相交线与平行线培优卷

合集下载

(完整版)初一下学期相交线与平行线数学试题培优试卷

(完整版)初一下学期相交线与平行线数学试题培优试卷

一、选择题1.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒2.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128° 3.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160° 4.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .45.如图,直线//a b ,三角板的直角顶点在直线b 上,已知125∠=︒,则2∠等于( ).A .25°B .55°C .65°D .75°6.下列命题是真命题的有( )(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A .0个B .1个C .2个D .3个7.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 8.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒9.如图,长方形ABCD 中,7AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形1111D C B A ,第3次平移将长方形1111D C B A 沿11A B 的方向向右平移5个单位,得到长方形2222A B C D ,…第n 次平移将长方形1111n n n n A B C D ----的方向平移5个单位,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2022,则n 的值为( )A .403B .404C .405D .40610.如图,△OAB 为等腰直角三角形(∠A =∠B =45°,∠AOB =90°),△OCD 为等边三角形(∠C =∠D =∠COD =60°),满足OC >OA ,△OCD 绕点O 从射线OC 与射线OA 重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是( )A .当α=15°时,DC ∥ABB .当OC ⊥AB 时,α=45°C .当边OB 与边OD 在同一直线上时,直线DC 与直线AB 相交形成的锐角为15° D .整个旋转过程,共有10个位置使得△OAB 与△OCD 有一条边平行二、填空题11.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.12.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.13.如图,直线MN ∥PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD ⊥PQ 交PQ 于点D ,作AF ⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=52∠DAE ,则∠ACD 的度数是_____.14.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.15.如图,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是______度.16.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________17.如图,AB ∥CD ,EM 是∠AMF 的平分线,NF 是∠CNE 的平分线,EN ,MF 交于点O .若∠E +60°=2∠F ,则∠AMF 的大小是___.18.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.20.如图,将一副三角板按如图放置,90,45,60BAC DAE B E ∠=∠=︒∠=︒∠=︒,则①13∠=∠;②2180CAD ∠+∠=︒;③如果230∠=︒,则有//AC DE ;④如果245∠=︒,BC AD.上述结论中正确的是________________(填写序号).则有//三、解答题21.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.22.已知:AB//CD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.(1)如图1,求证:GF//EH;(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.24.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 25.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠.【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴, 12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠, 180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠, 180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒,1802(24)BKC BKC ∴∠=︒-∠-︒,76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c .2.A解析:A【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE ,∠CFE=∠CFG-∠EFG 即可.【详解】∵四边形ABCD 是矩形,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.3.D解析:D【详解】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选D.4.B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.C解析:C【分析】利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.【详解】∵a//b∴∠2=∠3,∵∠1+∠3=180°-90°=90°∴∠3=90°-∠1=90°-25°=65°∴∠2=65°.故选C.【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键.6.B解析:B【分析】根据对顶角与同位角的定义、垂线的性质、平行公理、余角的定义逐个判断即可得.【详解】解:(1)相等的角不一定是对顶角,则原命题是假命题;(2)两条平行线被第三条直线所截,同位角相等,则原命题是假命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题;(4)经过直线外一点,有且只有一条直线与已知直线平行,则原命题是真命题;(5)一个角的余角不一定大于这个角,如70︒角的余角等于20︒,则原命题是假命题;综上,是真命题的有1个,故选:B.【点睛】本题考查了对顶角与同位角的定义、垂线的性质、平行公理、余角,熟练掌握各定理与性质是解题关键.7.B解析:B【分析】根据角平分线的性质可得12ACB ACD∠=∠,12ACF ACG∠=∠,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC 平分∠ACD ,CF 平分∠ACG , ∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.8.B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.9.A解析:A【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+2求出n即可.【详解】解:∵AB=7,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,∴AB1=AA1+A1A2+A2B1=5+5+2=12,∴AB2的长为:5+5+7=17;∵AB1=2×5+2=12,AB2=3×5+2=17,∴AB n=(n+1)×5+2=2022,解得:n=403.故选:A.【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.10.A解析:A【分析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行.【详解】解:设OC与AB交点为M,OD与AB交点为N,当α=15°时,∠OMN=α+∠A=60°,∴∠OMN=∠C,∴DC∥AB,故A正确;当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,∴α=45°或225°,故B错误;当边OB 与边OD 在同一直线上时,应分两种情况,则直线DC 与直线AB 相交形成的锐角也有两种情况,故C 错误;整个旋转过程,因OC 、OB 、OD 、OA 都有交点,只有AB 和CD 存在平行,根据图形的对称性可判断有两个位置使得△OAB 与△OCD 有一条边平行,故D 错误;故选A .【点睛】本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题11.【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.12.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠ECD =∠ECD+∠DCB =90°,∴∠ACE =∠DCB =30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.13.27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°. 【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.14.80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.15.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.16.【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.17.【分析】作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数.【详解】解:作,如图,,,,,是的平分线,,,,同理可得,,,,解析:40︒【分析】作//EH AB ,则1AME ∠=∠,2CNE ∠=∠,而12AME AMF ∠=∠,所以12MEN AMF CNE ∠=∠+∠,同理可得12F AMF CNE ∠=∠+∠,变形得到22F AMF CNE ∠=∠+∠,利用等式的性质得322F E AMF ∠-∠=∠,加上已给条件602MEN F ∠+︒=∠,于是得到3602AMF ∠=︒,易得AMF ∠的度数. 【详解】解:作//EH AB ,如图,//AB CD ,//EH CD ,1AME ∴∠=∠,2CNE ∠=∠, EM 是AMF ∠的平分线,12AME AMF ∴∠=∠, 12MEN ∠=∠+∠,12MEN AMF CNE ∴∠=∠+∠, 同理可得,12F AMF CNE ∠=∠+∠, 22F AMF CNE ∴∠=∠+∠,322F MEN AMF ∴∠-∠=∠, 602MEN F ∠+︒=∠,即260F MEN ∠-∠=︒, ∴3602AMF ∠=︒, 40AMF ∴∠=︒,故答案为:40︒.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键.18.33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.19.56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD=180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD∥BE,AC∥BD,∴∠EBD=180°﹣∠4=124°,又∵CD∥BE,∴∠2=180°﹣∠CBD=180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.20.①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,解析:①②③④【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,故②正确;∵∠2=30°,∴∠1=60°=∠E,∴AC∥DE,故③正确;∵∠2=45°,∴∠3=45°=∠B,∴BC∥AD,故④正确;故答案为:①②③④.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.三、解答题∠HAP;理由见解析.21.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B 作BP //HD //GE ,过F 作FQ //HD //GE ,如图2,∴∠ABP =∠HAB ,∠CBP =∠BCG ,∠AFQ =∠HAF ,∠CFQ =∠FCG ,∴∠ABC =∠HAB +∠BCG ,∠AFC =∠HAF +∠FCG ,∵∠DAB =120°,∴∠HAB =180°﹣∠DAB =60°,∵AF 平分∠HAB ,BC 平分∠FCG ,∠BCG =20°,∴∠HAF =30°,∠FCG =40°,∴∠ABC =60°+20°=80°,∠AFC =30°+40°=70°,∴∠ABC >∠AFC ;(3)过P 作PK //HD //GE ,如图3,∴∠APK =∠HAP ,∠CPK =∠PCG ,∴∠APC =∠HAP +∠PCG ,∵PN 平分∠APC ,∴∠NPC =12∠HAP +12∠PCG ,∵∠PCE =180°﹣∠PCG ,CN 平分∠PCE ,∴∠PCN =90°﹣12∠PCG ,∵∠N +∠NPC +∠PCN =180°,∴∠N =180°﹣12∠HAP ﹣12∠PCG ﹣90°+12∠PCG =90°﹣12∠HAP ,即:∠N =90°﹣12∠HAP .【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.22.(1)见解析;(2)902FME α∠=︒-,证明见解析.【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.23.(1)AB //CD ,证明见解析;(2)∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D ;(3)(n -1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM +∠PME =180°,∵EF ∥AB ,GH ∥AB ,∴EF ∥GH ,∴∠EMN +∠MNG =180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n -1+∠n =(n -1)•180°.故答案为:(n -1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E 点作AB (或CD )的平行线,把复杂的图形化归为基本图形.24.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q=∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.25.(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN =90°或∠APM -∠QMN =90°.【分析】(1)①利用平行线的性质得到∠APM =∠PMQ ,再根据已知条件可得到PM ⊥MN ; ②过点N 作NH ∥CD ,利用角平分线的定义以及平行线的性质求得∠MNH =35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.。

相交线与平行线 培优练习附答案

相交线与平行线 培优练习附答案

故共有 2+2+6+6=16 对同旁内角
H

B D F
E G
EG
EG
A
B
A
B
A
B
C
D
C
D
C
D
H
(1)
(2)
F
H
(3)
F
H
(4)
F
A
练 :1 、 如 图 : 按 各 组 角 的 位 置 , 判 断 错 误 的 是 (
)
A、∠1 与∠A 是同旁内角
B、∠3 与∠4 是内错角
C、∠5 与∠6 是同旁内角
D、∠2 与∠5 是同位角
EG
一类为三线中两线平行,有两对同旁内角;另一类三线两两
相交,有六对同旁内角。
A
解:(1)取出 EF,得到基本图形如图(1),有 2 对同旁内角;

(2)取出 GH,得到基本图形如图(2),有 2 对同旁内角; (3)取出 AB,得到基本图形如图(3),有 6 对同旁内角; C
(4)取出 CD,得到基本图形如图(4),有 6 对同旁内角;
甲 乙 两 同 学 从 此 题 证 明 中 发 现 ,问 题 的 实 质 在 于 AA1 ∥ BA2 ,它 与 连 接 A1 、 A2 两 点 之 间
的 折 线 段 无 关 。因 此 ,如 图 3 ,甲 同 学 将 A1 、A3 之 间 的 折 线 段 增 加 到 4 条 A1B1 ,B1 A2 ,A2 B2 ,
例 2:如图(1),一辆汽车在公路上由 A 向 B 行驶,M,N 分别为位于 AB 两侧的学校,(1)汽车
在 公 路 上 行 驶 时 会 对 学 校 的 教 学 造 成 影 响 ,当 汽 车 行 驶 在 何 处 时 对 学 校 影 响 最 大 ? 在 图 上 标出来;(2)当汽车从 A 向 B 行驶时,哪一段上对两个学校的影响越来越大?哪一段上

(完整版)七年级下册数学相交线与平行线试卷及答案(人教版) (一)培优试题

(完整版)七年级下册数学相交线与平行线试卷及答案(人教版) (一)培优试题

一、选择题1.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒2.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒3.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++- 4.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒5.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒6.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 7.如图,△ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是( )A .3B .2.5C .2.4D .28.小明、小亮、小刚一起研究一道数学题,如图,已知EF AB ⊥,CD AB ⊥. 小明说:“如果还知道CDG BFE ∠=∠,则能得到AGD ACB ∠=∠.”小亮说:“把小明的已知和结论倒过来,即由AGD ACB ∠=∠,可得到CDG BFE ∠=∠.” 小刚说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠.”则说法正确的人数是( )A .3人B .2人C .1人D .0人9.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .310.已知,如图,点D 是射线AB 上一动点,连接CD ,过点D 作//DE BC 交直线AC 于点E ,若84ABC ∠=︒,20CDE ∠=︒,则ADC ∠的度数为( )A .104︒B .76︒C .104︒或76︒D .104︒或64︒二、填空题11.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.12.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.13.如图①:MA 1∥NA 2,图②:MA11NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,……,则第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n+1______.(用含n 的代数式表示)14.如图,已知直线l 1∥l 2,∠A =125°,∠B =85°,且∠1比∠2大4°,那么∠1=______.15.如图,将直角三角形ABC 沿AB 方向平移得到三角形4,1,4,3DEF AD EF CH ===,三角形ABC 周长为12.下列结论:①//BH EF ;②AD BE =;③ACB DFE ∠=∠;④四边形ACFE 的周长为14;⑤阴影部分的面积为203.其中正确的是_________.16.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.17.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.18.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.19.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.20.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.三、解答题21.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.22.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.23.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.24.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.25.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P点作PM//AB交AC于点M.∵CP平分∠ACD,∠ACD=68°,∠ACD=34°.∴∠4=12∵AB//CD,PM//AB,∴PM//CD,∴∠3=∠4=34°,∵AP⊥CP,∴∠APC=90°,∴∠2=∠APC-∠3=56°,∵PM//AB,∴∠1=∠2=56°,即:∠BAP的度数为56°,故选:A.【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.2.D解析:D【分析】过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH.【详解】解:过点P作PQ∥AB,过点H作HG∥AB,AB CD,//则PQ∥CD,HG∥CD,∴∠BEP=∠QPE,∠DFP=∠QPF,∵∠EPF=∠QPE+∠QPF=78°,∴∠BEP+∠DFP=78°,∴∠AEP+∠CFP=360°-78°=282°,∵EH平分∠AEP,HF平分∠CFP,∴∠AEH+∠CFH=282°÷2=141°,同理可得:∠EHF=∠AEH+∠CFH=141°,故选D.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.3.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x=∠BCD+∠DCM=180αγβ︒--+,故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.4.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.5.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P 作MN ∥AB ,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB ∥CD,PF ⊥CD 于F ,∴PF ⊥MN ,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键. 6.D解析:D【分析】根据平移的性质直接可判断①②;先根据线段的和差可得2cm BH =,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形BEFH 的面积即可判断⑤.【详解】解:由题意得:90ABC ∠=︒,由平移的性质得:,4cm,2cm AB DE BC EF AD BE =====,//,//,90BH EF AC DF E ABC ∠=∠=︒,则结论①②正确;2cm CH =,2cm BH BC CH CH ∴=-==,在Rt BDH 中,斜边DH 大于直角边BH ,DH CH ∴>,即结论③错误;//AC DF ,C BHD ∴∠=∠,即结论④正确;由平移的性质得:ABC 的面积等于DEF 的面积,则阴影部分的面积为ABC BDH DEF BDH SS S S -=-,BEFH S =直角梯形,2BH EF BE +=⋅, 2422+=⨯, 26(cm )=,即结论⑤正确;综上,结论正确的是①②④⑤,故选:D .【点睛】本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 7.C解析:C【分析】当PC ⊥AB 时,PC 的值最小,利用面积法求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,∵当PC ⊥AB 时,PC 的值最小,此时:△ABC 的面积=12•AB •PC =12•AC •BC ,∴5PC =3×4,∴PC =2.4,故选:C .【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高. 8.B解析:B【分析】由EF ⊥AB ,CD ⊥AB ,知CD ∥EF ,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF ⊥AB ,CD ⊥AB ,∴CD ∥EF ,∴∠BCD =∠BFE ,若∠CDG =∠BFE ,∴∠BCD =∠CDG ,∴DG ∥BC ,∴∠AGD =∠ACB ,∴小明的说法正确;若∠AGD =∠ACB ,∴DG ∥BC ,∴∠BCD =∠CDG∴∠BCD=∠BFE∴小亮的说法正确;连接GF,如果FG//AB,∠GFC=∠ABC若∠GFC=∠ADG则∠ABC=∠ADG则DG∥BC但是DG∥BC不一定成立∴小刚的说法错误;综上知:正确的说法有两个.故选B.【点睛】本题主要考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键. 9.D解析:D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即①③可证得②;(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.10.D解析:D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D 在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC=104°或64°.故选:D.【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.二、填空题11.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,MN AB,过M作//AB CD,//,AB CD NM////AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.12.10或28【分析】作出图形,分①两三角形在点O 的同侧时,设CD 与OB 相交于点E ,根据两直线平行,同位角相等可得∠CEO=∠B ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE ,然解析:10或28【分析】作出图形,分①两三角形在点O 的同侧时,设CD 与OB 相交于点E ,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.13.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.14.【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,解析:17︒【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.15.①②③④【分析】①由平移变换可知,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知,可得到,,即可得出结论;③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边解析:①②③④【分析】①由平移变换可知//BC EF ,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知DE AB =,可得到AB AD DB =+,DE BE DB =+,即可得出结论; ③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边形ADFC 是平行四边形,四边形ACFE 的周长为:AD CF DE EF AC ++++,求解即可;⑤S 阴影=ADFC HCF SS -,根据条件求解即可. 【详解】①DEF 是由ABC 平移得来的,//,BC EF ∴ 又点B 、H 、C 三点在同一条直线上,∴//BH EF ,∴①正确;②DEF 是由ABC 平移得来的,,,,,DE AB AB AD DB DE BE DB AD BE ∴==+=+∴=∴②正确;③DEF 是由ABC 平移得来的,∴平移前后角的度数是不变的,∴ACB DFE ∠=∠,∴③正确; ④三角形ABC 周长为12,12AB BC AC ∴++=, DEF 是由ABC 平移得来的,∴边的长度不变且//AC DF ,12,12,DE EF DF DE EF AC ∴++=∴++=∴四边形ADFC 是平行四边形,1,AD CF ∴==四边形ACFE 的周长为:AD CF DE EF AC ++++,∴四边形ACFE 的周长为:2+12=14,∴④正确;⑤由④得四边形ADFC 是平行四边形,1CF AD ∴==, S 阴影=ADFC HCF S S -,,,,BC AE BC AD BC CF ⊥∴⊥∴⊥S ∴阴影=12AD EF HC CF -141412324310,3=⨯-⨯⨯=-= ∴⑤错误.故答案为:①②③④.【点睛】本题主要考查了图形的平移变换,平行线的公理,平行四边形的性质,有一定综合性,熟练掌握和运用这些性质是解题的关键.16.①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°, ∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.17.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.18.或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 19.131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.20.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF ,可得∠AEC <148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF =180°-∠EFB =180°-32°=148°,又因为∠AEF =∠AEC +∠GEF ,可得∠AEC <148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF =∠C ′EF ,又因为∠C′EG =64°,根据平行线性质即可得到∠BGE =∠C′EG =64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF =∠BGE =64°,根据平行线得性质即可得:∠BFD =180°-∠CGF 即可得到结果.【详解】解:(1)∵//AE BG ,∠EFB=32°,∴∠C ′EF =∠EFB =32°,故本小题正确;(2)∵AE ∥BG ,∠EFB =32°,∴∠AEF =180°-∠EFB =180°-32°=148°,∵∠AEF =∠AEC +∠GEF ,∴∠AEC <148°,故本小题错误;(3)∵∠C′EF =32°,∴∠GEF =∠C ′EF =32°,∴∠C′EG =∠C′EF +∠GEF =32°+32°=64°,∵AC′∥BD′,∴∠BGE =∠C′EG =64°,故本小题正确;(4)∵∠BGE =64°,∴∠CGF =∠BGE =64°,∵//DF CG ,∴∠BFD =180°-∠CGF =180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.三、解答题21.(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.22.(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′【分析】(1)求出旋转10秒时,∠BPB ′和∠CQC ′的度数,设PB ′与QC ′交于O ,过O 作OE ∥AB ,根据平行线的性质求得∠POE 和∠QOE 的度数,进而得结论;(2)分三种情况:①当0<t ≤15时,②当15<t ≤30时,③当30<t <45时,根据平行线的性质,得出角的关系,列出t 的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB ′=10°×12=120°,∠CQC ′=3°×10=30°,过O 作OE ∥AB ,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.23.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.24.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.25.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。

初一数学培优卷-相交线与平行线

初一数学培优卷-相交线与平行线

1O F E D C B A O D C B A 60︒30︒34l 3l 2l 112D C B A DC BA ODC BAG H K F ED C B Ad ecb a 3412E D C A FE D CB A 34D C B A 21初一数学培优卷-相交线与平行线重点、难点、疑点补充:1.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°2.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( )A.62°B.118°C.72°D.59°(1) (2)(3) 3.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60° B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 4.下列说法正确的有( ) ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角; ④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个5.若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一点呢?6.如图1所示,下列说法不正确的是( ) A.点B 到AC 的垂线段是线段AB; B.点C 到AB 的垂线段是线段AC C.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(1)7.如图1,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 8.下列说法正确的有( )①平面内,过直线上一点有且只有一条直线垂直于已知直线; ②平面内,过直线外一点有且只有一条直线垂直于已知直线; ③平面内,过一点可以任意画一条直线垂直于已知直线; ④平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个9.如右图所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是( ) A.大于acm B.小于bcmC.大于acm 或小于bcmD.大于bcm 且小于acm 10.到直线L 的距离等于2cm 的点有( )A.0个B.1个;C.无数个D.无法确定11.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm 12.O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,说明理由.13.在同一平面内,两条不重合直线的位置关系可能是( ) A.平行或相交 B.垂直或相交; C.垂直或平行 D.平行、垂直或相交 14.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行15.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0个B.1个C.2个D.3个 16.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD; ④若a ∥b,b ∥c,则a 与c 不相交.A.1个B.2个C.3个D.4个 17.过一点画已知直线的平行线,则( ) A.有且只有一条 B.有两条;C.不存在D.不存在或只有一条18.同一平面内的三条直线,其交点的个数可能为________.19.直线L 同侧有A,B,C 三点,若过A,B 的直线L 1和过B,C 的直线L 2都与L 平行,则A,•B,C 三点________,理论根据是___________________________. 20.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3)21.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 22.如图3所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE 23.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行24.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互( ) A.平行B.垂直C.平行或垂直 D.平行或垂直或相交25.如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•30°,试说明AB ∥CD.26.如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年七年级下册《相交线与平行线》测试题
数 学(培优卷)
本试卷分选择题与非选择题两部分,共三大题25小题,共6页,满分150分.考试用时120分钟.
第一部分 选择题(共30分)
一、选择题(本大题共10小题.每小题3分,满分30分.在每小题给出得四个选项中,只有一项就是符合题目要求得.)
1、 如图,下列判断正确得就是( )
A 、∠2与∠5就是对顶角
B 、∠2与∠4就是同位角
C 、∠3与∠6就是同位角
D 、∠5与∠3就是内错角
2、如图
,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC =150°, ∠BCD A B .AB ∥DC C D .AB 与CD 相交 3、 如图,下列说法错误得就是
( )
A.若a ∥b,b ∥c,则a ∥c
B.若∠1=∠2,则a ∥c
C.若∠3=∠2,则b ∥c
D.若∠3+∠5=180°,则a ∥c 4、在一个平面内,任意四条直线相交,交点得个数最多为( ) A 、7 B 、6 C 、5 D 、4 5、 如图,AB ∥EF ,CD ⊥EF ,∠BAC =50°,则∠ACD =( )
A 、120°
B 、130°
C 、140°
D 、150°
A 、 20°
B 、16°
C 、 23°
D 、26°
9、 如图,若OP ∥QR ∥ST,则下列等式中正确得就是( )
A 、∠1+∠2-∠3=90º
B 、∠1-∠2+∠3=90º
C 、∠1+∠2+∠3=180º
D 、∠2+∠3-∠1=180º
10、 下列说法正确得个数为( )
(1)如果∠1+∠2+∠3=180°,那么∠1、∠2与∠3互为补角; (2)如果∠A+∠B=90°,那么∠A 就是余角;
第2题图
第3题图
第8题图 第9题图
(3)互为补角得两个角得平分线互相垂直; (4)有公共顶点且又相等得角就是对顶角; (5)如果两个锐角相等,那么它们得余角也相等.
A 、1
B 、2
C 、3
D 、4
第二部分 非选择题(共120分)
二、填空题(本大题共6小题.每小题3分,满分18分.)
11、 把下列命题写成“如果…那么…”得形式:不能被2整除得数就是奇数
12、 如图,已知AB ∥CD ,BC ∥DE 、若∠A =20°,∠C =120°,则∠AED 得度数就是 、
13、 如图,若AO ⊥OC,DO ⊥OB,∠AOB ∶∠BOC=32∶13,则∠COD=
14、 将一副直角三角板ABC 与EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且ED ∥BC ,则∠CEF 得
15、 、EF 相交于同一点O,如果∠AOE=2∠AOC,∠COF=∠AOE,那么 \ ∠DOE=

16、 一个人从点方向走到点B,再从点B 出发向南偏西15°方向走到点C,那么 ∠ABC 三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)
17、 如图所示,一块正方形地板,边长为60cm,上面横竖各有两道宽为5cm 得花纹(图中阴影部分),那么空白部分得面
积就是多少?(9分)
18、 顶点在网格交点得多边形叫做格点多边形,如图,在一个9×9得正方形网格中有一个格点△ABC 、设网格中小正方形得边长为1个单位长度、(9分)
(1)在网格中画出△ABC 向上平移4个单位后得到得△A 1B 1C; (2)在(1)中△ABC 向上平移过程中,求边AC 所扫过区域得面积、
19、如图,∠AEF +∠CFE =180°,∠1=∠2,EG 与HF 平行吗?为什么?(9分)
20、 已知:如图,AB ∥CD,EF ∥AB,BE 、DE 分别平分∠ABD 、∠BDC 、求证:∠1与∠2互余、(10分)
21、 如图,∠BAF =46°,∠ACE =136°,CE ⊥CD 、问CD ∥AB 吗?为什么?(10
第13题图 第14题图
B
A 第16题图
第17题图
B
22、如图所示,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB,GF交于点M、试探索∠AMG与∠3得关系,并说明理由、 (12分)
23、我们知道,光线从空气射入水中会发生折射现象,光线从水中射入空气,同样会发生折射现象.如图所示就是光线从空气射入水中,再从水中射入空气得示意图.由于折射率相同,已知∠1=∠4,∠2=∠3,请您用所学知识来判断光线c与光线d就是否平行?并说明理由.(12分)
24、如图,把一张长方形得纸片按如图所示得方式折叠,EM、FM折痕,折叠后得C点落在B’M或B’M得延长线上,求∠EMF得度数。

(14分)
25、如图,已知直线a∥b,且直线d与a、b分别交于A、B两点,直线c与a、b分别交于M、N两点,点P在AB上.
(1)试找出∠1、∠2、∠3之间得关系并说出理由;(14分)
(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间得关系就是否发生变化?
(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间得关系,并说明理由(点P与A、B不重合)、
参考答案
一、选择题
1 2 3 4 5 6 7 8 9 10
A B C B C C D A D A
二、填空题
11、如果一个数不能被2整除,那么这个数就是奇数12、80°
13、64°14、15°15、90°16、45°
三、解答题
17、解:通过平移,将上面横竖两道花纹移到正方形地板得边上,
则剩下得空白部分可以瞧成就是边长为50cm得正方形
则空白部分面积为(60-2×5)²=2500cm²
故答案为:2500cm²
18、
19、解:平行.
理由:∵∠AEF+∠CFE=180°,
∴AB∥CD、
∴∠AEF=∠EFD、
∵∠1=∠2,
∴∠AEF-∠1=∠EFD-∠2,
即∠GEF=∠HFE、
∴GE∥FH、
20、证:∵AB∥CD,
∴∠ABD+∠BDC=180°,
∵BE、DE分别平分∠ABD、∠BDC,
∴∠EBD+∠EDB=90°,
∴∠BED=90°,
∴∠1+∠2=90°.
21、解:CD∥AB、
理由:∵CE⊥CD,
∴∠DCE=90°、
又∵∠ACE=136°,
∴∠ACD=360°-∠ACE-∠DCE=360°-136°-90°=134°、
∵∠BAF=46°,
∴∠BAC=180°-∠BAF=180°-46°=134°、
∴∠ACD=∠BAC、
∴CD∥AB、22、
23、解:c∥d、理由如下:
∵∠1+∠5=180°,∠4+∠6=180°,∠1=∠4, ∴∠5=∠6、
∵∠2=∠3,
∴∠2+∠5=∠3+∠6、
∴c∥d、
24、
25、
解:(1)∠1+∠2=∠3;
理由:过点P作a得平行线,
∵a∥b,
∴a∥b∥PQ,
∴∠1=∠4,∠2=∠5,
∵∠4+∠5=∠3,
∴∠1+∠2=∠3;
(2)同理可知:∠1+∠2=∠3;
(3)同理:∠1-∠2=∠3或∠2-∠1=∠3.
理由:当点P在下侧时,过点P作a得平行线PQ,
∵a∥b,
∴a∥b∥PQ,
∴∠2=∠4,∠1=∠3+∠4,
∴∠1-∠2=∠3;
当点P在上侧时,同理可得∠2-∠1=∠3、。

相关文档
最新文档