浙教版八年级数学上册:1.3《证明》教案

合集下载

2024年浙教版数学八年级上册全册教案

2024年浙教版数学八年级上册全册教案

2024年浙教版数学八年级上册全册教案一、教学内容1. 第一单元:实数第1节:平方根与立方根第2节:实数及其运算2. 第二单元:一元二次方程第1节:一元二次方程的概念与解法第2节:一元二次方程的配方法第3节:一元二次方程的公式法第4节:一元二次方程的判别式3. 第三单元:不等式与不等式组第1节:不等式的性质与解法第2节:不等式组的概念与解法4. 第四单元:函数及其性质第1节:函数的概念与表示方法第2节:函数的性质第3节:一次函数与反比例函数二、教学目标1. 让学生掌握实数的概念、性质与运算,提高数学运算能力。

2. 使学生掌握一元二次方程的解法,并能运用解决实际问题。

3. 培养学生熟练运用不等式与不等式组解决实际问题的能力。

4. 让学生理解函数的概念,掌握函数的性质,并学会一次函数与反比例函数的应用。

三、教学难点与重点1. 教学难点:实数的运算与性质一元二次方程的解法与判别式不等式与不等式组的解法函数的性质及其应用2. 教学重点:实数的概念与运算一元二次方程的解法与应用不等式的性质与解法函数的概念及其性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学课件2. 学具:教材、练习本、草稿纸、计算器五、教学过程1. 实数引入:通过生活实例,让学生感受实数的概念。

例题讲解:讲解平方根、立方根的性质与运算方法。

随堂练习:完成教材第1节与第2节练习题。

2. 一元二次方程引入:通过实际问题,引导学生理解一元二次方程的概念。

例题讲解:分别讲解一元二次方程的配方法、公式法与判别式。

随堂练习:完成教材第1节至第4节练习题。

3. 不等式与不等式组引入:通过实际情景,让学生理解不等式的意义。

例题讲解:讲解不等式的性质与解法,以及不等式组的解法。

随堂练习:完成教材第1节与第2节练习题。

4. 函数及其性质引入:让学生了解函数在实际生活中的应用。

例题讲解:讲解函数的概念、表示方法及其性质。

随堂练习:完成教材第1节至第3节练习题。

浙教版八年级数学上册教案(精选10篇)

浙教版八年级数学上册教案(精选10篇)

浙教版八年级数学上册教案(精选10篇)浙教版八年级数学上册教案(精选10篇)作为一名教职工,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

优秀的教案都具备一些什么特点呢?下面是小编为大家收集的浙教版八年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

浙教版八年级数学上册教案篇1教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC 中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠CXXXXXX(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是XXXXXX 三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有XXXXXX.④若已知AD=4cm,则BCXXXXXXcm.3.以问题形式引出推论lXXXXXX.4.以问题形式引出推论2XXXXXX.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。

浙教版数学八年级下册1.3《二次根式的运算》教案3

浙教版数学八年级下册1.3《二次根式的运算》教案3

浙教版数学八年级下册1.3《二次根式的运算》教案3一. 教材分析浙教版数学八年级下册1.3《二次根式的运算》是学生在学习了实数、分数、代数等知识的基础上,进一步深化对二次根式的理解和应用。

本节内容通过具体的例子,引导学生掌握二次根式的加减乘除运算方法,为后续学习二次根式的方程和不等式打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了实数、分数、代数等知识,对数学运算有了一定的理解。

但二次根式的运算相对于其他运算来说较为复杂,需要学生有一定的空间想象能力和抽象思维能力。

同时,学生可能对二次根式的实际应用场景有一定的疑惑,需要教师在教学中进行解答。

三. 教学目标1.理解二次根式的加减乘除运算方法;2.能够熟练地进行二次根式的运算;3.了解二次根式的实际应用场景。

四. 教学重难点1.二次根式的加减乘除运算方法;2.二次根式的实际应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和学生的练习,使学生掌握二次根式的运算方法。

六. 教学准备1.教师准备PPT,内容包括二次根式的运算方法、实例讲解、练习题等;2.学生准备笔记本,用于记录教学内容和做练习。

七. 教学过程1.导入(5分钟)教师通过PPT展示二次根式的实际应用场景,引导学生思考二次根式在实际问题中的作用,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT呈现二次根式的加减乘除运算方法,并进行详细的讲解和示例。

学生在笔记本上做好笔记。

3.操练(10分钟)教师给出一些二次根式的运算题目,学生独立完成,并及时给予解答和指导。

4.巩固(10分钟)教师再次给出一些二次根式的运算题目,学生独立完成,并与同学进行讨论。

教师选取一些典型的题目进行讲解。

5.拓展(10分钟)教师引导学生思考二次根式运算在更复杂问题中的应用,如二次根式的方程、不等式等,为学生后续学习打下基础。

6.小结(5分钟)教师对本节课的内容进行小结,学生做好笔记。

浙教版八年级数学上册试题 1.3 证明 (含答案)

浙教版八年级数学上册试题 1.3 证明 (含答案)

1.3 证明一、单选题1.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50 o B.60 o C.75 o D.85 o2.三角形中∠B的平分线和外角的平分线的夹角是().A.60°B.90°C.45°D.135°3.小王、小陈、小张当中有一人做了一件好事,另两人也都知道是谁做了这件事.老师在了解情况时,他们三人分别说了下面几句话:小陈:“我没做这件事.”“小张也没做这件事.”小王:“我没做这件事.”“小陈也没做这件事.”小张:“我没做这件事.”“我也不知道谁做了这件事.”已知他们每人都说了一句假话,一句真话,做好事的人是()A.小王B.小陈C.小张D.不能确定4.下列问题你不能肯定的是()A.一支铅笔和一瓶矿泉水的体积大小问题 B.三角形与矩形的面积关系C.三角形的内角和D.n边形的外角和5.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A.嫌疑犯乙B.嫌疑犯丙C.嫌疑犯甲D.嫌疑犯甲和丙6.如图,CE是ABC∆的外角ACD∠的平分线,若35∠=( ).∠=,则A∠=,60BACEA.95 B.85 C.75 D.7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=A.60°B.120°C.150°D.180°9.如图,下列推理不正确的是( )A.∵AB∥CD,∴∠ABC+∠C=180°B.∵∠1=∠2,∴AD∥BCC.∵AD∥BC,∴∠3=∠4D.∵∠A+∠ADC=180°,∴AB∥CD10.下列推理中,错误的是( )A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF11.下列推理正确的是( )A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角12.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( )A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5二、填空题13.如图,直线a b∥,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为______.14.现有一个三位数密码锁,已知以下3个条件,可以推断正确的密码是__________.①只有一个号码正确且位置正确②只有两个号码正确且位置都不正确③三个号码都不正确15.如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据___________________________.16.如图,在△ABC中,∠C=90°,∠ABC的平分线与外角∠BAD的平分线的反向延长线交于点F,则∠F=____.17.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____.18.在△ABC中,AB≠AC,若用反证法证明∠B≠∠C,应先假设 _____19.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是_____.20.盒子里有甲、乙、丙三种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗乙粒子;不同种类的两颗粒子发生碰撞,会变成第三种粒子,例如一颗甲粒子和一颗乙粒子发生碰撞则变成一颗丙粒子,现有甲粒子6颗,乙粒子4颗,丙粒子5颗,如果经过各种两两碰撞后,只剩下1颗粒子,给出下列结论:①最后一颗粒子可能是甲粒子;②最后一颗粒子一定不是乙粒子;③最后一颗粒子可能是丙粒子.其中正确结论的序号是:_______.21.完成下面的证明过程.已知:如图,∠1和∠D互余,∠C和∠D互余.求证:AB∥CD.证明:∵∠1和∠D互余(已知),∴∠1+∠D=90°(_____________).∵∠C和∠D互余(已知),∴∠C+∠D=90°(_____________),∴∠1=∠C(__________________),∴AB∥CD(________________________).22.如图,点 A,C,F,B 在同一直线上,CD 平分∠ECB,FG∥CD.若∠ECA 为α度,则∠GFB为________度(用关于α的代数式表示).23.如图,是一副三角板叠放的示意图,则∠α=______.24.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题25.观察下列等式:第个等式为:2113323-=⨯第1个等式为:3223323-=⨯第2个等式为:4333323-=⨯第3个等式为:5443323-=⨯....根据上述等式含有的规律,解答下列问题:(1)第5个等式为:是(2)第n 个等式为:是 (用含n 的代数式表示),并证明26.已知△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE=∠CEF .27.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图②中都有12,34∠=∠∠=∠.设镜子AB 与BC 的夹角ABC α∠=.(1)如图①,若90α=︒,判断入射光线EF 与反射光线GH 的位置关系,并说明理由.(2)如图②,若90180a ︒<<︒,入射光线EF 与反射光线GH 的夹角FMH β∠=.探索α与β的数量关系,并说明理由.(3)如图③,若130α=︒,设镜子CD 与BC 的夹角BCD ∠为钝角,入射光线EF 与镜面AB 的夹角109()0x x ∠=︒<<︒.已知入射光线EF 从镜面AB 开始反射,经过(n n 为正整数,且3n ≤)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出BCD ∠的度数(可用含x 的代数式表示).答案一、单选题1.C 2.B 3.B 4.B 5.C 6.B7.D8.A 9.C10.A 11.B 12.C二、填空题13.35°14.52015.同旁内角互补,两直线平行16.45°17.540°18.∠B=∠C19.25620.①②③.21.互余的定义;互余的定义;同角的余角相等;内错角相等,两直线平行. 22.90°﹣2α 23.75°24.①②⑤三、解答题25.解:(1)观察等式可知:第5个等式为:6553323-=⨯;故答案为:6553323-=⨯;(2)第n 个等式为:13323n n n +-=⨯,证明:左边1333333(31)23n n n n n n +=-=⨯-=-=⨯=右边∴等式成立. 26.解:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,∵∠ACB =90°,∴∠1+∠3=90°,∵CD ⊥AB ,∴∠2+∠4=90°,又∵BE 平分∠ABC ,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE =∠CEF .27.解:()1,EF GH理由如下:在BEG 中,23180,α∠+∠+=︒90,α=︒2390,∴∠+∠=︒12180,34180,12,34FEG EGH ∠+∠+∠=︒∠+∠+∠=︒∠=∠∠=∠, 1234360FEG EGH ∴∠+∠+∠+∠+∠+∠=︒,180FEG EGH ∴∠+∠=,//EF GH ∴;()22180βα=-︒.理由如下:在BEG 中,23180α∠+∠+=23180,α∴∠+∠=︒-12,1MEB ∠=∠∠=∠2,MEB ∴∠=∠22,MEG ∴∠=∠34,4MGB ∠=∠∠=∠3,MGB ∴∠=∠23,MGE ∴∠=∠在MEG 中,180MEG MGE β∠+∠+=︒(0)18MEG MGE β∴=︒-∠+∠180(2223)=-∠+∠(802)123=∠+∠-1802(180)2180αα=︒︒=--- ;()390x ︒+或140︒如图,当夹角为钝角时,根据(2)中的结论,得 ∠FEG=2∠BCD-180°,根据平行线性质,得:∠FEG=∠PAH=2∠NAH=2x ,∴∠BCD=1802902x x ︒+=︒+;如图,当夹角为直角时,根据(1)中的结论,得∠EBC=50°,根据三角形外角性质,得:∴∠BCD=∠EBC+∠BEC=50°+90°=140°.∴∠BCD的度数为90x︒+或140°.。

浙教版初中八年级数学上册全套教案

浙教版初中八年级数学上册全套教案

浙教版初中八年级数学上册全套教案教案:浙教版初中八年级数学上册一、教学内容1. 第一章:整式与方程1.1 整式的概念与运算1.2 方程的概念与解法2. 第二章:函数2.1 函数的概念与性质2.2 一次函数与二次函数3. 第三章:几何3.1 三角形的性质3.2 四边形的性质二、教学目标1. 学生能够掌握整式与方程的基本概念和运算方法。

2. 学生能够理解函数的概念和性质,能够绘制一次函数和二次函数的图像。

3. 学生能够了解三角形的性质,能够应用三角形的性质解决实际问题。

三、教学难点与重点1. 教学难点:函数图像的绘制和几何图形的性质证明。

2. 教学重点:整式与方程的运算方法,函数的概念和性质,几何图形的性质。

四、教具与学具准备1. 教具:黑板、粉笔、PPT播放器。

2. 学具:笔记本、尺子、圆规、橡皮擦。

五、教学过程1. 实践情景引入:通过生活中的实际问题,引入整式与方程的概念。

2. 知识讲解:讲解整式与方程的基本概念和运算方法。

3. 例题讲解:通过例题讲解,让学生掌握整式与方程的解法。

4. 随堂练习:学生独立完成随堂练习,巩固所学知识。

5. 知识讲解:讲解函数的概念和性质,一次函数和二次函数的图像。

6. 例题讲解:通过例题讲解,让学生掌握函数的解法。

7. 随堂练习:学生独立完成随堂练习,巩固所学知识。

8. 知识讲解:讲解几何图形的性质,如三角形的性质。

9. 例题讲解:通过例题讲解,让学生应用几何图形的性质解决问题。

10. 随堂练习:学生独立完成随堂练习,巩固所学知识。

六、板书设计板书设计将包括本节课的主要知识点,如整式与方程的概念、运算方法,函数的概念、性质和图像,几何图形的性质等。

七、作业设计1. 作业题目:请完成课后练习第一题至第五题。

2. 答案:第一题:略第二题:略第三题:略第四题:略第五题:略八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解整式与方程的应用。

通过例题讲解和随堂练习,让学生掌握整式与方程的解法。

八年级数学上册 等边三角形的判定教案 浙教版

八年级数学上册 等边三角形的判定教案 浙教版

等边三角形的判定教学目标:1、 了解等边三角形的判定方法。

2、 会用等边三角形得相关判定解决简单的实际问题。

教学重点、难点重点:等边三角形的判定方法和应用;含30°角的直角三角形的性质;几何问题的代数解法。

难点:理解含30°角的直角三角形的性质的理论依据。

教学设计:一、回顾旧知,引入新知1、等边三角形具有哪些性质。

2、等边三角形的概念:三边都相等的三角形叫做等边三角形。

提出下列问题,组织学生进行分组讨论。

问题:一个三角形满足什么条件就是等边三角形?1、 师生共同分析讨论,归纳出等边三角形的和判定方法。

2、 由等腰三角形的判定方法就可以得到:⑴三边都相等的三角形叫做等边三角形。

;⑵三个角都相等的三角形是等边三角形.⑶有一个角是60°的等腰三角形是等边三角形. 二、新课学习1.等腰三角形判定方法的证明 ⑴三个角都相等的三角形是等边三角形。

已知:ΔABC 中,∠A =∠B =∠C.求证:△ABC 是等边三角形 证明:∵∠A =∠B ∴AC=BC 同理:AB=AC∴AB=AC=BC ∴△ABC 是等边三角形⑵已知,在△ABC 中,AB=AC ,∠A=60°。

(1)求证:△ABC 是等边三角形。

(1) 如果把∠A=60°改为∠B=60°或∠C=60°结论还成立吗?____________________________________(2) 由上你可以得到什么结论?______________________________证明:∵AB=AC ∴∠B =∠C=(180°-∠A )=(180°-60°)=60°∴∠A =∠B =∠C ∴△ABC 是等边三角形归纳:在判定三角形是等边三角形时(1)若三角形是一般三角形,只要找_三边相等__或_三个角相等___ ;(2)若三角形是等腰三角形,一般是找_有一个角等于60°____让学生动手操作,用两个含30°角的三角尺摆一摆,猜一猜,证一证。

2024年浙教版八年级数学上册全册教案

2024年浙教版八年级数学上册全册教案

2024年浙教版八年级数学上册全册教案一、教学内容1. 第一章有理数及其运算1.1 有理数的概念及分类1.2 有理数的加法与减法1.3 有理数的乘法与除法1.4 有理数的乘方与开方2. 第二章整式的乘法与因式分解2.1 整式的乘法法则2.2 乘法公式2.3 整式的因式分解3. 第三章分式及其运算3.1 分式的概念及性质3.2 分式的乘法与除法3.3 分式的加法与减法4. 第四章轴对称与中心对称4.1 轴对称图形4.2 中心对称图形5. 第五章数据分析5.1 平均数、中位数、众数5.2 方差与标准差5.3 频数分布表与频数分布直方图二、教学目标1. 理解有理数、整式、分式的概念及性质,掌握相应的运算方法,并能熟练运用。

2. 掌握轴对称与中心对称的概念、性质及其在实际问题中的应用。

3. 学会数据分析的基本方法,能对数据进行整理、描述和推断。

三、教学难点与重点1. 教学难点:有理数的运算、整式的因式分解、分式的运算、数据分析的方法。

2. 教学重点:理解概念、掌握运算方法、解决实际问题。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、练习本、计算器。

五、教学过程1. 引入实践情景,提出问题,激发学生学习兴趣。

2. 讲解理论知识,结合例题进行解析。

3. 随堂练习,巩固所学知识。

4. 学生互相讨论,解决问题,教师进行指导。

六、板书设计1. 根据教学内容,设计简洁、直观的板书,突出重点和难点。

2. 采用图表、示例等形式,使板书更具条理性和系统性。

七、作业设计1. 作业题目:第一章:有理数运算练习题;第二章:整式乘法与因式分解练习题;第三章:分式运算练习题;第四章:轴对称与中心对称练习题;第五章:数据分析练习题。

2. 答案:根据练习题,给出详细的解答过程和答案。

八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性练习题,提高学生的思维能力和解决问题的能力。

重点和难点解析一、教学内容的选择与安排重点关注章节和内容的逻辑顺序,确保学生在学习新知识时能够循序渐进,避免知识点的跳跃。

1.3.2证明的表达格式-2020秋浙教版八年级数学上册习题PPT优秀课件

1.3.2证明的表达格式-2020秋浙教版八年级数学上册习题PPT优秀课件
证明:∵∠AFB是△AEF的外角,∴∠AFB=∠1+∠AEF (三角形的外角等于与它不相邻的两个内角的和).
∵∠AEF是△BCE的外角,∴∠AEF=∠2+∠C(三角形的 外角等于与它不相邻的两个内角的和).
∴∠AFB=∠1+∠2+∠C.
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
6.如图,∠A,∠1,∠2的大小关系是( B )
A.∠A>∠1>∠2
B.∠2>Hale Waihona Puke 1>∠AC.∠A>∠2>∠1
D.∠2>∠A>∠1
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
7.【中考·营口】如图,将一副三角板叠放在一起,使 直角的顶点重合于点O,AB∥OC,DC与OB交于点 E,则∠DEO的度数为( )
14
(1)110°;(2)35°
两条直线平行 11 证明见习题
15 证明见习题
12 D
16 (1) 90°+α2 120°+α2 (2) 120°-α3,理由见习题
1.如图,下列关于△ABC的外角的说法正确的是( D ) A.∠HBA是△ABC的外角 B.∠HBG是△ABC的外角 C.∠DCE是△ABC的外角 D.∠GBA是△ABC的外角
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
11.如图,在△ABC中,线段AD,BE相交于点F.求证: ∠AFB=∠1+∠2+∠C.
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
1.3.2证明的表达格式-2020秋浙教版 八年级 数学上 册习题P PT优秀 课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《证明》教案
教学目标
1.了解证明的含义.
2.体验、理解证明的必要性.
3.了解证明的表达格式,会按规定格式证明简单命题.
教学重点、难点

重点:本节教学的重点是证明的含义和表述格式.
难点:本节教学的难点是按规定格式表述证明的过程.
教学过程

一、新课引入
教师借助多媒体设备向学生演示课内节前图:比较线段AB和线段CD的长度.
通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性
二、新课教学
合作学习.
一组直线a、b、c、d、是否不平行(互相相交),请通过观察、先猜想结论,并动手验
证.
三、例题教学
完成课本例1.
注意:证明过程中的每一步推理都要有依据,依据作为推理的理由,可以写在每一步后的
括号内.
完成课本例2.
想一想:证明几何命题的基本思路是什么?
四、练习巩固
P76 课内练习3.
五、小结
(1)证明的含义.
(2)真命题证明的步骤和格式.
(3)思考、探索:假命题的判断如何说理、证明?
六、作业布置

相关文档
最新文档