2019届中考数学考点突破训练题27

合集下载

杭州市2019届中考数学模拟试卷(二十七)含答案解析

杭州市2019届中考数学模拟试卷(二十七)含答案解析

2019年浙江省杭州市中考数学模拟试卷(27)一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣2.据统计,2019年杭州市全社会用于基础建设的资金约为100553000000元,这个数用科学记数法表示为()元.A.1.00553×109B.1.00553×1010C.1.00553×1011D.1.00553×10123.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和404.正八边形的每个外角为()A.60°B.45°C.35°D.36°5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣16.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷=.12.已知反比例函数y=的图象经过点A(1,﹣2),则k=.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC=.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.•当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围为; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值范围为.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.20.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2019﹣2019年,杭州工程地铁对负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)①•设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;‚②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.23.如图(1),边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.(1)若变形后的菱形有一个内角是60°,则k=.(2)如图1(2),已知菱形ABCD,若k=.①这个菱形形变前的面积与形变后的面积之比为;②点E、F、G、H分别是菱形ABCD各边的中点,求四边形EFGH形变前与形变后的面积之比.(3)如图1(3),正方形ABCD由16个边长为1的小正方形组成,形变后成为菱形A′B′C′D′,△AEF(E、F是小正方形的顶点),同时形变为△A′E′F′,设这个菱形的“形变度”为k.对于△AEF 与△A′E′F′的面积之比你有何猜想?并证明你的猜想.当△AEF与△A′E′F′的面积之比等于2:时,求A′C′的长.2019年浙江省杭州市中考数学模拟试卷(27)参考答案与试题解析一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中行只有只有C、D为负数,故应从C、D中选择;因为|﹣|>|﹣|,所以,故选C.【点评】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.2.据统计,2019年杭州市全社会用于基础建设的资金约为100553000000元,这个数用科学记数法表示为()元.A.1.00553×109B.1.00553×1010C.1.00553×1011D.1.00553×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将100553000000用科学记数法表示为:1.00553×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.正八边形的每个外角为()A.60°B.45°C.35°D.36°【考点】多边形内角与外角.【分析】利用正八边形的外角和等于360度即可求出答案.【解答】解:360°÷8=45°.故选B.【点评】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣1【考点】根与系数的关系.【分析】已知x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,由此可以求出另一个根.【解答】解:∵x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,解得a=﹣2.故选C.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.6.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.【考点】概率公式.【分析】由在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,∴从中随机摸出一个小球,其标号大于3的概率为:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小【考点】二次函数的性质;二次函数的图象.【分析】先将一般式化为顶点式,得到y=x2+2x﹣1=(x+1)2﹣2,根据二次函数的性质得出顶点坐标是(﹣1,﹣2),对称轴是直线x=﹣1,根据a=1>0,得出开口向上,当x>﹣1时,y随x的增大而增大,根据结论即可判断选项.【解答】解:抛物线y=x2+2x﹣1=(x+1)2﹣2,A、因为顶点坐标是(﹣1,﹣2),故说法正确;B、因为对称轴是直线x=﹣1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>﹣1时,y随x的增大而增大,故说法错误.故选D.【点评】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.也考查了配方法.8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对【考点】相似三角形的判定.【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角.【解答】解:∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故选C.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.【考点】解直角三角形的应用;切线的性质;弧长的计算.【分析】由题意,连接OQ,则OQ垂直于AQ,在直角三角形OQA中,利用三角函数解得.【解答】解:由题意,从A处观测到地球上的最远点Q,∴AQ是⊙O的切线,切点为Q,连接OQ,则OQ垂直于AQ,如图则在直角△OAQ中有,即AP=.在直角△OAQ中则∠O为:90°﹣α,由弧长公式得PQ为.故选B.【点评】本题考查了直角三角形的应用,由题意在直角三角形OAQ中,利用三角函数从而解得.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【专题】应用题;压轴题.【分析】分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.【解答】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D.【点评】此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P的位置不好排除,同学们要注意仔细观察.二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先将二次根式化为最简,然后再进行二次根式的除法运算.【解答】解:原式=(12﹣6)÷=6.故答案为:6.【点评】此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.12.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC=2或.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】先画图,分两种情况:①AC>AD,如图1,连接OA,根据垂径定理得出AM,再由勾股定理得出AC;②AC<AD,如图2,连接OA,根据垂径定理得出AM,再由勾股定理得出OM,即可得出AC.【解答】解:分两种情况:①AC>AD,如图1,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=4,∴由勾股定理得AC=2;②AC<AD,如图2,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=1,∴由勾股定理得AC=;故答案为2或.【点评】本题考查了垂径定理,以及勾股定理,分类讨论是解题的关键.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为15°.【考点】三角形内角和定理.【专题】新定义.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=110°,则β=55°,180°﹣110°﹣55°=15°,故答案为:15°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是1<z<11.【考点】不等式的性质.【分析】根据不等式的性质,设a(x+y)+b(x﹣y)=2x﹣3y;根据不等式的性质来求解;【解答】解:﹣2<x+y<3 ①,1<x﹣y<4 ②,设a(x+y)+b(x﹣y)=2x﹣3y则有解得:a=b=故z=,即﹣×(3)+1×<z<所以1<z<11故答案为:1<z<11.【点评】本题考查了了不等式的性质,利用了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.•当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围为b=或﹣1≤b<1; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值范围为﹣2<x<﹣1或0≤x<.【考点】一次函数综合题.【分析】利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离,可利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值范围;根据平行四边形的性质及其四个顶点均在图形C上,可能会出现四种情况,分类讨论即可得出答案.【解答】解:如图,分别连接AD、DB,则点D在直线AE上,∵点D在以AB为直径的半圆上,∴∠ADB=90°,∴BD⊥AD,在Rt△DOB中,由勾股定理得,BD=,∵AE∥BF,∴两条射线AE、BF所在直线的距离为,则当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b=或﹣1≤b<1.假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:①当点M在射线AE上时,如图2,∵AMPQ四点按顺时针方向排列,∴直线PQ必在直线AM的上方∴PQ两点都在弧AD上,且不与点A、D重合,∴0<PQ<.∵AM∥PQ且AM=PQ,∴0<AM<,∴﹣2<x<﹣1,②当点M在弧AD上时,如图3,∵点A、M、P、Q四点按顺时针方向排列∴直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.③当点M在弧BD上时,设弧DB的中点为R,则OR∥BF,当点M在弧DB上时,如图4,过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.∴四边形AMPQ为满足题意的平行四边形,∴0≤x<.当点M在弧RB上时,如图5,直线PQ必在直线AM的下方,此时不存在满足题意的平行四边形.④当点M在射线BF上时,如图6,直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是﹣2<x<﹣1或0≤x<.故答案为:b=或﹣1<b<1,﹣2<x<﹣1或0≤x<.【点评】此题考查了一次函数的综合,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)首先由已知构造直角三角形如图,延长BE交AC于F,过点E作EG⊥AC,垂足为G,解直角三角形BCF求得CF,又由已知BE∥AD,四边形AFED为平行四边形,所以DE=AF=AC ﹣CF.(2)如图解直角三角形BCF,可求出BF,EG=MN=3米,解直角三角形EGF可求出EF,则BE=BF ﹣EF,而AD=EF,从而求得两段楼梯AD与BE的长度之比.【解答】解:(1)延长BE交AC于F,过点E作EG⊥AC,垂足为G,在Rt△BCF中,CF==≈6.16(米),∴AF=AC﹣CF=7﹣6.16=0.84(米),∵BE∥AD,∴四边形AFED为平行四边形,∴DE=AF=0.84米.答:水平平台DE的长度为0.84米.(2)作EH⊥AC于H.∵MN⊥AC,∴EH=MN=2.5,∵EH∥BC,∴.【点评】此题考查的知识点是解直角三角形的应用,关键是由已知首先构建直角三角形,运用三角函数求解.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图的知识,即可求得王老师所调查的4个班征集到作品其中B班征集到作品;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:王老师采取的调查方式是抽样调查;∵王老师所调查的4个班征集到作品共有:5÷=12(件),∴王老师所调查的4个班征集到作品其中B班征集到作品:12﹣2﹣5﹣2=3(件);故答案为:抽样调查,3;(2)画树状图得:∵共有12种等可能的结果,抽中一男一女的有8种情况,∴抽中一男一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图与条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.【考点】切线的判定.【分析】(1)证得AB⊥BC即可判定切线;(2)首先根据AD=AC﹣CD求得AD的长,然后勾股定理得到AB的长,根据△ADG∽△ACB,对应边成比例得出,从而求得,根据勾股定理求得BD的长即可.【解答】解:(1)∵CB=CD,∴∠CDB=∠CBD,∵∠CDB=∠A+∠DBA,∠ACB=2∠ABD,∴在△ABC中,由三角形的内角和定理得:2(∠A+∠DBA)+2∠ABD=180°,∴∠A+2∠DBA=90°,即∠A+∠ACB=90°,∴∠ABC=90°,∴边AB所在直线于⊙C相切;(2)作DG⊥AB于G.AD=AC﹣CD=AC﹣BC=3﹣2=1,∵BC⊥AB,AC=3,BC=2,∴,∵DG⊥AB,BC⊥AB,∴DG∥BC.∴△ADG∽△ACB,∴,∴,∴,∴,∴.【点评】本题考查了切线的判定与性质,三角形内角和定理三角形相似的判定和性质,勾股定理的应用等,在解决切线问题时,常常连接圆心和切点,证明垂直或利用垂直求解.20.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2019﹣2019年,杭州工程地铁对负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】二元一次方程组的应用.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据“甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米,”列出方程组解答即可;(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,根据题意列式计算得出答案,再进一步相减即可.【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,由题意得,解得.答:甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,则a=(48180﹣110)÷(12.2+9.8)=2185(天),b=(48180﹣110)÷(12.2+1.7+9.8+1.3)=1922.8(天),因此a﹣b=2185﹣1922.8=262.2(天).答:少用262.2天完成任务.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系,理清工程问题的计算方法是解决问题的关键.21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.【考点】作图—复杂作图;正方形的性质;轴对称的性质.【分析】(1)直接利用对称点作法得出E点位置进而得出答案;(2)利用轴对称的性质以及等腰三角形的性质得出即可;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出即可.【解答】解:(1)如图1所示:(保留作图迹)(2)如图2,连接AE,则∠PAB=∠PAE=25°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=140°,∴∠ADF=20°;(3)BF2+FD2=2AB2.理由:如图3,连接AE,BF,BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,则∠BFD=∠BAD=90°,故BF2+FD2=BD2,则BF2+FD2=2AB2.【点评】此题主要考查了复杂作图以及对称点的性质和正方形的性质以及勾股定理等知识,熟练应用轴对称的性质得出是解题关键.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)①•设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;‚②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.【考点】二次函数综合题.【分析】(1)利用待定系数法求出解析式,(2)先表示出二次函数y=x2+mx+n图象的顶点,利用直线AB列出式子,再与点A在二次函数上得到的式子组成方程组求得m,n的值,(3)①易求抛物线解析式为y=x2﹣2x﹣15.根据抛物线的对称性和增减性来求二次函数y=x2+mx+n 的最小值;②本题要分四种情况:当对称轴﹣3<﹣<0时;当对称轴﹣>0时;当对称轴﹣=0时;当对称轴﹣≤﹣3时,结合二次函数y=x2+mx+n的图象经过点A得出式子9﹣3m+n=0,求出m,n但一定要验证是否符合题意.【解答】解:(1)A(﹣3,0),B(0,﹣3)代入y=kx+b得,解得.∴一次函数y=kx+b的解析式为:y=﹣x﹣3;(2)二次函数y=x2+mx+n图象的顶点为(﹣,)∵顶点在直线AB上,。

北师大版2019中考数学一轮复习课堂达标测试题27(数据的分析A 含答案)

北师大版2019中考数学一轮复习课堂达标测试题27(数据的分析A 含答案)

北师大版2019中考数学一轮复习课堂达标测试题27(数据的分析A 含答案)1.下列说法正确的是( )A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0D.一组数据的方差是这组数据的平均数的平方2.有一组数据:6,4,6,5,3,则这组数据的平均数、众数、中位数分别是( ) A.4.8,6,5B.5,5,5C.4.8,6,6D.5,6,53.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A.96,88B.92,88C.88,86D.86,884.已知数据-3,-2,0,6,6,13,20,35则它的中位数和众数各是( )A.6和6B.3和6C.6和3D.9.5和65.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3C.a D.a+156.如图所示是从我市有关部门了解到的某条道路测速点所记录的在某个时段来往车辆的车速情况,下列说法中正确的是( )A.平均数是52B.众数是8C.中位数是52.5D.中位数是527.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是38.某校九年级班全体学生2016年初中毕业体育考试的成绩统计如表:分人根据表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是25分C.该班学生这次考试成绩的中位数是25分D.该班学生这次考试成绩的平均数是25分9.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是________元.10.在一次数学考试中,全班名同学,平均分为,其中女生有名,她们的平均分为,则这个班男同学的平均数为________.11.体育测试前,甲、乙两名男同学进行跳远训练,两人在相同条件下每人跳10次,统计得两人的平均成绩均为2.43米,方差分别为,,则成绩比较稳定的是__________(填“甲”或“乙”).12.2005年5月16日,是世界第十五个助残日,这天某校教师为本区的特殊教育中心捐款的情况如下表:(单位:元)该校教师平均每人捐款约元(精确到1元).13.甲、乙两名同学的5次数学成绩情况统计结果如下表:根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙14.在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.15.小明等五名同学四月份参加某次数学测验的成绩如下:100、100、x、x、80.已知这组数据的中位数和平均数相等,那么整数x的值为________ .16.一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为______.17.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.18.某农民在自己家承包的甲、乙两片荒山上各栽了200棵苹果树,成活率均为96%,现已挂果.他随意从甲山采摘了4棵树上的苹果,称得质量(单位:千克)分别为36,40,48,36;从乙山采摘了4棵树上的苹果,称得质量(单位:千克)分别为50,36,40,34,将这两组数据组成一个样本,回答下列问题:(1)样本容量是多少?(2)样本平均数是多少?并估算出甲、乙两山苹果的总产量;(3)甲、乙两山哪个山上的苹果长势较整齐?19.我市举行八年级“生活中的数学知识”竞赛活动,甲、乙两校分别派五名同学参加竞赛,其成绩分别是(单位:分):甲校五名同学:,,,,;乙校五名同学:,,,,.根据以上数据解答下列问题:把表格空格填完整:根据上述数据,请你分析哪所学校同学的竞赛成绩相对较好?20.西安市某中学九年级组织了一次数学计算比赛(禁用计算器),每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,数学教研组将九年级一班和二班的成绩整理并绘制成如下的统计图,请根据提供的信息解答下列问题.(1)把一班竞赛成绩统计图补充完整.(2)填表:(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:①从平均数、众数方面来比较一班和二班的成绩;②从B级以上(包括B级)的人数方面来比较一班和二班的成绩.21.地球环境问题已经成为我们日益关注的问题,学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析的过程.成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 73 99 74 98 74(1)根据上述数据,将下列表格补充完整.整理、描述数据:(说明:成绩90分以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好,并说明理由.(至少从两个不同的角度说明推断的合理性)22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:根据上表解答下列问题:(1)完成下表:(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.参考答案1.C解:A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、此选项正确;D、一组数据的方差与不是平均数的平方,故此选项错误;故选C.2.A解:这组数据按照从小到大的顺序排列为:3,4,5,6,6,则平均数为:众数为:6,中位数为:5.故选A.3.D解:数据86出现了2次最多为众数,按大小排列86,86,88,93,96,故88处在第3位为中位数.所以本题这组数据的中位数是88,众数是86.故选D.4.A解∵从小到大排列的这8个数,排在中间的两个数都是6,∴中位数是6;∵6出现的次数最多,∴众数是6.故选A.5.B解:a+[(a1+1+a2+2+a3+3+a4+4+a5+5)﹣(a1+a2+a3+a4+a5)]÷5=a+[1+2+3+4+5]÷5=a+15÷5=a+3故选:B.6.D解:因为本次调查的车辆总数为2+5+8+6+4+2=27辆,所以中位数为第14个数据,即中位数为52,众数为52,平均数=≈52.4,故答案选D.7.C解:A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.8.D解:该班人数为:,得25分的人数最多,众数为25,第20和21名同学的成绩的平均值为中位数,中位数为:,平均数为:.故错误的为D.故选:D.9.解:老师问到每个同学的概率是一样的,结合众数的概念,我们可以知道老师最有可能得到的回答就是出现次数最多的那个数额,在这组数据中出现次数最多的数字是5,即众数是5,所以答案是5.10.分解:设男生的平均分为x分,则30x+80.5×20=50×78.7,解得x=77.5.即男生的平均分为77.5分.故答案为:77.5分.11.甲解:∵甲的方差为0.03,乙的方差为0.1,0.03<0.1,∴成绩较为稳定的是甲.故答案为:甲.12.47.解:由题意知,该校教师平均每人捐款数=(20×32+30×11+40×9+50×21+100×+200×4)÷(32+11+9+21+8+4)=47元.故答案为:47.13.甲解:∵S甲2=4,S乙2=16,∴S甲2=4<S乙2=16,∴成绩稳定的是甲,故答案为:甲.14.9解:∵7,9,9,4,9,8,8,中9出现的次数最多,∴这组数据的众数是:9.故答案为:9.15.60或110解:①x 最小时,这组数据为x ,x ,80,100,100;中位数是80,∴(100+100+x +x +80)÷5=80,∴x =60;②x 最大时,这组数据为80,100,100,x ,x ;中位数是100,∴(100+100+x +x +80)÷5=100,∴x =110.③当80≤x ≤100,这组数据为80,x ,x ,100,100;中位数是x ,∴(100+100+x +x +80)÷5=x ,∴x =2803,x 不是整数,舍去. 故答案为:60或110.16.3解:一组数据2、4、x 、2、4、3、5的众数是2,则,从小到大排列:2,2,2,3,4,4,5,则这组数据的中位数3,故答案为:3.17.(1)100.8次,所以超过全校平均次数;(2)100~120次范围内.解:(1)该班学生60秒跳绳的平均次数至少是(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100,所以超过全校平均次数.(2) ∵60~80次范围有4人,80~100次范围有13人,100~120次范围有19人, ∴该班的中位数是100~120次范围,∴这个学生的跳绳成绩一定在100~120次范围内.18.(1)样本容量为8;(2)甲、乙两山苹果的总产量约为15 360千克;(3)甲山上的苹果长势较整齐.解:(1)样本容量为448+= . (2) 3640483650364034408x +++++++== . 甲、乙两山苹果的总产量约为400×40×96%=15360(千克). (3)∵()136404836404x =⨯+++=甲 , ∴()()()()2222213640404048403640244s ⎡⎤=⨯=⎣⎦甲-+-+-+- . ∵150364034404x =⨯+++=乙() , ∴()()()()2222215040364040403440384s ⎡⎤=⨯⎣⎦乙-+-+-+-= . ∴22s s <甲乙, ∴甲山上的苹果长势较整齐.19.(1)90,89,89;(2)甲校五位同学的竞赛成绩相对较好.解:(1)甲校五位同学的平均分=(87+89+92+89+93)÷5=90分,众数为89;乙校五位同学的成绩排序后为88,88,89,90,95,故中位数是89.故答案为:90,89,89;(2)∵两所学校的五位同学的成绩的平均数相同,中位数也相同,而甲校五位同学的众数比乙校五位同学的众数大,所以甲校五位同学的竞赛成绩相对较好.20.(1);(2)82.8、85、100;(3)①从平均数、众数方面来比较,二班成绩更好;②从B级以上(包括B级)的人数方面来比较,一班成绩更好.解:(1)一班C等级的学生有:25﹣6﹣12﹣5=2,补全的条形统计图如右图所示;(2)一班的平均数是:=82.8,中位数是85,二班的众数是100,故答案为:82.8、85、100;(3)①从平均数、众数方面来比较,二班成绩更好;②从B级以上(包括B级)的人数方面来比较,一班成绩更好.21.(1);(2)初一年级掌握生态环保知识水平较好.解:(1)补全表格如下:整理、描述数据:分析数据:(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是88.5,众数是89,初二年级同学的中位数是77,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.22.(1);(2)成绩比较稳定的是小李,小王的优秀率为40%,小李的优秀率为80%;(3).解:(1)小李的平均分==80,中位数=80,众数=80,方差==40,极差=最大的数﹣最小的数=90﹣70=20;(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分,成绩比较稳定,获奖机会大.方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.(注:答案不唯一,考生可任选其中一人,只要分析合理,都给满分.若选两人都去参加,不合题意不给分).。

2019中考数学真题分类汇编解析版27 三角形(含多边形及其内角和)

2019中考数学真题分类汇编解析版27  三角形(含多边形及其内角和)

一、选择题1. (2019山东枣庄,3,3分)将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°第3题图【答案】C【解析】在直角三角形中,可得∠1+∠A=90°,∵∠A=45°,∴∠1=45°,∴∠2=∠1=45°,∵∠B=30°,∴∠α=∠2+∠B=75°,故选C.第3题答图【知识点】直角三角形两锐角互余,对顶角相等,三角形的外角2.(2019四川眉山,5,3分)如图,在△ABC中AD平分∠BAC交BC于点D,∠B=30度,∠ADC=70度,则∠C的度数是()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵∠ADC=70°,∠B=30°,∴∠BAD=∠ADC-∠B=70°-30°=40°,∵AD平分∠BAC,∴∠BAC=2∠BAD=80°,∴∠C=180°-∠B-∠BAC=180°-30°-80°=70°,故选C.【知识点】三角形的内角和,三角形的外角的性质,角平分线的定义3.(2019四川自贡,6,4分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.10【答案】C.【解析】解:∵两边长为1和4,∴由三角形三边关系可知,第三边x的取值范围是4-1<x<1+4,即3<x<5.又∵第三边长为整数,∴x=4.∴该三角形周长为1+4+4=9.故选C.【知识点】三角形的三边关系4.(2019浙江金华,3,3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是( )A.1B. 2C.3D. 8【答案】C .【解析】根据三角形的三边关系,得2<a <8,故选C .【知识点】三角形的三边关系5. (2019浙江台州,4,4分)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【答案】B【解析】组成三角形的三边符合任意两边之和大于第三边,任意两边之差小于第三边,只有B 符合.【知识点】三角形三边关系6.(2019甘肃武威,6,3分)如图,足球图片正中的黑色正五边形的内角和是( )A .180︒B .360︒C .540︒D .720︒【答案】C【解析】根据多边形内角和公式(2)180n -⨯︒,得黑色正五边形的内角和为:(52)180540-⨯︒=︒,故选C .【知识点】多边形内角和与外角和7.(2019贵州黔东南,7,4分)在下列长度的三条线段中,不能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,6cm ,76cmC .2cm ,2cm ,6cmD .5cm ,6cm ,7cm 【答案】C【解析】解:A 、2+3>4,能组成三角形;B 、3+6>7,能组成三角形;C 、2+2<6,不能组成三角形;D 、5+6>7,能够组成三角形.故选:C .【知识点】三角形三边关系二、填空题1.(2019湖南岳阳,12,4分)若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .【答案】4【解析】设这个多边形的边数为n ,根据题意得:(n -2)·180º=360º,解得:n =4.所以这个多边形的边数为4.【知识点】多边形的内角和与外角和2.(2019山东省济宁市,12,3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 .【答案】140°【解析】法1:设正九边形的每个内角为x°,根据多边形内角和公式:(9-2)·180=9x,解得x=140.法2:根据多边形的外角和为360°,可知它每个外角为40°,所以内角是140°.【知识点】多边形的内角和3. (2019山东枣庄,16,4分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧,压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=________.【答案】36°【解析】正五边形的内角和为(5-2)×180°=540°,∴∠ABC=540°÷5=108°,∵BA=BC,∴∠BAC=∠BCA =36°【知识点】正多边形,等边对等角4.(2019广东省,13,4分)一个多边形的内角和是1080°,这个多边形的边数是.【答案】8【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【知识点】多边形内角与外角。

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。

(全国)2019版中考数学复习第六单元圆第27课时圆的有关性质课件

(全国)2019版中考数学复习第六单元圆第27课时圆的有关性质课件

OC=
;
(2)在半径为 5 cm 的☉O 中,OC⊥AB 于点 C,OC=4 cm,则弦 AB=
;
(3)在☉O 中,OC⊥AB 于点 C,OC=4 cm,弦 AB=8 cm,
则☉O 的半径为
;
(4)在☉O 中,OC⊥AB 于点 C,延长 OC 交劣弧于 D,
CD=1 cm,弦 AB=8 cm,则☉O 的半径为
外心 个三角形的外心
锐角三角形的外心在三角形的内部,直角三角形的外心在直角三角形的斜 防错提醒
边上,钝角三角形的外心在三角形的外部
课前双基巩固 考点三 圆的对称性
圆既是轴对称图形,又是 中心 对称图形,圆还具有旋转不变性.
课前双基巩固 考点四 垂径定理及其推论
垂直于弦的直径 平分弦 ,并且平分弦所对的两条弧
课堂考点探究
2.[2018·嘉兴] 如图 27-9,量角器的 0 度刻度线为 AB,将一
矩形直尺与量角器部分重叠,使直尺一边与量角器相切于
点 C,直尺另一边交量角器于点 A,D,量得 AD=10 cm,点 D
在量角器上的读数为 60°,则该直尺的宽度为
cm.
[答案] 5 3
3
[解析] 连接 OD,OC,OC 与 AD 相交于点 E, ∵直尺一边与量角器相切于点 C,∴OC⊥AD, ∵AD=10,∠DOB=60°,∴AE=5,∠DAO=30°, ∴OE=533,OA=103 3,∴CE=OC-OE=OA-OE=533.
课堂考点探究
探究一 确定圆的条件
【命题角度】 (1)点和圆的位置关系与数量关系的互逆判断; (2)求三角形的外接圆的半径或确定三角形的外心.
课堂考点探究
例 1 在 Rt△ ABC 中,∠ACB=90°,AC=3,BC=4,CP,CM 分 别是 AB 上的高和中线,如果圆 A 是以点 A 为圆心,半径 长为 2 的圆,那么下列判断正确的是 ( ) A.点 P,M 均在圆 A 内 B.点 P,M 均在圆 A 外 C.点 P 在圆 A 内,点 M 在圆 A 外 D.点 P 在圆 A 外,点 M 在圆 A 内

2019年中考数学总复习第八单元统计与概率课时训练二十七统计练习word版本

2019年中考数学总复习第八单元统计与概率课时训练二十七统计练习word版本

课时训练(二十七)统计(限时:50分钟)|夯实基础|1.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是=2,=1.5,则射击成绩较稳定的是(填“甲”或“乙”).2.若一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.3.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调査,图K27-1①和图②是收集数据后绘制的两幅不完整的统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.图K27-14.下列调查中,最适合采用抽样调查的是 ()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查5.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5B.4,4C.5,4D.5,56.[2017·德州]某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41尺码的衬衫,影响该店主决策的统计量是 () A.平均数B.方差C.众数D.中位数7.[2018·益阳]益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:关于这组文化程度的人数数据,以下说法正确的是 ()A.众数是20B.中位数是17C.平均数是12D.方差是268.[2018·新疆维吾尔生产建设兵团]甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析该表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③9.[2017·陕西]养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A,B,C,D四组,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)图K27-210.[2018·金华、丽水]为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.|拓展提升|11.[2018·绵阳]绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:图K27-4设销售员的月销售额为x(单位:万元).销售部规定:当x<16时为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图.(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数.(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.参考答案1.乙2.33.60004.D5.A6.C[解析] 由于41尺码的衬衫销售的数量最多,因此该店主本周进货时,增加一些41尺码的衬衫,一组数据中出现次数最多的数即为这组数据的众数,所以影响该店主决策的统计量是众数.7.C[解析] 总共有5个数据,9出现了2次,故众数为9,选项A错误;从小到大排序为5,9,9,17,20,故中位数为9,选项B错误;==12,即平均数为12,选项C正确;s2==31.2,即方差为31.2,选项D错误,故选择C.8.D[解析] 因为两班的平均数皆为135,故甲、乙两班学生的平均成绩相同,①正确;因为甲班的中位数为149,乙班的中位数为151,所以甲班最多有22人优秀,少于乙班优秀人数(乙班至少有23人优秀),故②正确;因为甲班的方差比乙班的大,所以甲班成绩的波动比乙班大,从而③正确.综上,正确的为①②③,故选D.9.解:(1)如图所示:(2)20≤x<30(或填C);(3)1200×(65%+20%)=1020,所以该校七年级学生中约有1020人早锻炼时间不少于20分钟.10.解:(1)∵(120+80)÷40%=500(人),∴参与问卷调查的总人数为500人.(2)如图所示.(3)∵8000×(1-40%-10%-15%)=8000×35%=2800(人),∴这些人中最喜欢微信支付方式的人数约为2800人.11.解:(1)∵被调查的总人数为=40(人),∴“不称职”的百分比为×100%=10%,“基本称职”的百分比为×100%=25%,“优秀”的百分比为1-(10%+25%+50%)=15%,则“优秀”的人数为15%×40=6(人),∴销售额为26万元的人数为6-(2+1+1)=2(人),补全图形如下:(2)由折线图知“称职”的20万元4人、21万元5人、22万元4人、23万元3人、24万元4人,“优秀”的25万元2人、26万元2人、27万元1人、28万元1人,则所有“称职”和“优秀”的销售员月销售额的中位数为22.5万元,众数为21万元. (3)月销售额奖励标准应定为23万元.理由:∵所有“称职”和“优秀”的销售员月销售额的中位数为22.5万元,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为23万元.。

2019年中考数学总复习第五单元四边形课时训练27多边形练习

课时训练27 多边形限时:30分钟夯实基础1.[2018·大庆]一个正n边形的每一个外角都是36°,则n=()A.7B.8C.9D.102.[2018·北京]若正多边形的一个外角为60°,则该多边形的内角和为()A.360°B.540°C.720°D.900°3.如图K27-1是将一多边形剪去一个角,则新多边形的内角和()图K27-1A.比原多边形少180°B.与原多边形一样C.比原多边形多360°D.比原多边形多180°4.[2017·莱芜]一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12B.13C.14D.155.[2017·厦门××区二模]如图K27-2,正六边形ABCDEF内接于☉O,☉O的半径为2,则的长为()图K27-2A.2πB.C.D.6.如图K27-3所示,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()图K27-3A.60°B.65°C.55°D.50°7.[2018·山西]图K27-4①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美,图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.图K27-48.[2018·宁德质检]小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算的这个内角的度数为°.9.如图K27-5所示,正六边形ABCDEF内接于半径为4的圆,则B,E两点间的距离为.图K27-510.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由.(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.。

(全国通用版)2019年中考数学复习第八单元统计与概率第27讲统计练习

解: 本次全部测试成绩的平均数为 =80.1(分).
考点1调查方式的选择
1.(2018·重庆B卷)下列调查中,最适合采用全面调查(普查)的是(D)
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的查
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为4.5首;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
教师
成绩



笔试
80分
82分
78分
面试
76分
74分
78分
考点4方差
8.(2018·包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(B)
A.4,1B.4,2 C.5,1 D.5,2
9.(2018·邵阳)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐(C)
3.(1)补全扇形统计图的方法:
未知组百分比=100%-已知组百分比之和;
未知组 百分比= ×100%;
(2)未知组在扇形统计图中圆心角的度数=360°×该组所占样本的百分比.

2019年浙江省中考数学《第27讲:图形与变换(2)》总复习讲解

第2课时图形平移与旋转1.图形的平移2.图形的旋转1.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=____________________.2.(2019·金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.【问题】如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2;(3)通过(1)、(2)作图,你认为利用旋转变换、平移变换作图要注意哪些?【归纳】通过开放式问题,归纳、疏理旋转变换、平移变换,以及利用旋转变换、平移变换作图.类型一识别(画)图形的平移、旋转变换例1(1)(2019·荆门)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.【解后感悟】此题是旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.(2)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.①将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;②以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解后感悟】本题利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.1.(1)(2019•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC 的平分线重合于AD(如图1).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图2),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是(填A′D、A′E、A′F).(2)(2019•吉林模拟)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).①将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.类型二网格、平面直角坐标系中的图形变换例2如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【解后感悟】本题是旋转的性质以及图形的平移等知识运用,根据题意得出对应点坐标是解题关键.2.(2019·温州模拟)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.类型三平移、旋转变换解决路径、面积等问题例3(2019·丽水模拟)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠的面积为32时,它移动的距离AA′等于________.【解后感悟】解决本题的关键是抓住平移后图形的特点,利用方程方法解题.3.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是.(结果保留π)4.(2019·张家界)如图,在边长均为1的正方形网络纸上有一个△ABC,顶点A、B、C 及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.【经验积累题】【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN;【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由;【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.【方法与对策】这是一道从特殊到一般设置的题型,通过基础图形等边三角形到等腰三角形,步步深入设置问题,其实解决问题的策略也是从简单到复杂,即全等三角形到相似三角形解决问题,通过前面方法来解决后面问题,在学习上是经验积累.这是中考热门题型.【考虑不全,出现漏解】如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是________.参考答案第2课时图形平移与旋转【考点概要】1.方向距离平行相等全等 2.相等旋转角全等【考题体验】1.5 2.(1)如图所示,△A1B1C1即为所求;(2)∵点A′坐标为(-2,2),由图可知,平移4个单位和6个单位时,刚好落在△A1B1C1的边界上,∴若要使向右平移后的A′落在△A1B1C1的内部,即4<a<6.【知识引擎】【解析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1.如图所示:△A1B1C1,即为所求;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.如图所示:△A2B2C2,即为所求.(3)画平移图形,必须找出平移的方向、距离;画旋转图形,必须找出旋转中心、方向、角度.运用图形的平移和旋转,要根据已知得出对应点坐标是解题关键.【例题精析】例1(1)∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=23(cm).故答案为:2 3.(2)①平移后的三角形如图1;②如图2,旋转后的三角形如图所示.例2(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,-2).例3 设AC 交A′B′于H ,∵∠A =45°,∠D =90°,∴△A ′HA 是等腰直角三角形,设AA ′=x ,则阴影部分的底长为x ,高A′D =12-x ,∴x ·(12-x)=32,∴x =4或8,即AA′=4或8.【变式拓展】1.(1)A′D 、A′F 、A′E (2)①如图,△A 1B 1C 1即为所求; ②如图,△AB 2C 2即为所求,点B 2(4,-2),C 2(1,-3).2.(1)如图; (2)如图; (3)BB 1=22+22=22;弧B 1B 2的长=90π2180=2π2.点B所走的路径总长=22+22π.3.π44.(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示; (3)∵OA =4,∠AOA 2=180°,∴点A 绕着点O 旋转到点A 2所经过的路径长为180π×4180=4π.【热点题型】【分析与解】(1)利用SAS 可证明△BAM ≌△CAN ,继而得出结论.证明:∵△ABC 、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAM =∠CAN ,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN ,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN. (2)也可以通过证明△BAM ≌△CAN ,得出结论,和(1)的思路完全一样.解:结论∠ABC =∠ACN 仍成立.理由如下:∵△ABC 、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAM =∠CAN ,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN ,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN. (3)首先得出∠BAC =∠MAN ,从而判定△ABC ∽△AMN ,得到AB AM =AC AN,根据∠BAM =∠BAC -∠MAC ,∠CAN =∠MAN -∠MAC ,得到∠BAM =∠CAN ,从而判定△BAM ∽△CAN ,得出结论. 结论:∠ABC =∠ACN.理由如下:∵BA =BC ,MA =MN ,顶角∠ABC =∠AMN ,∴底角∠BAC =∠MAN ,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BAM =∠BAC -∠MAC ,∠CAN =∠MAN -∠MAC ,∴∠BAM =∠CAN ,∴△BAM ∽△CAN ,∴∠ABC =∠ACN.【错误警示】15°或165°①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,∵AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD.∵∠EAF =60°,∴∠BAE +∠FAD =30°,∴∠BAE =∠FAD =15°.②当正三角形AEF 在正方形ABCD 的外部时,如图2,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD ,∵∠EAF =60°,∴2∠BAE -∠EAF +90°=360°,∴∠BAE =165°.故答案为15°或165°.图1图2。

2019年河北省中考数学总复习(课件+练习)课时训练27 轴对称与中心对称

课时训练(二十七)轴对称与中心对称(限时:40分钟)|夯实基础|1.[2018·广西]下列美丽的壮锦图案是中心对称图形的是()图K27-12.[2017·日照]剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()图K27-23.[2017·呼和浩特]图K27-3中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC进行了一次变换之后得到的,其中是通过轴对称得到的是()图K27-3A.(1)B.(2)C.(3)D.(4)4.如图K27-4,直线MN是四边形AMBN的对称轴,P是直线MN上的点,下列判断错误的是()图K27-4A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM5.[2018·唐山滦南一模]如图K27-5所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()图K27-5A.4种B.3种C.2种D.1种6.[2018·嘉兴]将一张正方形纸片按如图K27-6所示步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()图K27-6图K27-77.[2018·沧州二模]如图K27-8,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()图K27-8A.ACB.ADC.BED.BC8.[2018·重庆A卷]如图K27-9,把三角形纸片折叠,使点B,点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2√3厘米,则△ABC的边BC的长为厘米.图K27-99.[2018·大连]如图K27-10,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A'BE,连接CA'并延长,与AD相交于点F,则DF的长为.图K27-1010.[2017·天水]如图K27-11所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值为.图K27-1111.[2018·荆州]如图K27-12,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.图K27-12求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.12.[2018·枣庄节选]如图K27-13,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形.图K27-1313.如图K27-14,矩形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图K27-14|拓展提升|14.[2017·内江]如图K27-15,已知直线l1∥l2,l1,l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4√30,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ最小,此时P A+BQ=.图K27-15S矩形ABCD,则点P到A,B两15.[2018·攀枝花]如图K27-16,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=13点的距离之和P A+PB的最小值为.图K27-16参考答案1.A2.A3.A[解析] 根据轴对称的性质可知:对应点所连的线段被对称轴垂直平分.4.B5.B[解析] 根据轴对称图形的概念可知,一共有3种涂法,如下图所示:故选B.6.A7.C[解析] 连接PB,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PC+PE=PB+PE,∵PE+PB≥BE,∴P,B,E共线时,PB+PE的值最小,最小值为BE的长度,故选C.8.(4√3+6)[解析] 如图,过点E作EM⊥AG于点M,则由AE=EG,得AG=2MG.∵∠AGE=30°,EG=2√3厘米, ∴EM=1EG=√3(厘米).2在Rt△EMG中,由勾股定理,得MG=√(2√3)2-(√3)2=3(厘米),从而AG=6厘米.由折叠可知,BE=AE=2√3厘米,GC=AG=6厘米.∴BC=BE+EG+GC=2√3+2√3+6=4√3+6(厘米).9.6-2√3[解析] 如图,作A'H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA'=30°,∴∠A'BH=30°,∴A'H=12BA'=1,BH=√3A'H=√3, ∴CH=3-√3,∵△CDF∽△A'HC,∴DFCH =CDA'H, ∴3-√3=21,∴DF=6-2√3.10.6[解析] 连接DE交AC于点P',连接BP',则此时△BP'E的周长就是△PBE周长的最小值.∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP'+P'E=DE=5,∴△PBE周长的最小值是5+1=6.11.证明:(1)∵对折矩形纸片ABCD,使AB与CD重合,得到折痕MN,∴MN∥AB且M,N分别为AD,BC中点,∴EF∥AG且E,F分别为P A,PG的中点,∴PF=GF.由折叠的性质得∠PF A=∠D=∠GF A=90°,又AF=AF,∴△AFG≌△AFP(SAS),(2)∵△AFG≌△AFP,∴AP=AG,∠2=∠3,又∵∠2=∠1,∴∠1=∠2=∠3,又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠P AG=2∠2=60°,∴△APG为等边三角形.12.解:(1)如图所示:(2)画出下列其中一个即可.13.解:在Rt △ABE 中,AE=AO=10,AB=8,BE=√AE 2-AB 2=√102-82=6,∴CE=4,∴E (4,8). 在Rt △DCE 中,DC 2+CE 2=DE 2, 又DE=OD ,∴(8-OD )2+42=OD 2,∴OD=5,∴D (0,5).即点D 的坐标为(0,5),点E 的坐标为(4,8).14.16 [解析] 作PE ⊥l 1于点E ,交l 2于点F ,在PF 上截取PC=8,连接QC 交l 2于点B ,作BA ⊥l 1于点A ,连接P A ,此时P A+AB+BQ 最小.作QD ⊥PF 于点 D.首先证明四边形ABCP 是平行四边形,P A+BQ=CB+BQ=QC.在Rt △PQD 中,PQ=4√30,PD=18,∴DQ=√PQ 2-PD 2=√156,CD=PD -PC=18-8=10,∴P A+BQ=CB+BQ=QC=√DQ 2+CD 2=√156+102=16.故答案为16.15.4√2 [解析] 设△ABP 中AB 边上的高是h.∵S △P AB =13S 矩形ABCD ,∴12AB ·h=13AB ·AD , ∴h=23AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,BE ,则BE 的长就是P A+PB的最小值.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=√AB2+AE2=√42+42=4√2,即P A+PB的最小值为4√2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视图与投影
一、选择题(每小题6分,共24分)

1.(2018·温州)如图所示的支架是由两个长方体构成的组合体,
则它的主视图是( D )

2.(2018·宁夏)如图的几何体是由一个正方体切去一个小正方
体形成的,它的主视图是( D )

3.(2018·陕西)如图是一个正方体被截去一个直三棱柱得到的
几何体,则该几何体的左视图是( A )

4.(2018·呼和浩特)如图是某几何体的三视图,根据图中数据,
求得该几何体的体积为( B )

A.60π B.70π C.90π D
.160π

解析:观察三视图发现该几何体为空心圆柱,其内径为3,外径
为4,高为10,所以其体积为10×(42π-32π)=70π,故选B
二、填空题(每小题7分,共28分)
5.(2018·梅州)写出一个在三视图中俯视图与主视图完全相同
的几何体__球或正方体__.

6.(2018·湖州)如图,由四个小正方体组成的几何体中,若每
个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.
7.(2018·河源)春蕾数学兴趣小组用一块正方形木板在阳光下
做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、
菱形(答案不唯一)__.(写出符合题意的两个图形即可)
解析:在同一时刻,平行物体的投影仍旧平行.得到的应是平行
四边形或特殊的平行四边形或线段

8.(2018·黔东南)在桌上摆着一个由若干个相同正方体组成的
几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体
的个数为n,则n的最小值为__5__.
解析:底层正方体最少的个数应是3个,第二层正方体最少的个
数应该是2个,因此这个几何体最少有5个小正方体组成
三、解答题(共48分)
9.(12分)(2018·自贡)画出如图所示立体图形的三视图.

解:如图所示:
10.(12分)5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是____立方单位,表面积是____平方单位;
(2)画出该几何体的主视图和左视图.
解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;
∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个
正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体
的表面积为22.故答案为5,22
(2)作图如下:

11.(12分)由几个相同的边长为1的小立方块搭成的几何体的
俯视图如图所示.方格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.

(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面
积)
(1)图形如下所示:

(2)几何体的表面积为:(3+4+5)×2=24
12.(12分)如图,公路旁有两个高度相等的路灯AB,CD.小明上
午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己
的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一
个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.
(1)在图中画出小明的位置(用线段FG表示),并画出光线,标明
太阳光、灯光;
(2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5
米,他离里程碑E恰好5米,求路灯高.

解:(1)
(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5
米,∴小明的影长CF为3米,∵GF⊥AC,DC⊥AC,∴GF∥CD,∴△

EGF∽△EDC,∴GFCD=EFEC,∴1.5CD=55+3,解得CD=2.4.答:路灯高为
2.4米

2018年名师预测
1.如图是某个几何体的三视图,则该几何体的形状是( D )
A.长方体 B
.圆锥

C.圆柱 D
.三棱柱

2.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,
∠EGF=30°,则AB的长为__6__ cm.

解析:过点E作EQ⊥FG于点Q,由题意可得出EQ=AB,∵EG=
12 cm,∠EGF=30°,∴EQ=AB=12×12=6(cm)

相关文档
最新文档