差分方程的解法1

合集下载

差分方程解法及其在离散系统中的应用

差分方程解法及其在离散系统中的应用

差分方程解法及其在离散系统中的应用差分方程是数学中一类重要的离散数学方程,广泛应用于动态系统建模和离散事件系统的分析。

本文将介绍差分方程的解法以及它在离散系统中的应用。

一、差分方程的定义和基本概念差分方程是一种以离散形式描述系统变化的数学方程。

其基本形式为:Δyₙ = f(n, yₙ₋₁)其中,Δyₙ为相邻两个时刻n和n-1之间y的变化量,f(n, yₙ₋₁)为给定时刻n和n-1之间的函数关系。

二、差分方程求解的方法对于简单的差分方程,可以直接通过迭代求解。

例如,对于一阶线性差分方程:Δyₙ = k其中,k为常数。

可以通过重复应用这一关系求解,即:yₙ = y₀ + kₙ其中,y₀为初始条件,kₙ为Δyₙ在不同时刻的取值。

对于更复杂的差分方程,可以采用数值方法求解,如欧拉法、龙格-库塔法等。

这些方法可以通过将差分方程转化为递推方程,并利用数值计算得到近似解。

三、离散系统中差分方程的应用1. 经济学中的应用差分方程可以用来描述经济系统中的离散变化。

例如,经济增长模型中的劳动力增长率、资本积累速度等,都可以通过差分方程来建模和分析。

2. 自然科学中的应用差分方程在物理学、生态学等自然科学领域中也有广泛的应用。

例如,天体运动、人口增长、物种竞争等系统的演化过程都可以用差分方程来描述和预测。

3. 计算机科学中的应用差分方程在计算机科学中的应用也是十分重要的。

例如,计算机网络中数据包的传输、媒体数据的压缩等问题,都可以通过差分方程来建模和解决。

四、差分方程解法的局限性和改进方法虽然差分方程是一种有效的数学工具,但其在一些特殊情况下存在局限性。

例如,对于非线性和高阶差分方程,常常难以求得解析解。

此时,可以利用数值方法进行近似求解,或者采用数值优化算法寻找最佳解。

总结:差分方程是一种重要的离散数学工具,广泛用于动态系统建模和离散事件系统的分析。

通过合适的差分方程求解方法,可以有效地描述和预测各种离散变化的系统。

差分方程

差分方程

xk = ( − a ) x0 , k = 1, 2,L
k
所以当且仅当|a|<1时 方程( 所以当且仅当|a|<1时,方程(2)的平衡点 |a|<1 从而方程( 的平衡点)才是稳定的. (从而方程(1)的平衡点)才是稳定的.
常数矩阵A构成的 常数矩阵 对于n维向量 x ( k ) 和n×n常数矩阵 构成的 对于n (3) 方程组 x ( k + 1) + Ax ( k ) = 0 其平衡点稳定的条件是A的特征根 其平衡点稳定的条件是 的特征根
g 曲线斜率 y P3 f f P4 g P4 P3 K f < Kg K f > Kg y0 y0 P0 P0 y3 P2 P2 P1 y1 P1 0 x2 x x3 x1 x 0 x0 x 0
y y2
方程模型
yk = f (xk ) x k +1 = h ( y k )
在P0点附近用直线近似曲线
yk − y0 = −α ( xk − x0 ) (α > 0) xk +1 − x0 = β ( yk − y0 ) ( β > 0)
k +1
xk +1 − x0 = −αβ ( xk − x0 ) x
− x 0 = ( −αβ ) ( x1 − x 0 )
k
αβ < 1 (α <1/ β)
xk → x0 xk → ∞
= 1,故有解 an = 2 −1
n
1.3 差分方程的平衡点及稳定性 (1) 一阶线性方程的平衡点及稳定性 一阶线性常系数分方程
x k +1 + axk = b, k = 0,1,2,L
的平衡点由 x + ax = b 当

Z3.3 差分方程的经典解法

Z3.3 差分方程的经典解法

N
10.1(1 0.01)9 101(1 0.01)9 100
1.06(万元)
9
Xidian University, ICIE. All Rights Reserved
例3 某人向银行贷款M=10万元,月利率β=1%,他定 期于每月初还款数为f(k),尚未还清的款数为y(k),列 出y(k)的方程。如果他从贷款后第一个月(可设为k=0) 还款N,则有f(k)=Nε(k)万元和y(-1)=M=10万元。
(1) 如每月还款N=0.5万元,求y(k)。
(2) 他还清贷款需要几个月?
3.齐次解的常用函数形式(p.74)
表3-1 不同特征根所对应的齐次解
特征根 单实根 2重实根 一对共轭复根
1,2=a jb e j
齐次解yh (k) Ck
(C1k C0 ) k k[C cos( k) D sin( k)]或A k cos( k )
其中Ae j C jD
4.特解的常用函数形式(p.74)
已知y(0)=0,y(1)= –1;f(k)=2k,k≥0。求方程的全解。
解:特征根: λ1=λ2= –2
(how?)
设齐次解:yh(k)=(C1k+C2) (–2)k
设特解为:yp(k)=P (2)k , k≥0,代入得:P =1/4
故全解为:y(k)= yh+yp = (C1k+C2) (–2)k+2k–2, k≥0
特征根为1+an-1λ–1 + … +a0λ–n=0 的根λi(i=1,2,…, n),由特征根可以设定齐次解的函数形式。
特解的函数形式与激励的函数形式有关。
3
Xidian University, ICIE. All Rights Reserved

差分方程知识点总结

差分方程知识点总结

差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。

差分运算符Δ表示的是某一变量在两个连续时间点的变化量。

差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。

二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。

一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。

2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。

二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。

3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。

线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。

4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。

滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。

5. 差分方程组差分方程组是指由多个差分方程组成的方程组。

差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。

三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。

通过求解特征方程,可以求得差分方程的通解。

2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。

通过递推关系,可以求得差分方程的特解。

3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。

通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。

4. 数值解法对于复杂的差分方程,通常采用数值解法求解。

数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。

差分方程的法

差分方程的法

差分方程常用解法1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ (1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。

又称方程0...110=+++-++n k k n k n x a x a x a (2)为方程(1)对应的齐次方程。

如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。

显然,如果能求出方程(3)的根,则可以得到方程(2)的解。

基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:nk k n n n c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(3)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan,22=+=,则(2)的通解中有构成项: n c n c n nϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。

通解可记为:-n x如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +*n x (4) 方程(4) 的特解可通过待定系数法来确定。

例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1)中确定出系数即可。

(完整版)差分方程的常见解法

(完整版)差分方程的常见解法

(完整版)差分方程的常见解法差分方程的常见解法差分方程是数学中的一种重要方程类型,常用于描述离散事件系统的发展规律。

在求解差分方程时,我们可以采用以下几种常见的解法。

1. 直接求解法直接求解法是最简单且常用的差分方程求解方法之一。

它的基本思想是通过观察差分方程的规律,找到解的形式,并通过代入验证得到确切的解。

举例来说,对于一阶线性差分方程$y_{n+1} = ay_n + b$,我们可以猜测解的形式为$y_n = c\lambda^n$,其中$c$和$\lambda$为待定常数。

将此解代入方程,再通过已知条件解得$c$和$\lambda$的值,从而得到原差分方程的解。

2. 特征方程法特征方程法是一种常用于求解线性齐次差分方程的方法。

对于形如$y_{n+2} = ay_{n+1} + by_n$的差分方程,我们可以通过构造特征方程来求解。

具体步骤是,我们将差分方程中的项移动到一边,得到$y_{n+2} - ay_{n+1} - by_n = 0$。

然后,假设解的形式为$y_n =\lambda^n$,将其代入方程,得到特征方程$\lambda^2 - a\lambda - b = 0$。

解这个特征方程,得到特征根$\lambda_1$和$\lambda_2$,然后通解的形式为$y_n = c_1\lambda_1^n + c_2\lambda_2^n$,其中$c_1$和$c_2$为待定常数。

3. Z 变换法Z 变换法是一种广泛应用于差分方程求解的方法,特别适用于线性时不变差分方程。

该方法的基本思想是将差分方程转化为代数方程,并利用 Z 变换的性质求解。

对于差分方程$y_{n+1} = ay_n + b$,通过取 Z 变换,我们可以得到转化后的方程$Y(z) = azY(z) + b \frac{1}{1 - z^{-1}}$,其中$Y(z)$代表$y_n$的Z 变换。

然后,将方程整理,求解得到$Y(z)$,再通过反 Z 变换将其转换为差分方程的解$y_n$。

差分方程的解法-推荐下载

差分方程的解法-推荐下载

法计算。常用的方法有:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

差分方程的求解方法及其应用

差分方程的求解方法及其应用

差分方程的求解方法及其应用差分方程是数学中一个比较重要的分支,用于描述离散化的动态系统和过程,广泛应用于物理、工程、生态、经济、金融等领域。

通过离散化,可以将连续的问题转化为离散的数值计算问题,从而可以用计算机进行求解。

本文将介绍差分方程的求解方法及其应用,希望能够对读者有所帮助。

一、差分方程的定义差分方程是指包含有未知函数的离散变量的函数方程。

通俗的说,就是说差分方程用来描述离散的数学模型。

一般的差分方程可以写成如下形式:$$y_{n+1} = f(y_n, y_{n-1}, \cdots, y_{n-k+1}, n)$$其中,$y_n$ 是未知函数在 $n$ 时刻的值,$f$ 是一个给定的函数,$k$ 是差分方程中自变量的个数。

当 $k=1$ 时,常常称为一阶差分方程,如下所示:$$y_{n+1} = f(y_n, n)$$此外还有二阶、三阶等高阶差分方程。

差分方程与微分方程相似,都是用来描述某种动态系统的变化规律,只是微分方程是描述连续变化的模型,而差分方程是描述离散变化的模型。

二、差分方程的求解方法差分方程的求解方法可以分为两类,一类是解析解法,即用数学公式直接求解;另一类是数值解法,即用计算机进行数值计算求解。

1. 解析解法对于一些特殊的差分方程,可以用解析解法求出解析解。

解析解法就是通过数学公式直接求解,得到函数在论域上的解析表达式,从而可以对解析表达式进行分析求得有关该函数的很多重要信息。

以一阶线性差分方程为例,即:$$y_{n+1} = ay_n + b, \ \ (n=0,1,2,\cdots)$$其中 $y_0$ 是已知值, $a$ 和 $b$ 是常数。

可以通过数学公式得到该差分方程的解析解:$$y_n = a^ny_0 + b\frac{a^n-1}{a-1}, \ \ (n=0,1,2,\cdots)$$其它的高阶差分方程可以运用代数学、矩阵论、微积分等方法求解。

2. 数值解法数值解法是一种通过数值计算来求解差分方程的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差分方程的解法1第三节差分方程常用解法与性质分析高中数学新课标选修内容“一阶线性差分方程”的解法分析江西省高中数学课程标准研究组舒昌勇(341200)在高中数学新课标选修系列4的“数列与差分”专题中,一阶常系数线性差分方程x n+1=kx n+b (1)是讨论的重点,其一般形式为x n+1=kx n+f(n) (2)其中k为已知的非零常数,f(n)为n的已知函数.当f(n)≠0时,方程(2)称为非齐次的,f(n)=0时,方程x n+1=kx n(3)称为齐次的,并称(3)为(2)相应的齐次方程.方程(1)是方程(2)当f(n)为常数的情况,是方程(2)能用待定系数法求特解时所具有的几种特殊形式里最简单的一种.我们来讨论方程(1)和(3)通解的求法.1 求一阶齐次差分方程x n+1=kx n的通解用迭代法,给定初始值为x0,则一阶齐次差分方程x n+1=kx n 的通解为x1 = kx0,x2=kx1=k2x0,x3=kx2=k3x0,…,一般地,有x n= kx0-1= k(k n-1x0)= k n x0,n = 1,2,…,由于x0表示初始值,可任意给定,所以可视其为任意常数,不妨用c来表示.又根据差分方程通解的定义:如果差分方程的解中含有与方程的阶数相同个数的相互独立的任意常数,则为其通解,故一阶线性齐次方程x n+1=kx n的通解可表为x n=k n c(c为任意常数).对于每一个任意给定的初始值x0,都能得到方程相应于该初始值的一个特解.而求特解只要将给定的初始值x0代入通解求出待定常数c 即可.2 求一阶非齐次差分方程x n+1=kx n+b的通解2.1探索一阶非齐次差分方程x n+1=kx n+b通解的结构设数列﹛y n﹜,﹛z n﹜为方程(3)的任意两个解,则y n+1=k y n +b (4)z n+1= k z n +b (5)(4)-(5) 得y n +1-z n +1=k(y n- z n )这意味着一阶非齐次线性差分方程任意两个解的差为相应齐次差分方程的解.从而,若a n为非齐次方程(3)的任意一个解,b n为非齐次方程(3)的一个特解,则a n-b n就为相应齐次方程的一个解.为了探索一阶非齐次差分方程通解的结构,我们对它的任意一个解a n 作适当变形:a n=a n+b n- b n= b n +( a n - b n)这表明,一阶非齐次差分方程的任意一个解可表示为它的一个特解与相应齐次方程一个解的和的形式.从而非齐次方程的通解等于其一个特解加上相应齐次方程的通解.2.2 求一阶非齐次差分方程(3)的通解①用迭代法,设给定的初始值为x0,依次将n=0,1,2,…代入(3),有x1=kx0+bx2=kx1+b=k(kx0+b)+b =k2x0+b(1+k)x 3=kx 2+b= k[k 2x 0+b(1+k)]+b= k 3x 0+b(1+k+k 2) ……x n =k n x 0+b(1+k+k 2+…+k n-1)ⅰ)当k ≠1时, 1+k+k 2+…+k n-1 = kk n--11此时x n =k nx 0+kk b n--1)1(=k n (x 0-k b -1)+k b -1 由于x 0表示初始值,可任意给定,故可设其为任意常数,从而x 0-kb-1 也为任意常数.令x 0-kb-1=c ,则(3)的通解可表为 x n =k n c+kb -1 (c 为任意常数)ⅱ)当k=1时,1+k+k 2+…+k n-1=n 此时x n =x 0+nb由于x 0可任意给定,即其可为任意常数,故(3)的通解可写为x n =c+nb (c 为任意常数)②待定系数法与求解常微分方程类似,待定系数法也是求非齐次线性差分方程一个特解的一种较为简便、常用的方法.其基本思想是:根据方程的非齐次项f(n)的特点,用与f(n)形式相同但系数为待定的函数,作为方程的特解(称为试解函数),然后将该试解函数代入方程,以确定试解函数(特解)中的待定系数,从而求出方程的一个特解.ⅰ)当k ≠1时,设方程(3)有一特解x n =A ,其中A 为待定常数,将其代入(3),有A=kA+b , A=k b -1 ,即x n =k b -1知此时方程(3)的通解为 x n = k n c+kb -1 (c 为任意常数)ⅱ)当k=1时,方程(3)为x n+1=x n +b ,知其解数列的一阶差分为常数,可设其有形如x n =An 的特解,代入(3),有A(n+1)=An+b ,得A=b ,即x n =bn 知此时方程(3)的通解为x n = k n c+bn= c+bn (c 为任意常数)例1 求差分方程2y t+1+5y t =0的通解,并求满足y 0=2的特解.解将原方程改写成y t+1=(-25)y t ,故其通解为y t =(-25)tc , c 为任意常数. 用y 0=2代入通解:2=(-25)0c ,得 c = 2 .满足初值y 0=2的特解为y t =2(-25)t.例2 求下列差分方程的通解(1)x n+1=x n +4(2)x n+1+x n =4解(1)方程中有k=1,b=4 .其通解为x n =c+4n ,(c 为任意常数). (2)原方程可化为 x n+1= -x n +4 ,方程中k=-1,b=4 ,其通解为 x n = (-1)n c+)1(14--= (-1)n c+2 ,(c 为任意常数).例3 某学术报告厅的座位是这样的安排的:每一排比前一排多2个座位.已知第一排有30个座位,(1)若用y n 表示第n 排的座位数,试写出用y n 表示y n+1的公式. (2)第10排的座位是多少个?(3)若用S n 表示前n 排的座位数,试写出用S n 表示S n+1的公式. (4)若该报告厅共有20排,那么一共有多少个座位?解(1)y n+1= y n +2 n =1,2,… (2)解上述差分方程,其中k=1,b=2 ,通解为 y n =2n+c ,c 为任意常数 . 由已知y 1=30,代入,得c = 28 .特解为y n =2n+28 ,y 10=2×10+28=48(个) . (3)S n+1=S n +y n+1=S n +[2(n+1)+28]可得表达式为 S n+1=S n +2n+30 , n=1,2,… (4)先解上述差分方程,由S n+1-S n =2n+30 ,即△S n =2n+30,知S n 的表达式为n 的二次函数,设S n =An 2+Bn+C ,则△S n =A (n+1)2+B (n+1)+C -An 2-Bn -C=2A n+ A+B = 2n+30 .可得A=1,B=29 . 又由初始条件y 1= 30= S 1,有30 =A+B+C ,故C=0 .因此本问题的特解S n = n 2+29n ,n =1,2,…S 20= 202+29×20=980(个).注意:在本例小题(1)中每排座位数的表达式y n+1=y n +2 y n+1-y n =2,与小题(2)中前n+1排座位数表达式S n+1=S n +2n+30即S n+1-S n =2n+30都属一阶非齐次线性差分方程x n+1=kx n +f(n)类型,但前者属f(n)为常数的情况,而后者属f(n) 为n 的一次函数的情况,利用差分有关知识,知S n 的表达式是关于n 的二次函数.参考文献[1] 教育部.普通高中数学课程标准(实验)[S].北京:人民教育出版社,2003.83-85.[2] 严士健,张奠宙,王尚志. 普通高中数学课程标准(实验)解读[M].南京:江苏教育出版社,2004.218-228.[3] 张银生,安建业.微积分[M].北京:中国人民大学出版社,2004.431,448-460. [4] 黄立宏,戴斌祥.大学数学(一)[M]. 北京:高等教育出版社,2002.380-389 .(本文刊于中学数学教学(合肥),2006,6.)1、常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8)其中ka a a ,...,,10为常数,称方程(8)为常系数线性方程。

又称方程0...110=+++-++n k k n k n x a x a x a (9)为方程(8)对应的齐次方程。

如果(9)有形如nn x λ=的解,带入方程中可得:...1110=++++--k k k k a a a a λλλ (10)称方程(10)为方程(8)、(9)的特征方程。

显然,如果能求出(10)的根,则可以得到(9)的解。

基本结果如下:(1)若(10)有k 个不同的实根,则(9)有通解: nk k n n n c c c x λλλ+++=...2211,(2)若(10)有m 重根λ,则通解中有构成项:nm m n c n c c λ)...(121----+++(3)若(10)有一对单复根βαλi ±=,令:?ρλi e ±=,αββαρarctan,22=+=,则(9)的通解中有构成项:n c n c nnρ?ρsin cos 21--+ (4)若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成项:nn c n c c n nc n c c n m m m m nm m ?ρ?ρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程(9)的通解中必有k 个独立的任意常数。

通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解:=n x -nx +*n x (11)(1)的特解可通过待定系数法来确定。

例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时,可设特解:rn n b )(n q m ,将其代入(8)中确定出系数即可。

2、差分方程的z 变换解法对差分方程两边关于n x 取Z 变换,利用n x 的Z 变换F (z )来表示出k n x +的Z 变换,然后通过解代数方程求出F (z ),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的n x 例1 设差分方程1,0,0231012===++++x x x x x n n n ,求n x 解:解法1:特征方程为0232=++λλ,有根:2,121-=-=λλ故:nn n c c x )2()1(21-+-=为方程的解。

相关文档
最新文档