 准信 号 电平 1r s Vm 一般 的线 是 V m 和2 r s(
路输出电平)在达到一定 的信噪比 (N )时,信噪比与 SR
噪声 电压 有效值 之间 的对应关 系 由表 中的数值 可知 .希 望得到 的信噪 比的数值 不同 .要求 的输入 端噪声 电压有效 值 的数值 也完 全 不 同。例 如以2 r s Vm 的信 号为例 .信 噪 比 为10 B 的噪声 电压容许 值2 1 rs 0d 时 0 V m 在S = 2d  ̄样 x / 10 B l N i 的超低噪 声特性 时噪声 电压 的容许 值为2 Vm 1 rs  ̄ 对 于一般 的音 频用运 算放 大器 来说 .要 实现 10 B 0d 的
运放的噪声特性和放大电路的噪声分析
口张
运算 放 大 器集 成 电路 是 在模 拟 电路 中 .包 括音 频 应
用 电路 在 内应 用最 为广 泛 、普及 度很 高的放 大器件 由于

据表 中有两种 表示方 法 ,一种 是噪声 频谱密 度 .另一种 是 噪声 有效 值 表 1 是集 成运 算放 大 器噪声 参数 的表 示方 法 的例 子 。在 该 表 中对 噪 声频 谱 密 度 和噪 声有 效 电压 都 同 时做 了规 定 。但 是对 于 一些 不针 对音 频应 用 的型号来 说 . 有的并不 规定 噪声有效 值 只给出噪声 频谱密 度

运算放大器电路固有噪声的分析与测量 第八部分:爆米花噪声

运算放大器电路固有噪声的分析与测量 第八部分:爆米花噪声

运算放大器电路固有噪声的分析与测量第八部分:爆米花噪声作者:Art Kay,德州仪器 (TI) 高级应用工程师 本文将讨论如何测量并辨别爆米花噪声;以及相对于1/f 及宽带噪声的幅度;还有对爆米花噪声特别敏感的诸多应用。

讨论爆米花噪声以前,对时域和宽带及1/f噪声的统计表示法进行回顾是非常有帮助的。

1/f 和宽带噪声均具有高斯分布的特点。

此外,在一个特定设计中,这些噪声类型都是一贯的并且是可以预见的。

到目前为止,我们已经从本文中了解了如何通过计算和仿真(图 1-2)来预测噪声级别。

但是,这些方法均不能用于测量爆米花噪声。

图 8.1 宽带噪声——时域及柱状图图 8.2 1/f 噪声——时域及柱状图爆米花噪声是一种在双极晶体管基极电流中的突然阶跃或跳跃,或 FET 晶体管阈值电压中的一种阶跃。

之所以将其称为爆米花噪声,是因为当通过扬声器播放出来时其听起来类似爆米花的声音。

这种噪声也被称为猝发噪声和随机电报信号 (RTS)。

爆米花噪声出现在低频率(通常为 f < 1kHz)下。

每秒钟可以发生数次猝发,在极少数情况下,可能数分钟才发生。

图 8.3 显示了时域中的爆米花噪声及其相关的统计分布情况。

需要注意的是,噪声级别的不同跳跃与分布峰值相对应。

很明显,该分布情况与非高斯爆米花噪声相关。

实际上,本例中显示的分布情况为三条放置于彼此顶部的高斯曲线(三模分布)。

出现这种情况的原因是,本例中的爆米花噪声具有三个离散电平。

各猝发间的噪声为宽带和 1/f 噪声的组合。

因此,该噪声由三个不同的 1/f 及宽带噪声高斯分布组成,而 1/f 及宽带噪声又被爆米花噪声转换为不同的电平。

图 8.3爆米花噪声时域及柱状图人们认为,爆米花噪声是由电荷陷阱或半导体材料中的微小缺陷引起的。

我们已经知道重金属原子污染是引起爆米花噪声的原因。

在失效分析时,专家通常会对具有较多爆米花噪声的器件进行仔细的检查。

失效分析将查找会引起爆米花噪声的微小缺陷。

运算放大器电路固有噪声的分析与测量3

运算放大器电路固有噪声的分析与测量3

Analysis And Measurement Of Intrinsic Noise In Op Amp CircuitsPart III: Resistor Noise And Sample Calculationsby Art Kay, Senior Applications Engineer, Texas Instruments IncorporatedIn part II we developed a method for converting the noise spectral density curves from a product data sheet to noise sources in an op amp model. In this part we will learn how to use the model to compute the total output noise for a simple op amp circuit. The total noise referred-to-input (RTI) will contain noise from the op amp voltage noise source, noise from the op amp current noise source, and resistor noise. This combined noise source will be multiplied by the op amp noise gain. Fig. 3.1 shows all the different sources, to be combined and multiplied by the noise gain.Fig. 3.1: Combine The Noise SourcesNoise gain is the gain that the op amp circuit sees to the total noise referred-to-input (RTI). In some cases this is not equivalent to the signal gain. Fig. 3.2 shows an example where the signal gain is one and the noise gain is two. The Vn source represents contributions of noise from several sources. Note that it is common engineering practiceto lump all of the noise sources to a common source at the non-inverting input. Our endgoal is to compute noise referred-to-output (RTO) of our op amp circuit.Fig. 3.2: Noise Gain Vs Signal Gain3.1EqFrom the previous article we know how to compute the voltage noise input, but how dowe convert the current noise sources to a voltage noise source? One way to do this is todo an independent nodal analysis for each current source and use superposition to sumthe results. Be careful to make sure that the results from each current source is addedusing the root sum of the squares (RSS). Equations 3.2 and 3.3 allow you to convertcurrent noise to an equivalent voltage noise source for a simple op amp circuit. Fig. 3.3 shows this graphically. The full derivation for this circuit is given in the Appendix 3.1.3.3-3.2EqsFig. 3.3: Convert Current Noise To Voltage Noise (Equivalent Circuit)Another thing that must be considered is the thermal voltage noise from the resistors inthe op amp circuit. These voltage sources can be independently analyzed using a nodal analysis. The results are combined using superposition and RSS addition. Equations 3.4and 3.5 allow you to combine all the thermal noise sources into a single noise source referred to the input. This noise input referred thermal noise source is expressed as an equivalent resistor. Fig. 3.4 shows this graphically. The full derivation for this circuit is given in Appendix 3.2.3.53.4Eqs-Fig. 3.4: Thermal Noise RTI For Simple Op Amp Circuit (Equivalent Circuit) The final step to computing noise is to combine all these noise sources and multiply by the noise gain to compute the output noise. This rms noise is typically used to estimate the peak-to-peak value by multiplying by six. Recall from Part I that there is a 99.7% chance that any instantaneous noise measurement will be less then six times the rms noise. Equations 3.6, 3.7, and 3.8 summarize this final step.Eq3.63.73.8Example CalculationAt this point, finally, we are ready to go through a real world example. Sometimes engineers are overwhelmed by the amount of work required to get to this point. In fact, it is possible to use simulation software to do some of this difficult work for you. However, it is important to have an understanding of the theoretical background because it will give you a more intuitive understanding of how noise works. Furthermore, you should always do a quick back-of-the-envelope calculation before you simulate a circuit so that you know if your simulation result is correct. In Part 4 we will discuss how to do this analysis using a SPICE simulator package.Fig. 3.5 illustrates the simple op amp configuration that will be used for this analysis example. Note that the specifications used in this example were taken from the OPA627 data sheet, downloadable at the Texas Instruments web site. Fig. 3.5: Example CircuitThe first step to this analysis is to determine the noise gain and noise bandwidth for this circuit. The noise gain is given by Equation 3.2 (Noise_Gain = Rf/R1 + 1= 100 kΩ/1 kΩ +1 = 101). The signal bandwidth is limited by the closed-loop bandwidth of the op amp. Using the unity-gain bandwidth from the data sheet, the closed-loop bandwidth can be determined using Equation 3.9. If the gain-bandwidth product is not listed in the data sheet, use the unity-gain bandwidth specification -- which is the same for unity-gain stable amplifiers.Eq 3.9Fig. 3.6: Closed-Loop Bandwidth For Simple Non-Inverting AmpThe next part of the analysis is to get the broadband and 1/f noise spectral density specification from the data sheet. The specification is sometimes shown graphically (see Fig. 3.7) or in a table format (see Fig. 3.8). The spectral density values and the closed-loop bandwidth are used to compute the total input voltage noise. Example 3.1 shows how the total input noise is computed using the formulas introduced previously.Fig. 3.7: OPA627 Noise Spectral Density Specification To Be Used In CalculationsFig. 3.8: OPA627 Noise Spectral Density SpecificationsExample 3.1: Compute Magnitude Of Voltage Noise Referred To InputNext we need to convert the current noise to an equivalent input referred voltage noise. First we will convert the current noise spectral density to a current source which is multiplied by an equivalent input resistance to compute input voltage noise. It should be noted that the 1/f calculation is not required for this example because the amplifier is a J-FET input. J-FET amplifiers generally do not have 1/f current noise. This procedure is summarized in Example 3.2. Note that the equations for all parts of this sample calculation are summarized in Appendix 3.1. The summary in the appendix shows the case where current noise does have a 1/f region.Example 3.2: Convert Current Noise Spectral Density to Equivalent Input NoiseVoltageExample 3.3 illustrates how input referred resistor noise is calculated. Note that for this example the resistor noise is similar in magnitude to the op amp noise and so it will significantly contribute to the output noise.Example 3.3: Convert Resistor Noise To Equivalent Input Noise Voltage Now that we have computed all the noise components we can determine the total noise referred-to-input (RTI). This result will be multiplied by the noise gain to compute the noise referred to the output. Finally, the conversion factor from Table 1.1 will be used to estimate the peak-to-peak output. Example 3.4 shows the details.Example 3.4: Compute Total Peak-To-Peak Output NoiseSummary And PreviewThis part of the noise series completes the hand calculations for a simple op amp circuit. Using this technique we are able to predict the peak-to-peak output noise based on data sheet specifications. For the example circuit in this configuration we estimate that the peak-to-peak output noise will be 1.94 mVpp. We will return to this example in upcoming articles and verify that this is indeed an accurate estimate of the output noise through measurement and SPICE analysis.Although the calculations shown were for a simple configuration, this technique can be used for more complex circuits. In the next section we will show how a circuit simulation software package (TINA SPICE) can be used to do noise analysis. It should be noted, however, that the hand analysis technique should always be performed before doing circuit simulation to give confidence that the simulation was done properly.AcknowledgmentsSpecial thanks to all of the technical insights from the following individuals at Texas Instruments:•Rod Burt, Senior Analog IC Design Manager•Bruce Trump, Manager Linear Products•Tim Green, Applications Engineering Manager•Neil Albaugh, Senior Applications EngineerReferencesRobert V Hogg, and Elliot A Tanis, Probability and Statistical Inference, 3rd Edition, Macmillan Publishing CoC. D. Motchenbacher, and J. A. Connelly, Low-Noise Electronic System Design, A Wiley-Interscience PublicationAbout The AuthorArthur Kay is a Senior Applications Engineer at Texas Instruments and specializes in the support of sensor signal conditioning devices. Prior to Texas Instruments, Art was a semiconductor test engineer for Burr-Brown and Northrop Grumman Corp. He graduated from Georgia Institute of Technology with an MSEE in 1993. Art can be reached atkay_art@.Appendix 3.1: Derivation Of Conversion Of Current Noise To Voltage NoiseAppendix 3.2: Derivation Of Resistor Noise To Voltage Noise For Simple Op AmpAppendix 3.5: Equations For Simple Op Amp Circuit (Resistor And Total Noise)。

运算放大器电路的噪声分析和设计

运算放大器电路的噪声分析和设计

运算放大器电路的噪声分析和设计赵俊俊【摘要】本文将运算放大器的设计原理做了一个详细的分析,并且将生活中常见的一些电路图的设计做了计算与分析.【期刊名称】《电子测试》【年(卷),期】2018(000)016【总页数】2页(P62-63)【关键词】运算放大器;电路图;噪声;设计原理【作者】赵俊俊【作者单位】第七一五研究所,浙江杭州,311101【正文语种】中文1 反相放大电路的噪声分析1.1 总输入噪声谱密度计算在传统的运算放大器中,其中噪音主要由三个等级的来表示,主要是谱密度为e。

的电压源,还有谱密度为K的电流源以及同中类型的谱密度为0的电流源,并且,在一定的特殊情况中,电路图中的电阻也会产生一些比较低的噪音。

而在这四种噪音的效果叠加的基础上,在与放大器的噪声增幅度相乘就可以算出反放大器电路图中的总噪音。

在这里反相放大电路,噪声增幅度为:散粒噪声通常定义为这个平均值变化量的均方值,记为∶电压噪声源或电流噪声源的均方值分别记为∶其中,露为波尔兹曼常数,r为绝对温度,Af 为噪声带宽。

将上述各项相加可得总输入噪声谱密度为1.2 总输出噪声计算噪声的有效值与噪声谱密度关系为∶对于运算放大器,其噪声是由白噪声和噪声叠加而成的网。

高频部分与低频部分起到作用的分别是白噪声与噪声。

2 低噪声运放放大电路的设计原则首先,我们分析输入噪声谱密度的各个组成部分对最终结果的影响,具有对称输入端和不相关噪声电流的运算放大器,为了便于计算,取R2=R3,则公式化简为放输入频谱噪声e及它的三个单独分量关于的函数曲线。

观察发现,电压噪声项e 与R无关,电流噪声项随着的增加以1.0dec/dec的速率增加,R的增加以0.5dec/dec的速率增加。

当R值足够小时,电压噪声起主要作用,R值足够大时,电流噪声起主要作用,尺值居中时,热噪声也会起作用,取决于相对于其他两相的幅度。

热噪声在A点超过电压噪声,电流噪声在日点超过电压噪声,电流噪声在C点超过热声。

运算放大器电路固有噪声的分析与测量(6)噪声测量实例

运算放大器电路固有噪声的分析与测量第六部分:噪声测量简介作者:Arthur Kay,德州仪器(TI) 高级应用工程师内容摘要:在第5部分我们介绍了不同类型的噪声测量设备。

我们将在第6部分讨论与噪声测量相关的参数和操作模式。

在这里我们将列举一些实际应用的例子,来说明如何使用该设备对第3部分及第4部分所描述的电路进行测量。

关键字:运算放大器噪声1/f 噪声噪声测量屏蔽失调漂移屏蔽测量固有噪声时,消除外来噪声源是很重要的。

常见的外来噪声源有:电源线路“拾取”(“拾取”是指引入外来噪声,比如60Hz噪声)、监视器噪声、开关电源噪声以及无线通信噪声。

通常利用屏蔽外壳将所测电路放置于其中。

屏蔽外壳通常由铜、铁或铝制成,而重要的是屏蔽外壳应与系统接地相连。

一般来说,电源线缆和信号线缆是通过外壳上的小孔连接到屏蔽外壳内电路的。

这些小孔尽可能地小,数量也要尽可能地少,这一点非常重要。

实际上,解决好接缝、接合点以及小孔的(电磁)泄露,就可以实现较好的屏蔽效果。

[1]图6.1举例显示了一种极易构建且非常有效的屏蔽外壳,该屏蔽外壳是采用钢漆罐制成的(这些材料可从绝大多数五金商店买到,而且价格也不高)。

漆罐有紧密的接缝,并且罐盖的设计可以使我们方便地接触到所测电路。

请注意,I/O信号是采用屏蔽式同轴线缆进行连接的,该同轴线缆采用BNC 插孔-插孔式连接器将其连接到所测试的电路;BNC 插孔-插孔式连接器壳体与漆罐进行电气连接。

外壳唯一的泄露路径是将电源连接到所测电路的三个香蕉插头(banana connector)。

为了实现最佳的屏蔽效果,应确保漆罐密封紧固。

图6.1 使用钢漆罐进行测试图6.2为测试用漆罐装配示意图。

图6.2 测试用漆罐装配示意图检测噪声底限一个常见的噪声测量目标是测量低噪声系统或组件的输出噪声。

通常的情况是,电路输出噪声太小,以至于绝大多数的标准测试设备都无法对其进行测量。

通常,会在所测试电路与测试设备之间放一个低噪声升压放大器(boost amplifier)(见图6.3)。

运算放大器电路固有噪声的分析与测量

作者:Art Kay,德州仪器 (TI) 高级应用工程师本文主要阐述仪表放大器电路中的噪声分析与仿真。

此外,我们还将探讨将仪表放大器设计中噪声最小化的方法。

三运放仪表放大器的简单回顾仪表放大器 (INA) 对小差动信号进行了放大。

大多数 INA 都包括若干个电阻和运算放大器 (op amps)。

虽然可以使用分立组件来构建这些 INA,但是使用单片集成电路 INA 的优点颇多。

使用分立组件很难达到单片 INA 的精度和尺寸。

图 10.1 显示了三运放INA 的拓扑结构以及一些主要连接。

就仪表放大器而言,三运放INA 是最流行的拓扑结构。

在本节,我们将开发针对 INA 的增益方程式,这是进行噪声分析的一个重要的方程式。

但是本文并不会全面阐述如何设计并分析仪表放大器。

图 10.1 三运放仪表放大器概述诸如电阻式桥接的传感器生成用于 INA 的输入信号。

为了理解 INA 增益方程式,您必须要首先理解输入信号中的共模和差动组件的正式定义。

共模信号是 INA 两个输入端上的平均信号,差动信号是两信号之间的差。

因此按照定义,有一半的差动信号会高于共模电压,一半的差动信号会低于共模电压。

图 10.2 中的信号源描述了共模信号和差动信号的定义。

图 10.2 共模信号和差动信号的定义现在我们将图 10.2 中的共模和差动电压信号源表示法应用于三运放INA,并对增益方程求解。

这一练习给我们的噪声分析提供了颇具价值的启发。

通过分离输入级和输出级(请参见图 10.3),我们将简化这一分析过程。

这就允许我们可以单独分析每一半,从而我们可以在后期将二者整合,以得出全部的结果。

图 10.3 开始三运放INA 分析在图 10.4 中我们对称地将输入级的上半部分和下半部分分离后开始进行分析。

放大器的每一半均可视为一个简单的、非反相放大器(增益= Rf/Rin +1)。

请注意,增益设置电阻也被分成了两半,因此每一半的增益为:增益= 2Rf/Rg+1。

运算放大器电路固有噪声的分析与测量2

Analysis And Measurement Of Intrinsic Noise In Op Amp CircuitsPart II: Introduction To Op Amp Noiseby Art Kay, Senior Applications Engineer, Texas Instruments IncorporatedAn important characteristic of noise is its spectral density. Voltage noise spectral density is a measurement of root-mean-square (rms) noise voltage per square root Hertz (or commonly: nV/√Hz). Power spectral density is given in W/Hz. In the previous article we learned that the thermal noise of a resistor can be computed using Equation 2.1. This equation can be rearranged into a spectral density form. One important characteristic of this noise is that it has a flat spectral density plot (ie it has uniform energy at all frequencies). For this reason, thermal noise is sometimes called broadband noise. Op amps also have broadband noise associated with them. Broadband noise is defined as noise that has a flat spectral density plot.Eq 2.1Fig. 2.1: Op Amp Noise Spectral DensityIn addition to broadband noise, op amps often have a low-frequency noise region that does not have a flat spectral density plot. This noise is called 1/f noise, flicker noise, or low-frequency noise. Typically, the power spectrum of 1/f noise falls at a rate of 1/f. This means that the voltage spectrum falls at a rate of 1/f(½ ). In practice, however, the exponent of the 1/f function may deviate slightly. Fig. 2.1 shows a typical op amp spectrum with both a 1/f region and a broadband region. Note that the spectral density plot also shows current noise (given in fA/√Hz).It is important to note that 1/f noise also has a normal distribution and, consequently, the mathematics described in Part I still apply. Fig. 2.2 shows the time domain description of 1/f noise. Notice that the x-axis of this graph is given in seconds; this slow change with time is typical for 1/f noise.Fig. 2.2: 1/f Noise Shown In The Time Domain And StatisticallyThe standard model for op amp noise is shown in Fig. 2.3. It consists of two uncorrelated current noise sources and one voltage noise source connected to the op amp inputs. The voltage noise source can be thought of as time-varying input offset voltage component, and the current noise sources can be thought of time-varying bias current components.Fig. 2.3: Op Amp Noise ModelOp Amp Noise Analysis TechniqueThe goal of op amp noise analysis technique is to calculate the peak-to-peak output noise based on op amp data sheet information. As the technique is explained, we will use formulas that apply to most simple op amp circuits. For more complex circuits, the formulas can help to get a rough idea of the expected noise output. It is possible to develop more accurate formulas for these complex circuits; however, the math would be overly complex. For the complex circuits, it is probably best to use a three-step approach. First get a rough estimate using the formulas, second get a more accurate estimate using spice, and finally verify your results through measurements.As an example circuit, we will use a simple non-inverting amplifier with a TI OPA277 (see Fig. 2.4). Our goal is to determine the peak-to-peak output noise and to do this we have to consider the op amp's current noise, voltage noise, and the resistor thermal noise. We will determine the value of these noise sources using the spectral density curves in the data sheet. Also, we will have to consider the gain and bandwidth of the circuit.Fig. 2.4: Example Circuit For Noise AnalysisFirst, we must understand how to convert the noise spectral density curves to a noise source. In order to do this we will have to use some calculus. As a quick reminder, the integral function will give the area under a curve. Fig. 2.5 shows how a constant function can be integrated by simply multiplying the height times the width (ie the area of a rectangle). This simple relationship converts the spectral density curves to noise sources.Fig. 2.5: Integration Computes Area Under A CurvePeople will often say that you must integrate the voltage spectral density curve to get total noise. In reality, you must integrate the power spectral density curve. This curve is simply the voltage or current spectral density squared (remember P = V2/R and P = I2R). Fig. 2.6 shows the strange units that result when you attempt to integrate the voltage spectral density curve. Fig. 2.7 shows how you can integrate the power spectral density and convert back to voltage by taking the square root of the result. Note that we get the proper units.Fig. 2.6: Incorrect Way To Compute NoiseFig. 2.7: Correct Way To Compute NoiseIntegrating the power spectral density curve for the voltage and current spectrums will give us the rms magnitude of the sources in the op amp model (Fig. 2.3). However, the shape of the spectral density curve will contain a 1/f region and a broad band region with a low-pass filter (see Fig. 2.8). Calculating the total noise of these two sections willrequire the use of formulas that were derived using calculus. The results of these two computations are added using root-sum square (rss) addition for uncorrelated sources that was discussed in Part I.Fig. 2.8: Broadband Region With FilterFirst, we will integrate the broadband region with a low-pass filter. Ideally, the low-pass filter portion of this curve would be a straight vertical line. This is referred to as a brick-wall filter. Solving the area under a brick-wall filter is easy because it is a rectangle (height × width). In the real world we cannot realize a brick-wall filter. However, there are a set of constants that can be used to convert real-world filter bandwidth to an equivalent brick-wall filter bandwidth for the purpose of the noise calculation. Fig. 2.9 compares the theoretical brick-wall filter to first-, second- and third-order filters.Fig. 2.9: Comparison Of Brick-Wall Filter To Real-World FilterThe next equation is used to convert the real-world filter or the brick-wall equivalent.Table 2.1 lists the brick-wall conversion factors (K n) for different filter orders. For example, a first-order filter bandwidth can be converted to a brick-wall filter bandwidthby multiplying by 1.57. The adjusted bandwidth is sometimes referred to as the noise bandwidth. Note that the conversion factor approaches one as the order increases. Inother words, higher-order filters are a better approximation of a brick-wall filter.Eq2.2Number of Poles in FilterKnAc Noise Bandwidth Ratio11.572 1.223 1.164 1.135 1.12Table 2.1: Brick-Wall Correction FactorSo now that we have a formula to convert a real-world filter to its brick-wall equivalent,it is a simple matter to integrate the power spectrum. Remember, integrating the power isthe voltage spectrum squared. At the end of the integration, the square root is taken to convert back to voltage. The next equation was derived in this manor (see Appendix 2.1). This, and the last equation, are used in conjunction with the data sheet information to determine the broadband noise contribution.Eq2.3Recall that our goal is to determine the magnitude of the noise source Vn from Fig. 2.3.This noise source consists of both broadband noise and 1/f noise. Using the last two equations we were able to compute the broadband component. Now we need to computethe 1/f component. This is done by integrating the power spectrum of the 1/f region of the noise spectral density plot. Fig. 2.10 shows this region graphically.Fig. 2.10: 1/f RegionThe result of the integration is given by the two equations following, the first normalizing any noise measurement in the 1/f region to the noise at 1 Hz. In some cases this numbercan be read directly from the chart, in other cases it is more convenient to use thisequation (see Fig. 2.11). The second computes the 1/f noise using the normalized noise, upper noise bandwidth, and lower noise bandwidth. The full derivation is given in Appendix 2.2.2.4EqFig. 2.11: Two 1/f Normalizing Cases2.5Eq When considering the 1/f noise you must choose a low-frequency cutoff. This is becausethe 1/f function is not defined at zero (ie 1/0 is undefined). In fact, the noise theoreticallygoes to infinity when you integrate back to zero Hertz. However, you should considerthat very low frequencies correspond to long times. For example, 0.1 Hz corresponds to10 s, and 0.001 Hz corresponds to 1000 s. For extremely low frequencies the corresponding time could be years (eg 10 nHz = 3 years). The greater the frequencyinterval that you integrate over, the larger the resultant noise. Keep in mind, however,that extremely low-frequency noise measurements must be made over a long period oftime. These phenomena will be discussed in greater detail in a later article. For now,please note that 0.1 Hz is often used for the lower cutoff frequency of the 1/f calculation.Now we have both the broadband and 1/f noise magnitude. We must add these noisesources using the formula for uncorrelated noise sources given in Part I (see equationbelow and Equation 1.8 in Part I of this TechNote series).2.6EqA common concern that engineers have when considering this analysis technique is that they feel that the 1/f noise and broadband noise should be integrated in two separate regions. In other words, they believe that adding noise in this region will create an error because the 1/f noise will add with the broadband noise outside of the 1/f-region. The truth is that the 1/f-region extends across all frequencies as does the broadband-region. You must keep in mind that the noise spectrum is shown on a log chart and, so, the 1/f-region has little impact after it drops below the broadband curve. The only region where the combination of the two curves is obvious is near where they combine (often called the 1/f-corner frequency). In this region, you can see that the two sections combine as is described by our mathematical model. Fig. 2.12 illustrates how the two regions actually overlap as well as giving some relative magnitudes.Fig. 2.12: 1/f Noise Region and Broadband Noise Regions OverlapAt this point we have developed all the equations necessary for converting a noise spectral density curve to a noise source. Note that the equations were derived for voltage noise, but the same technique works for current. In the next part of this article series, we will address the noise analysis of op amp circuits using these equations.Summary And PreviewThis part of the noise series introduced the op amp noise model and the noise spectral density curve. Also, some fundamental noise equations were introduced. Part III of this series will give examples of noise calculations using real world circuits. AcknowledgementsSpecial thanks to all of the technical insights individuals from the following individuals: Burr-Brown Products from Texas Instruments:•Rod Bert, Senior Analog IC Design Manager•Bruce Trump, Manager Linear Products•Tim Green, Applications Engineering Manager•Neil Albaugh, Senior Applications EngineerReferencesRobert V Hogg, and Elliot A Tanis, Probability and Statistical Inference, 3rd Edition, Macmillan Publishing Co.C. D. Motchenbacher, and J. A. Connelly, Low-Noise Electronic System Design, A Wiley-Interscience PublicationAbout The AuthorArthur Kay is a Senior Applications Engineer at Texas Instruments Incorporated and specializes in the support of sensor signal conditioning devices. He graduated from Georgia Institute of Technology with an MSEE in 1993. He has worked as a semiconductor test engineer for Burr-Brown and Northrop Grumman Corporation.。

运算放大器电路中固有噪声的分析与测量(七)

运算放大器电路的固有噪声分析与测量(七)本文将讨论决定运算放大器 (op amp) 固有噪声的基本物理关系。

集成电路设计人员在噪声和其他运算放大器参数之间进行了一些性能折衷的设计,而电路板和系统级设计人员将从中得到一些启发。

另外,工程师们还能了解到,如何根据产品说明书的典型规范在室温及超过室温时估算最坏情况下的噪声。

最坏情况下的噪声分析和设计的 5 条经验法则大多数运算放大器产品说明书列出的仅仅是一个运算放大器噪声的典型值,没有任何关于噪声温度漂移的信息。

电路板和系统级设计人员希望能根据典型值找出一种可以估算最大噪声的方法,此外,这种方法应该还可以有效地估算出随着温度变化的噪声漂移。

这里给出了一些有助于进行这些估算的基本的晶体管噪声关系。

但是为了能准确地利用这些关系,我们有必要对内部拓扑结构(如偏置结构和晶体管类型等等)进行一些了解。

不过,如果我们考虑到最坏情况下的结构,也可以做一些包括大多数结构类型的概略性说明。

本节总结了最坏情况下的噪声分析和设计的 5 条经验法则。

下一节给出了与这些经验法则相关的详细数学计算方法。

经验法则 1:对半导体工艺进行一些改变,不会影响到宽带电压噪声。

这是因为运算放大器的噪声通常是由运算放大器偏置电流引起的。

一般说来,从一个器件到另一个器件的偏置电流是相对恒定的。

在一些设计中的噪声主要来自输入 ESD 保护电阻的热噪声。

这样的话,宽带噪声的变化超过典型值的 10% 是非常不可能的。

事实上,许多低噪声器件的这种变化一般都低于 10%。

请参见图 7.1 示例。

宽带电流噪声要比电压噪声更容易受影响(主要是对双极工艺而言)。

这是因为电流噪声与基极电流密切相关,而基极电流又取决于晶体管电流增益 (beta)。

通常来说,宽带电流噪声频谱密度的变化不到 30%。

图 7.1 基于典型值估算的室温条件下的宽带噪声经验法则 2:放大器噪声会随着温度变化而变化。

对于许多偏置方案 (bias scheme) 来说(如,与绝对温度成正比的方案,PTAT),噪声以绝对温度的平方根成正比地增大,因此在大范围的工业温度内噪声的变化相对很小(如,在25℃ 至125 ℃之间仅发生 15% 的变化)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器电路中固有噪声的分析与测量第一部分:引言与统计数据评论作者:德州仪器公司高级应用工程师 Art Kay我们可将噪声定义为电子系统中任何不需要的信号。

噪声会导致音频信号质量下降以及精确测量方面的错误。

板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。

噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。

外部噪声来自外部噪声源,典型例子包括数字交换、60Hz 噪声以及电源交换等。

固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。

本系列文章将介绍如何通过计算来预测电路的固有噪声大小,如何采用 SPICE 模拟技术,以及噪声测量技术等。

热噪声热噪声由导体中电子的不规则运动而产生。

由于运动会升高温度,因此热噪声的幅度会随温度的上升而提高。

我们可将热噪声视为组件(如电阻器)电压的不规则变化。

图 1.1 显示了标准示波器测得的一定时间域中热噪声波形,我们从图中还可看图 1.1: 在时间域中显示白噪声以及统计学分析结果热噪声信号所包含的功率与温度及带宽直接成正比。

请注意,我们可简单应用功率方程式来表达电压与电阻之间的关系(见方程式1.1),根据该表达式,我们可以估算出电路均方根 (RMS) 噪声的大小。

此外,它还说明了在低噪声电路中尽可能采用低电阻元件的重要性。

Ω)Note to convert degrees Celsius to Kelvin T K = 273.15o C + T C方程式 1.1:热电压方程式 1.1 中有一点值得重视的是,根据该表达式我们还可计算出 RMS 噪声电压。

在大多数情况下,工程师希望了解“最差条件下噪声会有多严重?”换言之,他们非常关心峰值对峰值电压的情况。

如果我们要将 RMS 热噪声电压转化为峰值对峰值噪声的话,那么必须记住的一点是:噪声会表现为高斯分布曲线。

这里有一些单凭经验的方法即根据统计学上的关系,我们可将 RMS 热噪声电压转化为峰值对峰值噪声。

不过,在介绍有关方法前,我想先谈谈一些数学方面的基本原理。

本文的重点在于介绍统计学方面的基本理论,随后几篇文章将讨论实际模拟电路的测量与分析事宜。

概率密度函数:构成正态分布函数的数学方程式称作“概率密度函数”(见方程式 1.2)。

根据一段时间内测得的噪声电压绘制出相应的柱状图,从该柱状图,我们可以大致看出函数所表达的形状。

图 1.2 显示了测得的噪声柱状图,并给出了相应的概率密度函数。

方程式 1.2:高斯曲线分布曲线对应的概率密度函数图1.2:根据相应的概率密度函数所绘制的分布曲线概率分布函数:概率分布函数是概率密度函数的积分。

根据该函数,我们可了解某事件在给定的时间间隔内发生的概率(见方程式 1.3 与图 1.3)。

举例来说,我们可以假定图 1.4 为噪声概率分布函数,该函数告诉我们,在任意时间点上,在 1V 与 +1V 之间(即 (-1, 1) 区间内)检测到噪声电压的概率为 30%。

P a x <b <()abx f x ()⌠⎮⌡d abx 1σ2π⋅e x µ−()2−2σ2⎡⎢⎢⎣⎤⎥⎥⎦⋅⌠⎮⎮⎮⎮⌡d WhereP(a < x < b) -- the probability that x will be in the interval (a, b) x-- the random variable. In this case noise voltage. µ -- the mean valueσ -- the standard deviation方程式 1.3: 概率分布函数图 1.3: 概率密度函数与概率分布函数概率分布函数对我们将 RMS热噪声电压转化为峰值对峰值噪声非常有用。

请注意,高斯分布曲线的尾部是无限延伸的,这就是说,任何噪声电压都是可能的。

尽管理论上确实如此,但就实际情况而言,极大的瞬时噪声电压发生的可能性不大。

举例来说,我们检测到噪声电压在 -3σ与 +3σ之间的概率为 99.7 %。

换言之,噪声电压超出该范围的概率仅有0.3 %。

因此,我们通常将噪声信号的峰值估算为±3σ(即 6σ)。

请注意,也有些工程师将噪声的峰值估算为 6.6σ。

人们对到底如何估计这个数值没有定论。

图 1.4 显示,68% 的噪声都会不超过 2σ。

表 1.1 总结了测量噪声电压时标准偏差与概率之间的关系。

图 1.4: 标准偏差与峰值噪声间的关系标准偏差数测量电压的概率2σ(即 ±σ) 68.3 % 3σ(即 ±1.5σ) 86.6 % 4σ(即 ±2σ) 95.4 % 5σ(即 ±2.5σ) 98.8 % 6σ(即 ±3σ) 99.7 % 6.6σ(即 ±3.3σ)99.9 %表 1.1: 标准偏差数与测量概率百分比因此,在一定的标准偏差条件下,我们可以根据关系式来估算峰值对峰值噪声。

不过,总体来说,我们还是希望将 RMS 噪声电压转化为峰值对峰值噪声。

人们常常假定 RMS 与标准偏差相同,不过事实并非总是如此。

这两个值只有在不存在元件(DC元件为平均值 µ)的情况下才相同。

就热噪声而言,由于没有DC 件,因此标准偏差与 RMS 值相等。

我们在附录中举出了“标准偏差与 RMS 相等”和“标准偏差与 RMS文章开头就给出了计算 RMS 热噪声电压的方程式。

还有一种计算果我们从模数 (A/D) 转换器中获得大量采样,那么我们就能运用方程式1.6 来计算噪声信号的平均偏差、标准偏差以及 RMS 值。

附录中的示例供您参考。

µ1n 1ni x i∑=(1.4) Mean Valueσσ21n 1ni x i µ−()2∑=(1.5) Standard DeviationRMS1n 1ni x i2∑=(1.6) RMS本文最后要介绍的概念是噪声信号的增加。

为了增加两个噪声信号,我们必须先了解信号是否相关。

来自两个不同信号源的噪声信号彼此不相关。

举例来说,来自两个不同电阻器或两个不同运算放大器的噪声是彼此不相关的。

不过,噪声源通过反馈机制会产生关联。

什么是相关噪声源增加呢?一个很好的实例就是带噪声消除功能的耳机,其可通过累加反向相关的噪声来消除噪声。

方程式 1.7 显示了如何添加相关噪声信号。

请注意,就带噪声消除功能的耳机而言,相关系数 C 应等于 - 1。

方程式 1.7: 增加随机相关信号方程式1.8: 增加随机不相关的信号在大多数情况下,我们都要添加不相关的噪声源(见方程式 1.8)。

在这种情况下增加噪声,我们要通过勾股定理得到两个矢量噪声的和。

图 1.5 显示了增加噪声源的情况。

我们通常可近似地估计一个噪声源强度为另一个的三分之一,较小的噪声源可忽略不计。

e n2e n1e nT e n12e n22+图 1.5: 噪声勾股定理本文总结与后续文章介绍:在关于噪声的系列文章中,本文介绍了噪声的概念,谈论了噪声分析所需的一些统计学基本原理。

本系列文章中都将用到这些基础知识。

本系列文章的第二部分将介绍运算放大器的噪声模型,并给出计算总输出噪声的一些方法。

致谢:特别感谢以下人员提供的技术信息:德州仪器 (TI) Burr-Brown产品部Rod Burt,高级模拟 IC 设计经理Bruce Trump,线性产品经理Tim Green,应用工程设计经理Neil Albaugh,高级应用工程师参考书目:Robert V. Hogg 与 Elliot A Tanis 共同编著的《概率与统计推断》,第三版,麦克米兰出版公司 (Macmillan Publishing Co) 出版;C. D. Motchenbacher 与 J. A. Connelly 共同编著的《低噪声电子系统设计》,A Wiley-Interscience Publication 出版。

关于作者:Arthur Kay 现任 TI 的高级应用工程师。

他专门负责传感器信号调节器件的支持工作。

他于 1993 年毕业于佐治亚理工学院 (Georgia Institute of Technology) 并获得电子工程硕士学位。

他曾在 Burr-Brown 与 Northrop Grumman 公司担任过半导体测试工程师。

附录 1.1:例 1:本例中,RMS 值与标准偏差不等。

通常说来,如果存在 DC 元件的话,标准偏差与 RMS 值不等(即非零平均值)。

测量此时的热噪声例2:本例中,RMS 等于标准偏差。

通常说来,如果不存在 DC 元件的话,标准偏差与 RMSExample where RMS = STDEVg t()sin t():=µ12π0−02πtg t()⌠⎮⌡d:=µ0=Variance defined for a Probability Distribution Functionvar12π0−02πtg t()µ−()2⌠⎮⌡d:=var0.5=Standard deviation defined for a Probability Distribution Functionσvar:=σ0.707=Root Mean Squared (RMS) defined for a Probability Distribution Function This is the same as σ if µ = 0RMS12π0−02πtg t()2⌠⎮⌡d⎛⎜⎜⎝⎞⎠:=RMS0.707=例 3:计算平均偏差、标准偏差及 RMS 值所采用的基本程序Dim x(5) as double 'x() is an array of measured voltages Dim N as integer 'N is the size of the populationDim Sum, Sum_Sqr, Sum_Sigma as double 'collects the sumDim Average, RMS, Sigma as double 'results we are calculatingx(1) = 1.2: x(2) = 0.8: x(3) = 1.8: x(4) = 0.7: x(5) = 1.2: N = 5For i = 1 to NSum = Sum + x(i)Sum_Sqr = Sum_Sqr + (x(i)) ^ 2Next iAverage = Sum / NRMS = (Sum_Sqr / N) ^ 0.5For i = 1 to NSum_Sigma = Sum_Sigma + (x(i) - Average) ^ 2Next iSigma = (Sum_Sigma / N) ^ 0.5Print "Average= "; AveragePrint "Standard Deviation= "; SigmaPrint "RMS= "; RMSResult of runAverage= 1.14Standard Deviation= 0.387814RMS= 1.20416附录 1.4:附录1.5:第二部分:运算放大器噪声介绍(RMS) 。

相关文档
最新文档