步进电机的选型及计算方法
步进电机的选型与计算

步进电机的选型与计算步进电机是一种常见的电机类型,拥有精度高、可控性强、反应灵敏等优点,广泛应用于各种精密控制系统中。
在选择和计算步进电机时需要考虑以下几个方面。
一、步进电机的类型首先需要了解有哪些类型的步进电机。
目前市面上常见的步进电机有单相/两相/三相/五相等不同类型,不同的类型适用于不同的应用场景。
对于低速高力的应用场合,单相步进电机的效果较佳;需要高精度的位置控制时,可以选择三/五相步进电机。
在选择实际使用的步进电机时,最好能够根据实际需求进行精细化选择。
二、步进电机驱动器的选择选择步进电机驱动器时,需要根据步进电机的类型、电源电压和工作电流等参数进行选择。
一般来说,驱动器的峰值输出电流应大于步进电机的额定电流,以确保电机正常运行。
同时,还需要考虑驱动器的微步数,微步数越高,驱动器的精度控制就越好。
但是,高微步数对马达的耗电量会增加,如果长时间负载运行可能会导致驱动电机的温度升高,从而造成高温失控现象,因此在实际应用过程中需要注意平衡微步数和耗电量的关系。
三、步进电机的计算1. 计算步进电机的步数:计算步进电机的步数主要涉及到推导出步进电机的角度转换公式,与电机的角度转换速率有关。
步数越多,角度转换越精细,步数与转速的关系,可以用以下公式计算:n=Δθ/α,其中n为步数,Δθ为转角(是原始角度),α为每步转角。
2. 计算步进电机的速度:步进电机的速度计算与电机驱动器细分数、定位精度有关,主要通过计算每步角度转移量再计算出转速。
电机驱动器分辨率越高则每步角度转移量越小,转速就越慢,反之亦然。
计算步进电机的速度时,可以使用以下公式:v=r*n*f/60,其中v为速度,r为驱动器细分数的比率,n为步数,f为电机的转速。
总之,在进行步进电机的选型与计算时,需要根据实际应用需求选择合适的电机类型与驱动器,并结合实际情况合理计算步进电机的步数和速度。
这样才能确保电机在实际应用场景中能够正常运转,保证控制系统的精度和可靠性。
步进电机选型方法

步进电机选型方法1、步进电机的选用计算方法步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。
步进电机惯量低、定位精度高、无累积误差、控制简单等特点,广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。
选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。
而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。
在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。
一般地说最大静力矩Mjmax大的电机,负载力矩大。
选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。
在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。
但细分只能改变其分辨率,不改变其精度。
精度是由电机的固有特性所决定。
选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。
选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ)(1-1) 式中φ -步进电机的步距角(o/脉冲)S -丝杆螺距(mm) Δ-(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。
Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt-折算至电机轴上的惯量(Kg.cm.s2)J1、J2 -齿轮惯量(Kg.cm.s2) Js -丝杆惯量(Kg.cm.s2)W-工作台重量(N)S-丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma -电机启动加速力矩(N.m) Jm、Jt-电机自身惯量与负载惯量(Kg.cm.s2) n-电机所需达到的转速(r/min)T---电机升速时间(s)Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)Mf-导轨摩擦折算至电机的转矩(N.m)u-摩擦系数η-传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt-切削力折算至电机力矩(N.m) Pt-最大切削力(N)(4)负载起动频率估算。
步进电机选型计算方法

步进电机选型计算方法步进电机是一种能将输入脉冲信号转化为角位移的电机。
它具有结构简单、控制精度高、启动扭矩大等优点,广泛应用于机械系统中的定位控制、速度调节、角度控制等领域。
在选型过程中,需要考虑步进电机的型号、参数和性能等因素。
本文将介绍步进电机选型的计算方法。
步进电机的型号和参数步进电机通常由两个参数决定,即步距角和相数。
步距角指的是电机每接受一个脉冲信号所转动的角度。
常见的步距角有 1.8度(200步/转)和0.9度(400步/转)两种。
步距角越小,电机的定位精度越高。
相数指的是电机的相数,常见的有2相、4相、6相等。
相数越多,电机的转矩平稳性越好。
步进电机的性能步进电机的性能包括静态转矩、动态转矩、最大转速等指标。
静态转矩是指电机在静止状态下能够提供的最大转矩,动态转矩是指电机在运转过程中能够提供的最大转矩。
最大转速是指电机能够达到的最高转速。
选型时需根据具体的应用需求来确定这些指标。
步进电机的负载特性负载特性包括电机扭矩-速度曲线和转动惯量。
电机扭矩-速度曲线描述了电机在不同速度下的输出扭矩和输入电流的关系,可以用来评估电机的运行稳定性。
转动惯量描述了电机转动时的惯性大小,通常是根据系统的加速度和位置控制要求来确定的。
步进电机的选型计算方法主要包括定位精度、动态响应性能以及转矩要求三个方面。
1.定位精度计算步进电机的定位精度受到步距角、齿距、电机的误差等因素的影响。
根据具体的应用需求,可以采用以下公式来计算定位精度:定位精度=N*U/360其中,N为步数(一转的步数),U为脉冲数2.动态响应性能计算动态响应性能主要包括加速度曲线和最大速度两个方面。
加速度曲线是根据系统的加速度和行程要求来确定的。
最大速度则取决于电机的最大转速和负载特性。
3.转矩要求计算转矩要求主要是根据负载的特性来确定的。
计算转矩要求时需要考虑负载的惯性、摩擦力、载荷等因素。
综合考虑以上因素,可以选择合适的步进电机。
通常情况下,需要进行多个步进电机比较和试验,以找到最适合应用需求的电机。
步进电机选型计算公式

步进电机选型计算公式
步进电机选型计算公式主要包括以下三个方面:
1. 计算步进电机的理论步数。
步进电机的理论步数是由电机的步距角以及驱动方式(单相、双相、四相等)决定的。
计算公式为:
理论步数= 360°/步距角×驱动方式
其中,步距角是指电机每一步转动的角度。
2. 计算步进电机的负载转矩。
负载转矩是指在实际工作过程中,电机需要承受的负载力矩。
该值会影响到电机的运行状态和驱动能力。
计算公式为:
负载转矩= 负载力×距离臂长
其中,负载力是指电机需要承受的负载力,距离臂长是指负载力所作用的杠杆臂长度。
3. 计算驱动电流大小。
驱动电流是指通过步进电机的电流大小,直接影响到步进电机的稳定工作和驱动效率。
计算公式为:
驱动电流= 负载转矩÷转矩系数
其中,转矩系数是一个常量,代表驱动电流和电机扭矩之间的关系。
这个值可以根据不同型号的驱动器进行调整。
步进电机选型计算

样本针单元电机选型分析一、选用电机的基本步骤四、电机选用计算公式1.运行模式选用加减速运行模式。
2.工作脉冲数A【脉冲】计算步进电机步距角/度 1.8同步轮直径r/mm13.37位移l/mm65时间t0/s0.8A=[65/(3.14*13.37)]*(360/1.8)=1.55*200=310脉冲细分脉冲数:A0细分3104细分12408细分248016细分4960附图:3.运行脉冲频率f2【Hz】计算T0=0.8s,得t1=0.8*0.25=0.2s4.加减速常数T R 【ms/kHz】计算(控制器使用,可以忽略)T R =0.2/(512-f1)5.运行脉冲频率f2【Hz 】的运行速度N M 【r/min 】计算6.负载转矩T L计算7.加速转矩Ta【N*m】计算(1)负载转动惯量J L转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母/或J表示。
其量值取决于物体的形状、质量分布及转轴的位置。
该机构做直线往复运动,滑轨与滑块之间存在缝隙,所以,在急停的瞬间会产生转动。
因此,该结构的惯量包括两部分:直线运动惯量和旋转转动惯量。
A.直线运动惯量计算将整个水平探针机构默认为一个整体,1.1Kg。
A m J13.37*3.14/1000=0.042 1.149.2*10-6B.转动惯量计算。
图中指出来的器件是偏心器件,其余按照同轴心计算。
a.电机距+同步轮离同步轮中心线距离是:80mm,电机长宽高42*42*38,M=0.46kg;J1=0.46((42*42+42*42)/3+80*80)/1000000=3484*10-6b.探针组件中心线距离是:62mm,M=0.46kg;J2=0.46((25*25+25*25)/3+62*62)/1000000=1959*10-6 c.滑轨+拖链+同步轮+轴+固定板中心线距离是:64mm,M=0.29kg,;J3=0.29*(55*55+280*280+12*64*64)/12/1000000=3156*10-6d.其他器件其他器件默认为偏心12mm,质量0.29Kg。
步进电机的选型及计算方法

步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机型号参数选择

步进电机型号参数选择步进电机是一种能将数字脉冲信号转换为角位移或直线位移的电机。
它通过控制电流的连续变化实现位置控制,具有精度高、稳定性好、启停速度快等优点。
步进电机在许多领域中广泛应用,包括机械、电子设备、医疗器械等。
本文将介绍几种常见的步进电机型号、参数和选择方法。
一、步进电机型号1.42型步进电机42型步进电机是一种直径为42mm的经典步进电机。
它由两相或四相线圈组成,每一相的线圈可以通过一个电流控制芯片驱动。
42型步进电机具有结构简单、驱动电流小、噪音低等特点,广泛应用于一些小型机械设备中。
2.57型步进电机57型步进电机是一种直径为57mm的步进电机。
它由四相线圈组成,每一相的线圈可以通过一个电流控制芯片驱动。
57型步进电机具有结构稳定、扭矩输出大、运行平稳等特点,广泛应用于一些需要较大扭矩输出的场合。
3.86型步进电机86型步进电机是一种直径为86mm的大功率步进电机。
它由四相线圈组成,每一相的线圈可以通过一个电流控制芯片驱动。
86型步进电机具有功率大、运行平稳等特点,广泛应用于一些需要大功率输出的机械设备。
二、步进电机参数1.步距角:步进电机通常以步距角来描述,它表示每次接收一个脉冲信号时电机转动的角度。
常见的步距角有1.8度型和0.9度型。
1.8度型步进电机每个步距可以转动1.8度,0.9度型步进电机则可以转动0.9度。
2.额定电流:步进电机的额定电流是指电机在正常工作时所需的电流大小。
一般来说,额定电流越大,电机的输出扭矩就越大,但也会产生更多的热量。
3.驱动电压:步进电机的驱动电压是指电机在正常工作时所需的电压大小。
一般来说,驱动电压越高,电机的运行速度就越快,但也会增加驱动电路的复杂度。
4.静态扭矩:步进电机的静态扭矩是指在停止时所能提供的最大转矩。
它通常与步进电机的物理结构和线圈参数有关。
5.转动惯量:步进电机的转动惯量是指电机转动一定角度所需的转动力矩大小。
它通常与电机的转子质量和转子结构有关。
步进电机的计算方法

步进电机的计算方法1.根据驱动方式选择步进电机型号:步进电机主要分为两种驱动方式,即双相驱动和四相驱动。
双相驱动的步进电机具有较高的输出转矩,适用于需要较大负载的应用,而四相驱动的步进电机输出转矩较低,适用于速度要求较高的应用。
2.计算步进电机运转速度:步进电机的运转速度主要受到步进角度和脉冲频率的影响。
步进角度一般是固定的,常见的有1.8度和0.9度。
计算步进电机运转速度的公式为:速度=步进角度×脉冲频率。
3.计算步进电机的步进角度:步进电机的步进角度是指每接收到一个脉冲信号,电机旋转的角度。
常见的步进角度有1.8度和0.9度。
计算步进电机的步进角度的公式为:步进角度=360度÷步进电机的相数。
4.计算步进电机的电压和电流:步进电机在运行时需要供应一定的电压和电流来驱动。
计算步进电机的电压和电流的方法是根据电机的工作电压和绕组电阻。
电机的绕组电阻一般可以从电机的技术参数中获取。
计算步进电机的电压的公式为:电压=电流×电阻。
5.计算步进电机的输出功率:步进电机的输出功率是指电机在工作时提供的机械功率。
计算步进电机的输出功率的方法是根据电机的输出转矩和转速。
输出功率的公式为:输出功率=转矩×转速。
6.计算步进电机的加速度和减速度:步进电机的加速度和减速度是指电机从静止状态到达最大速度和从最大速度减速到停止状态所需要的时间。
计算步进电机的加速度和减速度的公式为:加速度(或减速度)=(最大速度-初始速度)÷时间。
7.计算步进电机的负载惯性:步进电机在运行时会受到负载惯性的影响,计算步进电机的负载惯性的方法为负载惯性=负载质量×负载半径的平方。
以上是步进电机的计算方法的一些基本介绍,根据实际需求,其他还有一些特殊的计算方法,比如控制系统的设计和驱动方式的选择等,需要根据具体情况进行进一步的研究和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机选型的计算方法
步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择
驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算
必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:
必要脉冲数=
物体移动的距离
距离电机旋转一周移动的距离
×
360 o
步进角
●驱动脉冲速度的计算
驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式
自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:
驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒]
(2)加/减速运行方式
加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:
驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]
二、电机力矩的简单计算示例
必要的电机力矩=(负载力矩+加/减速力矩)×安全系数
●负载力矩的计算(TL)
负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机驱动过程中始终需要此力矩。
负载力矩根据传动装置和物体的重量的不同而不同。
许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。
负载力矩可以根据下面的图表和公式来计算。
(1)滚轴丝杆驱动
※负载力矩的计算公式:
TL=[ F·PB
2πη
+
μ0F0PB
2π
]×
1
i
[kgf·cm]
※负载力矩的估算公式:
TL=m·PB
2πη
×
1
i
[kgf·cm] (水平方向)
TL=m·PB × 1 ×2 [kgf·cm] (垂直方向)
2πηi (2)传送带/齿条齿轮传动
※负载力矩的计算公式:
TL=
F
2πη
×
πD
i
=
FD
2ηi
[kgf·cm]
F =FA + m ( sinα+ μcosα) [Kg]
※负载力矩的估算公式:
TL=D
2
×m ×
1
η
×
1
i
[kgf·cm] (水平方向)
TL=D
2
×m ×
1
η
×
1
i
× 2 [kgf·cm] (垂直方向)
(3)皮带轮传动
※负载力矩的计算公式:
TL=μFA+m
2π
×
πD
i
=
(μFA+m) D
2i
[kgf·cm]
※负载力矩的估算公式:
TL=D
2
×mg ×
1
i
[kgf·cm]
(4)实测方法
我们也可以通过这种方法得到负载力矩:用弹簧秤拉动滑轮慢慢转动,此时弹簧秤会有一个读数,这个数值就是所用力的大小(FB),然后乘以滑轮的半径就可以得到负载力矩(如下式)。
通常这种方法得到数值要比计算得到得结果要精确。
TL=FBD
2
[kgf·cm]
[参数说明]
F:轴方向负载[Kg] F0:预负载[Kg] (≌1/3F) η:效率(0.85~0.95) FA:预负载[ ] i:减速比μ:滑动面摩擦系数
μ0:预压螺帽内的摩擦系数(0.1~0.3) PB:滚轴丝杆螺距(cm/rev) FB:主轴开始运转时的力
[Kg]
D:滑轮直径m:工作物和工作台的总重量
[Kg]
α:倾斜角度
●加/减速力矩的计算(Ta)
加/减速力矩是用来加速或减速与电机相连的传动装置。
根据加/减速时间和传动装置负载惯性惯量的不同,这个力矩会有很大的变化。
因此,自启动运行方式和加/减速运行方式的力矩会有一个较大的不同。
加/减速力矩可以按下式计算:
※自启动运行方式(需要较大的加/减速力矩)
加/减速力矩[kgf·cm]
=转子惯性惯量[kgm2]+负载惯性惯量[kgm2]
重力加速度[cm/sec2]
×
π×步进角[o]×驱动脉冲速度2[Hz]
180×3.6/步进角[o]
※加/减速运行方式
加/减速力矩[kgf·cm]
=转子惯性惯量[kgm2]+负载惯性惯量[kgm2]
重力加速度[cm/sec2]
×
π×步进角[o]
180 o
×运行脉冲速度[Hz]-启动脉冲速度[Hz]
加/减速时间[sec]
本公司专业生产销售两相混合式步进电机驱动器Q2HB34MA Q2HB34MB Q2HB44 Q2HB44MA Q2HB44MB Q2HB44MC Q2HB44MD Q2HB44MG Q2HB44MH Q2HB68 Q2HB68MC Q2HB68MD Q2HB68MG Q2HB68MH Q2HB88 Q2HB88M Q2HB613 Q2HB613M Q2HB110 Q2HB110M。
三相混
合式步进电机驱动器Q3HB64MA Q3HB64MB Q3HB110M Q3HB220M D3HB68M D3HB220M。
步进电机控制器MC881B MC881C。
两相混合式步进电机BS42HB33-01 BS42HB38-01 BS42HB47-01 BS57HB41-02 BS57HB51-03 BS57HB56-03 BS57HB76-03 BS86HB65-04 BS86HB80-04 BS86HB118-06 BS86HB156-08 BS110HB99-05 BS110HB115-06 BS110HB150-06 BS110HB201-08。
三相混合式步进电机BSHB364 BSHB366 BSHB368 BSHB397 BSHB397-H BSHB3910 BSHB3910-H BSHB3913 BSHB3913-H BSHB31112 BSHB31115 BSHB31118 BSHB31122 BSHB31318 BSHB31322 BSHB31325。
三洋两相混合式步进电机103H546-0440(0410) 103H548-0440(0410) 103H549-0440(0410) 103H546-5040(5010) 103H548-5040(5010) 103H7121-0140(0110) 103H7121-0440(0410) 103H7121-0740(0710) 103H7123-0440(0410) 103H7123-0140(0110) 103H7123-0740(0710) 103H7124-0140(0110) 103H7124-0440(0410) 103H7124-0740(0710) 103H7126-0140(0110) 103H7126-0440(0410) 103H7126-0740(0710) 103H7121-5040(5010) 103H7123-5040(5010) 103H7126-5040(5010) 103H7821-0140(0110) 103H7821-0440(0410) 103H7821-0740(0710) 103H7822-0140(0110) 103H7822-0440(0410) 103H7822-0740(0710) 103H7823-0140(0110) 103H7823-0440(0410) 103H7823-0740(0710) 103H8221-5041(5011) 103H8221-5141(5111) 103H8221-5241 103H8222-5041(5011) 103H8222-5141(5111) 103H8222-5241 103H8223-5041(5011) 103H8223-5141(5111) 103H8223-5241 103H89222-5241(5211) 103H89223-5241(5211)。