8.3 再探实际问题与二元一次方程(3)
七年级数学人教版下册课件8.3实际问题与二元一次方程组

30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
2020年春人教版初中数学七年级下册8.3实际问题和二元一次方程组课后提升练习(共38张PPT)

母刚好配套.
8.3 实际问题与二元一次方程组
栏目索引
19.(2019江苏苏州中学月考)某书店在世界读书日举办“书香”图书展,已 知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150 元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的 60%出售,小明花80元买了这两本书,求这两本书的标价各是多少元.
母18个,若一个螺栓配两个螺母,则应分配多少名工人生产螺栓和多少名工
人生产螺母,才能使每天生产出来的螺栓和螺母刚好配套?
解析 设分配x人生产螺栓,分配y人生产螺母.
由题意,得 2x
y 12x
28, 18
y,
解得
x y
12, 16.
答:应分配12人生产螺栓,16人生产螺母,才能使每天生产出来的螺栓和螺
由题意,得 3xxy2y10,50-26,
解得
x y
4, 6.
答:应放入4个大球,6个小球.
8.3 实际问题与二元一次方程组
栏目索引
17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
甲
乙
进价(元/件)
15
35
售价(元/件)
20
45
若商店计划销售完这批商品后能获利1 100元,请利用二元一次方程组求 甲、乙两种商品应分别购进多少件.
8.3 实际问题与二元一次方程组
栏目索引
5.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位
与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的
是( )
A.(xx--yy)-1(y-x) 9
B.
x 10x
y
1 y
人教版数学七年级下册8.3实际问题与二元一次方程组—工程问题说课稿

4.课堂示范:在黑板上展示解题过程,让学生跟随教师的思路,加深对知识点的理解。
(三)巩固练习
为了1.课堂练习:设计具有代表性的工程问题习题,让学生独立完成,检验学生对知识点的掌握程度;
3.教师反馈:根据学生的课堂表现和练习情况,给予针对性的反馈和建议,帮助学生找到提高的方向。
(五)作业布置
课后作业布置如下:
1.工程问题习题:布置一定数量的工程问题习题,目的是巩固所学知识,提高解题能力;
2.实践报告:要求学生完成课后实践活动,并撰写实践报告,目的是培养学生的实际操作能力和总结反思能力;
5.定期进行课堂小结,让学生总结所学知识,巩固学习成果。
三、教学方法与手段
(一)教学策略
我将采用探究式教学法和情境教学法作为主要教学方法。探究式教学法鼓励学生在教师的引导下,通过自主探究、合作交流等方式主动发现问题、解决问题,从而培养学生的自主学习能力和合作精神。情境教学法则是通过创设具体、生动、有趣的教学情境,让学生在实际情境中感受数学知识的应用,提高学生的学习兴趣和实际操作能力。选择这些方法的理论依据是建构主义学习理论,该理论认为学习是学习者主动建构知识的过程,而情境和合作是知识建构的重要条件。
3.预习任务:布置下一节课的预习任务,让学生提前了解下节课的知识点,为课堂学习做好准备。
五、板书设计与教学反思
(一)板书设计
我的板书设计将遵循清晰、简洁、结构化的原则。板书布局分为左、中、右三个部分:左侧列出关键概念和公式,中间展示解题步骤和案例分析,右侧用于记录学生的思考过程和答案。
1.主要内容:包括工程问题的定义、二元一次方程组的表示、解题步骤和注意事项;
(二)学习障碍
8-3 二元一次方程组与实际问题-2022 -2023学年七年级数学下册同步教学课件(人教版)

5.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走
3 km,平路每小时走 4 km,下坡每小时走 5 km,那么从甲地到
乙地需 54 min,从乙地到甲地需 42 min.甲地到乙地全程是多少?
解:设从甲地 到乙地的上坡路为x km,平路为y km.
x
3
由题意,得 x
因此,我们必须知道产品的数量和原料的数量.
产品x吨
原料y吨
公路运费(元)
1.5×20x
1.5×10y 1.5(20x+10y)
铁路运费(元)
1.2×110x
价值(元)
8 000x
合计
1.2×120y 1.2(110x+120y)
1 000y
知识点3 行程问题
解:设产品xt,原料yt.
1.5
×
20
200x:400y=3:4
A
解得 x=60
y=40
将这块土地分为长200m,宽60m和长200m,宽40m的
两个小长方形分别种植甲、乙两种作物.
B
知识点3 行程问题
探究2
如图,长青化工厂与 A,B 两地有公路、铁路
相连.这家工厂从A地购买一批每吨 1 000元的原料运回
工厂,制成每吨 8 000 元的产品运到 B 地.公路运价
A
E
x=120
解得 y=80
将这块土地分为长120m,宽100m和长100m,宽80m的
两个小长方形分别种植甲、乙两种作物.
B
知识点2 几何问题
2.横着画,把宽分成两段,则长不变
D
解:设DE=xm,AE=ym.
根据题意列方程组为
x+y=100
人教版七年级数学下册8.3实际问题与二元一次方程组教学设计

b.一个长方形的长比宽多5厘米,面积为120平方厘米。求这个长方形的长和宽。
3.实践作业:结合生活中的实际问题,编写一个涉及二元一次方程组的数学小故事,要求故事内容合理,方程组正确无误。此作业旨在培养学生的创新意识和数学建模能力。
3.目标:巩固学生对二元一次方程组的认识,提高学生的解题能力。
(五)总结归纳,500字
1.教学活动:教师引导学生回顾本节课所学的内容,总结二元一次方程组的定义、解法和应用。
2.讲解:强调解决实际问题时,找出等量关系和正确列出方程组的重要性。
3.目标:帮助学生梳理知识结构,形成完整的知识体系,提高学生的数学素养。
人教版七年级数学下册8.3实际问题与二元一次方程组教学设计
一、教学目标
(一)知识与技能
1.理解并掌握二元一次方程组的概念,能正确列出二元一次方程组,并运用消元法解决简单的实际问题。
2.学会使用代入法、加减法等消元方法解二元一次方程组,并能够根据实际问题选择合适的消元方法。
3.能够运用二元一次方程组解决生活中的实际问题,如购物、配料、速度与时间等,提高学生运用数学知识解决实际问题的能力。
1.关注学生基础知识掌握情况,巩固线性方程的解法,为学习二元一次方程组打下坚实基础。
2.重视培养学生的观察能力和思维能力,引导学生从实际问题中提炼出二元一次方程组,提高学生分析问题的能力。
3.注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生的合作意识和探究精神。
4.针对不同学生的学习水平,制定分层教学策略,使每位学生都能在原有基础上得到提高和发展。
七年级数学下册第八章教案-8.31

8.3 再探实际问题与二元一次议程组教学目标:1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3体会列方程组比列一元一次方程容易4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系教学过程:一复习列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答新课:看一看课本113页探究1问题:1 题中有哪些已知量?哪些未知量?2 题中等量关系有哪些?3如何解这个应用题?本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940解:设平均每只母牛和每只小牛1天各需用饲料为xkg 和ykg根据题意列方程,得⎩⎨⎧=+=+)2(9402042)1(6751530y x y x 解这个方程组得 ⎩⎨⎧==520y x 答:每只母牛和每只小牛1天各需用饲料为20kg 和5kg ,饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算有一定的出入。
练一练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人? 解:设现在初中在校学生有x 人,高中在校生有y 人根据题意,列方程得⎩⎨⎧+=+++=+%)101(4200%)111(%)81(4200y x y x 解这个方程组得⎩⎨⎧==28001400y x2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。
50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?解:设每辆大车和每辆小车一次运货量分别为x,y 吨⎩⎨⎧=+=+35655.1532y x y x ⎩⎨⎧==5.24y x答:3辆大车与5辆小车一次可以运货24.5吨3、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人? 解:设第一、第二车间原来分别有 x,y 人⎪⎪⎩⎪⎪⎨⎧-=+-=)10(43103054y x y x ⎩⎨⎧==250170y x 4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?5.2453=+y x。
8.3实际问题与二元一次方程组
深沟初中教师全程备课稿纸
深沟初中教师全程备课稿纸
(1)
C D E F
深沟初中教师全程备课稿纸
深沟初中教师全程备课稿纸
本章小结
一、知识结构
二、回顾与思考
1、什么是二元一次方程?什么是二元一次方程组?什么是二元一次方程的解?什么是二元一次方程组的解?
2、什么是消元的思想?解二元一次方程组消元的途径有哪些?
3、列二元一次方程组解应用题与列一元一次方程解应用题有什么相同之处?有什么不同之处?
三、例题导引
例 1 已知方程组15,(1)
4 2.(2)
ax y x by +
=⎧⎨
-=-⎩甲由于看错了方程(1)中的a ,得到方程组的解为
31
x y =-⎧⎨
=-⎩,乙由于看错了方程(2)中的
b ,得到方程组的解为4,
3.
x y =⎧⎨
=⎩,若按正确的计算,求x +6y 的值。
例2 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
例3 据研究,一般洗衣粉含量以0.2%~0.5%为宜,即100千克洗衣水里含200~500克的洗衣粉比较合适,因为这时表面活性最大,去污效果最好。
现在,洗衣缸里放了两汤匙洗衣粉(一汤匙约0.02千克),4千克衣服,若要使洗衣粉的含量为0.4%(放入衣服之后),容量达到15千克,还需加多少洗衣粉,添多少水才合适?
三、练习升华
课本118-119面1-3;5-10题.。
8.3二元一次方程组与实际问题导学案
七年级数学分层教学导学稿学案 班级_________ 小组名_________ 姓名_________ 小组评价_________ 教师评价________ 一、课题 8.3.1实际问题与二元一次方程组(一) 二、本课学习目标与任务:
1、进步学习用二元一次方程组解决实际问题,提高解决复杂应用题及开放性问题的能力。 2、培养学生独立探究和合作交流的学习习惯。 3、进行解题过程的规范训练。 4、理解估算的意义及估算与精确计算的关系。
三、知识链接: 1、解方程组 32155423xyxy
2、两台大收割机和五台小收割机,两小时收割3.6公顷,三台大收割机和两台小收割机,五小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷? 由题意可找两个相等的数量关系: 公顷数+ 公顷数=3.6公顷 公顷数+ 公顷数=8公顷 故可设两个未知数为:
四、自学任务(分层)与方法指导:
1、养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg,饲养员李大叔估计每只大牛1天约需饲料18~20 kg,每只小牛1天约需饲料7~8 kg,你能否通过计算检验他的估计? 分析:设每只大牛和每只小牛1天各约用饲料xkg和ykg,根据两种情况的饲料用量,找出相等关系, 列方程组 , 。 解这个方程组,得 x , y 。
这就是说,每只大牛1天需饲料 kg,每只小牛1天约需饲 料 kg。因此,饲养员李大叔对大牛的食量估计 ,对小牛的食量估计 。 2、利用二元一次方程组解应用题可设 个未知数,必须找到 个与所设
未知数相关的等量关系。这几个等量关系必须具备两条件: ○1: ;○2: 。 3、课本中探究1情景里的每只大牛和小牛估计,所需饲料量其实是一个 数。 五、小组合作探究问题与拓展:
1、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴,村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元。 求:(1)A型洗衣机和B型洗衣机的售价各是多少元? (1) 小李和小王购买洗衣机除财政补贴外实际各付款多少元?
初中数学人教七年级下册第八章 二元一次方程组 再探实际问题与二元一次方程组探究三PPT
① 1.2x·120
铁路120千米
公路10千米
A
原料x吨
③ 1.5y·20
·② 1.5x·10 长青化工厂
B
公路20千米
产品y吨
④ 1.2y·110
铁路110千米
1.5x·10 + 1.5y·20 =15000 1.2x·120 + 1.2y·110 =97200
批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,公路运
价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支
出公路运费15000元,铁路运费97200元,这批产品的销售款比原料费与
运输费的和多多少元?
1、公路运费= 1.5×_货__物__吨__数×_公__路__千__米_;数
97200
A 千米
B
产品y吨
米
·长青化工厂 1.5x·10 + 1.5y·20 = 15000
公路20千 米
铁路110 千米
1.2x·120+ 1.2y·110= 97200
从以上探究可以看出,方程组是解决含有多个未知数问题 的重要工具.用二元一次方程组解决问题时,要根据题意找 出的两个等量关系,设出两个未知数,从而列方程组解决 实际问题。
1、公路运费= 1.5 ×_货__物_吨__数_×__公__路_千_;米数
原料x吨 产品y吨 合 计
2、铁路运费= 1.2×__货_物__吨__数_×__铁__路__千;米数 公路运费
(元)
1.5x·10
1.5y·20
15000
原料x吨
铁路120
公路10千
人教版七年级下册数学 8.3 实际问题与二元一次方程组 同步习题(含答案)
8.3 实际问题与二元一次方程组同步习题1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4 200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?2.在当地农业技术部门的指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.如图是小明、爸爸、妈妈的一段对话.请你用所学过的知识帮助小明算出他们家今年种植菠萝的收入.(收入-投资=净赚)3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为多少元?4.某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?5.某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元.6.张文以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,所得利息为64.8元,已知当时这两种储蓄方式年利率的和为4.23%.问这两种储蓄方式的年利率各是百分之几?(不计利息税)7.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问该专业队去年实际生产水稻、小麦各为多少吨?8.下面是某一周甲、乙两种股票每股每天的收盘价(单位:元).(收盘价:股票每天交易结束时的价格)(不计手续费、税费等),该人星期二这一天获利200元,星期三这一天获利1 300元,试问该人持有甲、乙股票分别为多少股?9.某地生产一种绿色蔬菜,若在市场上直接销售,每吨的利润为 1 000 元;经粗加工后销售,每吨的利润可达4 500 元;经精加工后销售,每吨的利润涨至7 500 元.当地一家农工商公司收购这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜处理完毕,为此公司研制了三种加工方案:方案1:将蔬菜全部进行粗加工;方案2:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;方案3:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天之内完成. 你认为选择哪种方案获利最多?10.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:(1)若租用甲、,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.张明沿公路匀速前进,每隔4 min就遇到迎面开来的一辆公共汽车,每隔6 min 就有一辆公共汽车从背后超过他.假定公共汽车的速度不变,而且迎面开来的相邻两车的距离和从背后开来的相邻两车的距离都是1 200 m,求张明前进的速度和公共汽车的速度.12.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?13.一列载客火车和一列运货火车分别在两条平行的铁轨上行驶,载客火车长150 m,运货火车长250 m.若两车相向而行.从车头相遇到车尾离开共需10 s;若载客火车从后面追赶运货火车,从车头追上运货火车车尾到完全超过运货火车共需100 s,试求两车的速度.14.甲、乙两地相距120 km,一艘船从甲地出发顺水航行6 h到达乙地,而从乙地出发逆水航行8 h到达甲地,已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.15.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4 min两人首次相遇,此时乙还需要跑300 m才跑完第一圈,求甲、乙二人的速度及环形场地的周长.16.为了参加2015年国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600 m,跑步的平均速度为每分钟200 m,自行车路段和长跑路段共5 km,用时15 min.求自行车路段和长跑路段的长度.参考答案1.解:设该村去年种植烟叶和蔬菜的面积分别为x亩、y亩,依题意,得解这个方程组,得答:该村去年种植烟叶和蔬菜的面积分别是2 200亩、1 200亩.2.解:设小明家去年种植菠萝的收入为x元,投资为y元,依题意,得解得所以小明家今年种植菠萝的收入为(1+35%)×12 000=1.35×12 000=16 200(元).3.解:设该商品的进价为x元,标价为y元,由题意,得解得x=2 500,y=3750.则3 750×0.9-2 500=875(元).4.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意,得解得答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200×(48-33)=3 600+3 000=6 600(元).答:该商场共获得利润6 600元.5.解:设甲种商品的进价为x元,乙种商品的进价为y元.根据题意,得化简,得解得答:甲种商品的进价为250元,乙种商品的进价为200元.6.解:设存 2 000元和 1 000元的年利率分别是x%,y%,由题意,得解得答:存2 000元和1 000元的年利率分别为2.25%,1.98%.7.解:设该专业队去年计划生产水稻为x t,小麦为y t,依题意,得解得答:该专业队去年实际生产水稻、小麦各为115 t,55 t.8.解:设该人持有甲、乙股票分别为x股、y股,由题意,得解得答:该人持有甲、乙股票分别为1 000股、1 500股.解:观察表格可知:星期二甲种股票每股获利为(12.5-12)元,乙种股票每股获利为+(13.3-13.5)×股(13.3-13.5)元,则星期二这一天总获利为[(12.5-12)×股数甲]元,同理可表示星期三这一天的获利.数乙9.解:方案1获利为4 500×140=630 000(元).方案2获利为7 500×6×15+1 000×(140-6×15)=675 000+50 000=725 000(元). 方案3:设将x t蔬菜进行精加工,y t蔬菜进行粗加工,根据题意,得解得所以方案3获利为7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案3获利最多.解:分别计算三种方案的获利情况,然后做出决策.10.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:解得答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.所以m=9-n.又因为m,n都是正整数,所以方程的解为当m=5,n=3时,支付租金:100×5+120×3=860(元)>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820(元)<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.11.解:设张明前进的速度是x m/min,公共汽车的速度是y m/min.根据题意,得解这个方程组,得答:张明前进的速度是50 m/min,公共汽车的速度是250 m/min.解:(1)“相向而遇”时,两者所走的路程之和等于两者原来的距离;(2)“同向追及”时,快者所走的路程减去慢者所走的路程等于两者原来的距离.12.解:设平路有x m,下坡路有y m,根据题意,得解得答:小华家到学校的平路和下坡路各为300 m,400 m.13.解:设载客火车的速度为x m/s,运货火车的速度为y m/s.由题意,得解得答:载客火车的速度是22 m/s,运货火车的速度是18 m/s.解:本题是一道特殊的相遇与追及结合的应用题.①两车相向而行是相遇问题,相遇时两车行驶的路程总和=两车车身长之和;②载客火车从后面追赶运货火车是追及问题,追上时两车所走的路程差=两车车身长之和.错车问题属于特殊的行程问题,它与行程问题的主要区别是:行程问题不考虑车本身的长,而错车问题要考虑车本身的长.与错车问题类似的还有过桥问题、过隧道问题等.14.解:设船在静水中的速度为x km/h,水流速度为y km/h,由题意,得解得答:船在静水中的速度为17.5 km/h,水流速度为2.5 km/h.15.解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min,由题意,得解得所以甲的速度为:2.5×150=375(m/min).答:甲的速度为375 m/min,乙的速度为150 m/min,环形场地的周长为900 m. 16.解:设自行车路段的长度为x m,长跑路段的长度为y m,则解得答:自行车路段的长度为3 000 m,长跑路段的长度为2 000 m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 3页
课题: 8.3 再探实际问题与二元一次方程(3)
教学目标
1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现
实世界的有效数学模型;
2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方
程组;
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的
应用价值.
教学难点 借助列表分问题中所蕴含的数量关系。
知识重点 用列表的方式分析题目中的各个量的关系。
教学过程(师生活动) 设计理念
创设情境 最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案. 电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,
深夜的用电是低谷用电即22:00~次日8:00.若某地的
高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。.28
元.八月份小彬家的总用电量为125千瓦时,总电费为
49元,你知道他家高峰用电量和低谷用电量各是多少千
瓦时吗?
学生独立思考,容易解答.
以一道生活热点
问题引入,具有
现实意义.激发
学生学习兴趣,
同时培养学生节
约、合理用电的
意识.
理解题意是
关健.通过该题,
旨在培养学生的
读题能力和收集
信息能力.
探索分析 解决问题 (出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元? (图见教材115页,图8.3-2) 学生自主探索、合作交流. 设问1.如何设未知数? 销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨. 设问2.如何确定题中数量关系? 列表分析 产品x吨 原料y吨 合计 公路运费(元) 铁路运费(元) 本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情.
通过讨论让
学生认识到合理
设定未知数的愈
义.
借助表格辅助分
析题中较复杂的
数量关系,不失
第 2 页 共 3页
价值(元)
由上表可列方程组
972001201102.11500010205.1yx
yx
解这个方程组,得
400300y
x
因为毛利润-销售款-原料费-运输费
所以这批产品的销售款比原料费与运输的和多
1887800元.
引导学生讨论以上列方程组解决实际问题的
学生讨论、分析:合理设定未知数,找出相等关系。
为一种好方法.
课堂练习 反馈调控 某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司 购到这种水果140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案: 方案一:将这批水果全部进行粗加工; 方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售; 方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成. 你认为选择哪种方案获利最多?为什么? 学生合作讨论完成 选择经济领城问题让学生展开讨论,增强市场经
济意识和决策能
力,同时巩固二
元一次方程组的
应用.
小结与作业
小结提高
1、在用一元一次方程组解决实际问题时,你会怎
样设定未知数,可借助哪些方式辅助分析问题中的相等
关系?
2、小组讨论,试用框图概括“用一元一次方程组
分析和解决实际问题”的基本过程.
学生思考、讨论、整理.
这是第一次比较
完整地用框图反
映实际问题与二
元一次方程组的
关系.
让学生结合
自己的解题过
程概括整理,帮
助理解,培养模
型化的思想和应
用数学于现实
生活的意识.
布置作业 1、 必做题:教科书116页习题8.3第2、6题。 2、 选做题:教科书117页习题8.3第9题。 3、 备选题: (1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车
第 3 页 共 3页
的记录如下表所示.
甲种货车(辆) 乙种货车(辆) 总量(吨)
第1次 4 5 28.5
第2次 3 6 27
这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好
一次运完,如果每吨付20元运费,问:菜农应付运费
多少元?
(2)某学校现有学生数1290人,与去年相比,男生
增加20%,女生减少10%,学生总数增加7. 5%,问
现在学校中男、女生各是多少?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种
挑战,因此安排学生合作学习.学生先独立思考,自主探索,然后在小组讨论中合理设
定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解.在本节的小结中,
让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地
用框图反映,培养模型化的思想.
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学
意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活
的意识.