玻璃工艺学复习资料全

玻璃工艺学复习资料全
玻璃工艺学复习资料全

第一章玻璃的定义与结构

1、解释转变温度、桥氧、硼反常现象和混合碱效应。

转变温度:使非晶态材料发生明显结构变化,导致热膨胀系数、比热容等性质发生突变的温度围。

非桥氧:仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥

氧。

桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。

硼反常性:在钠硅酸盐玻璃中加入氧化硼时,往往在性质变化曲线中产生极大值和极小值,这现象也称为硼反常性。

混合碱效应:在二元碱玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混合碱效应。

2、玻璃的通性有哪些?

各向同性;无固定熔点;介稳性;渐变性和可逆性;

①.各向同性

玻璃态物质的质点总的来说都是无规则的,是统计均匀的,因此,它的物理化学性质在任何方向都是相同的。这一点与液体类似,液体部质点排列也是无序的,不会在某一方向上发现与其它方向不同的性质。从这个角度来说,玻璃可以近似地看作过冷液。

②.无固定熔点

玻璃态物质由熔体转变成固体是在一定温度区域(软化温度围)进行的,(从固态到熔融态的转变常常需要经历几百度的温度围),它与结晶态物质不同,没有固定的熔点。

③.介稳性

玻璃态物质一般是由熔融体过冷而得到。在冷却过程中粘度过急剧增大,质点来不及作有规则排列而形成晶体,因而系统能尚未处于最低值而比相应的结晶态物质含有较高的能量。还有自发放热转化为能较低的晶体的倾向。

④.性质变化的渐变性和可逆性

玻璃态物质从熔融状态到固体状态的过程是渐变的,其物理、化学性质变化是连续的和可逆的,其中有一段温度区域呈塑性,称“转变”或“反常”区域。

3、分别阐述玻璃结构的晶子学说和无规则网络学说容。

答:(1)玻璃的晶子学说揭示了玻璃中存在有规则排列区域,即有一定的有序区域,这对于玻璃的分相、晶化等本质的理解有重要价值,但初期的晶子学说机械地把这些有序区域当作微小晶体,并未指出相互之间的联系,因而对玻璃结构的理解是初级和不完善的。总的来说,晶子学说强调了玻璃结构的近程有序性、不均匀性和不连续性。(2)玻璃的无规则网络学说是1932年由查哈里阿森提出的,该学说借助于离子结晶化学的一些原则,并参照玻璃的某些性能(如硬度、热传导、电绝缘性等)与相应的晶体的相似性而提出的。像石英一样,熔融石英玻璃的基本结构单元也是硅氧四面体,玻璃被看作是由硅氧四面体为结构单元的三度空间网络所组成的,但其排列是无序的,缺乏对称性和周期性的重复,故不同于晶态石英结构。当熔融的石英玻璃中加入碱金属或碱土金属氧化物时,硅氧网络断裂,碱金属或碱土金属离子均匀而无序地分布于某些硅氧四面体之间的空隙中,以维持网络中局部的电中性。对硼酸盐与磷酸盐玻璃也作了类似的描述。

第二章玻璃的形成与规律

1、混合键性为何易于形成玻璃?

答:因为既具有离子键易改变键角、以形成无对称变形的趋势,又具有共价键的方向和饱和性,不易改变键长和键角的倾向。前者造成玻璃的长城无序;后者赋予玻璃的短程有序,因此极性共价键化合物易形成玻璃。

2、什么是3T图?

答:所谓的3T图是通过T-T-T(即温度-时间-转变)曲线法,以确定物质形成玻璃能力的大小。

3、三元系统玻璃形成区共有多少种?

答:①仅含有一种网络形成体(F)的三元系统,该三元系统共有15种。

②含有两种网络形成体(F和F、

)的三元系统,该系统共有5种。③含有三种网络形成体的三元系统,该三元系统的只有一种。所以共有15+5+1=21种。

第三章玻璃的分相和析晶

1、解释:均匀成核、非均匀成核、分相。

均匀成核:在宏观均匀的玻璃中,没有外来物参与,与相界、结构缺陷等无关的成核过程。又称本征成核、自发成核。

非均匀成核:依靠相界、晶界或基质的结构缺陷等不均匀部位而成核过程。

分相:玻璃的分相实质熔体和玻璃体在冷却或热处理过程中,从均匀的液相或玻璃相在转变为晶相或形成两种互不相溶的液相。

2、影响结晶的因素有哪些?

答:(1)温度(2)黏度(3)杂质(4)界面自由能

3、玻璃析晶的两个阶段及其相互间的关系是什么?

答:玻璃的析晶阶段包括晶核成长和晶体长大两个阶段。

当形成稳定的晶核后,在适当的过冷度和过饱和的条件下,熔体中的原子向界面迁移。到达适当的生长位置,使晶体长大。所以晶体长大的条件是建立在可以形成晶核之上的。

4、玻璃分相的类型和分相结构的特点是什么?

答:分为稳定分相和亚稳分相,在亚稳区中分相后形成一种分散的孤立滴状结构,而在不稳区则形成一种三维空间互相连接的联通结构。

5、高硅氧玻璃的制备原理及生产工艺?

答:高硅氧玻璃纤维其工艺原理是利用玻璃在熔融或冷却过程中,二个或二个以上互不相容的液相彼此分离,成微不均匀性,利用其结构的分相而生产的。

高硅氧玻璃纤维的生产工艺:高硅氧玻璃纤维的生产是以合适的原始玻璃成分,按普通玻璃纤维的生产工艺制成纱、布等各种制品,经过酸沥滤和热烧结工艺,即得到耐高温性能接近石英纤维的高硅氧制品,对原始玻璃组分,目前主要有以E玻璃以及

Si02-B203-Na2O和Si02-B203二元系统为原始玻璃组分,我国主要采用三组分的纳硼硅酸盐玻璃,其主要的制品生产工艺流程如图1所示:

在生产中,将高硅氧制品经酸沥滤,利用其结构的分相,使B203和Na2O组分沥滤出来转入溶液中,使Si02富集量达到96%以上的微孔硅氧骨架,然后再经600一800℃的高温热烧结定型,使微孔闭合,骨架结构趋于紧密,而制得高性能的高硅氧玻璃纤维制品。

第四章玻璃的性质

1、何为玻璃的料性?

答:是指玻璃随着温度变化其年黏度变化的速度称为玻璃的料性。

2、试述黏度在玻璃生产中的作用?

答:在生产中玻璃的熔化、澄清、均化、供料、成型、退火等工艺过程的温度制度,一般是以其对应的黏度为依据制定的。

3、试述玻璃表面力的工艺意义?

答:在熔制过中,表面力在一定程度上决定了玻璃液中气泡的长大和排除,在一定条件下,微小气泡在表面力作用下,可溶解于玻璃液中。均化时,条纹及节瘤扩散和溶解的速度取决于主体玻璃和条纹表面力的相对大小。如果条纹的表面力较小,则条纹力求展开成薄膜状,并包围在玻璃体周围,这种条纹就很快的溶解而消失。相反,如果条纹(节瘤)的表面力叫主体玻璃大,条纹力求成球形,不利于扩散和溶解,因而较难消除。在玻璃成形过程中,人工挑料或吹小泡及滴料供料时,都要借助表面力使之达到一定的形状。拉制玻璃管、玻璃棒、玻璃丝时,由于表面力的作用才能获得正确的圆柱形。玻璃制得拱火、火抛光也是借助表面力。

4、为什么玻璃的实质强度较理论强度低?

答:玻璃的实际强度低的原因,是由于玻璃的脆性、玻璃中存在微裂纹(尤其是表面的微裂纹)和部不均与区及缺陷的存在造成应力集中所引起的(由于玻璃受到应力作用时不会产生流动,表面的微裂纹急剧扩,并且应力集中,以致破裂。

5、何谓玻璃的弹性模量?何谓玻璃的脆性?

答:弹性模量是表征材料应力与应变的关系的物理量,表示材料对形变的抵抗力。玻璃的脆性是指当符合超过玻璃的极限强度时,不产生明显的塑性变形而立即破裂的性能。

6、影响玻璃的热膨胀系数变化的主要因素有哪些?

答:玻璃的热膨胀系数很大程度上取决于玻璃的化学组成,温度对它的影响程度也很大,此外还与玻璃的热历史有关。

7、何谓玻璃的导热性?

答:热导性是物质依靠质点的振动将热能将传递到较低温度物质的能力。热导性主要取决于玻璃的化学组成、温度及其颜色等。

8、何谓玻璃的热稳定性?影响玻璃的热稳定性的因素有哪些?

答:玻璃的热稳定性是指玻璃经受剧烈温度变化而不被破坏的性能。

①玻璃的热稳定性和玻璃的组成有关。

②玻璃自身的机械强度对对其热稳定性的影响也很明显,凡是能降低玻璃强度的因素,都能降低玻璃的热稳定性。

③玻璃的热稳定性还与其受热的制度有关。

④玻璃的热稳定性还与制品的厚度有关。

9、何谓玻璃的介电强度?何谓玻璃的介电损耗?何谓玻璃的介电常数?

答:介电常数表征在外加电场作用下介质极化过程的大小。介电损耗是指在一定频率的交流电压作用下,电介质材料由于极化或吸收现象使部分电能转化为热能的损耗。介电强度是指当施加于电介质的电压超过某一临界值时,介电中的电流突然增多,这一现象称为电击穿。发生电击穿的电压,称为电介质的耐击穿强度,又称为介电强度。

10、何为玻璃的化学稳定性?

答:玻璃制品在使用过程中受到水、酸、碱、盐、气体及化学稳试剂盒药液的侵蚀,玻璃对这些侵蚀的抵抗能力称为玻璃的化学稳定性。

11、试述水对硅酸盐玻璃的侵蚀机理?

答:水对玻璃的侵蚀开始于水中氢离子和玻璃的钠离子进行交换,反应的产物是硅酸钠,其电离强度低于氢氧化钠的强度,因此此反应使钠离子的浓度降低。随着水化反应的进行,硅原子周围有4个桥氧全部成为—OH,形成Si(OH)4。

12、水和水汽那个对玻璃的侵蚀更严重?为什么?

答:水汽比水溶液具有更大的侵蚀性。水溶液对玻璃的侵蚀是在大量水存在的情况下进行,因此从玻璃中释放的碱不断进入水溶液中(不断稀释)。所以在侵蚀过程中,玻璃表面附近水的PH值没有明显的变化。而水汽则不然,它是以微粒水滴粘附在玻璃表面。玻璃中释放的碱不能被移走,而是在玻璃的表面的水膜不断积累。随着侵蚀,碱的浓度越来越大,PH不断上升,最后类似与碱液对玻璃的侵蚀,从而加大了对玻璃的腐蚀。

13、对于硅酸盐玻璃如何提高其化学稳定性?

答:硅硅酸盐玻璃在退火过程中会发生分相,分成富硅氧相和富钠硼相。分相后形成孤岛滴球状结构,钠硼相为硅氧相包围,使易溶的钠硼相免受介质的侵蚀,则玻璃的化学稳定性将提高。如果分相后钠硼相和硅氧相形成连通结构,则玻璃的化学稳定性将会大大降低,由于易溶的钠硼相能不断的被侵蚀介质浸析出来所致。因此对三氧化硼含量较高是玻璃,其化学稳定性与退火制度的关系必须予以重视(如退火温度不能太高,退火时间也不能够过长,要尽量避免重复退火等)。

影响玻璃的化学稳定性的因素有哪些?

答:玻璃的化学稳定性主要取决于玻璃的化学组成、热处理、表面处理及温度和压力等。 6对于硅酸盐玻璃如何提高其化学稳定性?

第五章玻璃着色与脱色

1、玻璃的着色分为几类?

答:玻璃的着色大致可分为离子着色、硫硒化物着色和金属胶体着色三大类。

玻璃工艺学

简述玻璃结构与熔体结构的关系。 玻璃态是热力学不稳定、动力学稳定的状态,在玻璃的熔融态向玻璃态转变的过程中,由于粘度增长很快、析晶速度很小而保持熔融态的结构,因此。玻璃结构与熔体结构的关系体现在以下几个方面: (1)玻璃结构除了与成分有关以外,在很大程度上与硅酸盐熔体形成条件、玻璃的熔融态向玻璃态转变的过程有关,不能以局部的、特定的条件下的结构来代表所有玻璃在任何条件下的结构状态。即不能把玻璃结构看成是一成不变的。(2)玻璃是过冷的液体,玻璃结构是熔体结构的继续。即玻璃结构与熔体结构有一定的继承性。 (3)玻璃冷却到室温时,它保持着与这温度区间的某一温度相应的平衡结构状态和性能。即玻璃结构与熔体结构有一定的结构对应性。 1828年法国工人罗宾发明了第一台吹制玻璃瓶的机器。 1905年英国欧文斯发明了第一台玻璃瓶自动成型机。 1959年英国皮尔金顿公司经30年的研究将浮法应用于平板玻璃的生产,是玻璃发展史上的一次重大变革,并不断取代其它方法。 石英砂的主要成分是SiO2,常含有:Al2O3、TiO2、CaO、MgO、Fe2O3、Na2O、K2O、Cr2O3、V2O5等杂质成分,其中Fe2O3、Cr2O3、V2O5、TiO2能使玻璃着色,降低玻璃的透明度,是有害杂质。 B2O3是玻璃的形成氧化物,它以硼氧三角体[BO3]和硼氧四面体[BO4]为结构组元,在硼硅酸盐玻璃中与硅氧四面体[SiO4]共同组成结构网络。 B2O3能降低玻璃的膨胀系数,提高玻璃的热稳定性,当B2O3引入量过高时,由于硼氧三角体[BO3]增多,玻璃的膨胀系数反而增大,发生反常现象。--硼反常现象 一般选择引入氧化钠的原料时,可优先选择纯碱,在纯碱供应紧张时或为降低成本,可引入适量的芒硝(2-3%)。原因有以下几点: A)热耗大,难分解; B)侵蚀性大(包括芒硝蒸汽、“硝水”:硝酸钾或者硝酸钠的溶液,此处指熔融的芒硝,还原剂用量不足时产生的) C)需加入适量的还原剂:量不足时不分解的芒硝易生成侵蚀性较大的硝水;过量时会还原Fe2O3、Na2SO4生成FeS、Fe2S3和硫化物,并生成硫铁化物,最终导致着色,而还原剂的实际用量需根据实际情况调整; D)运费高,储存加工费用大。 E) 容易导致芒硝泡(硝水进入成形流,在冷却时熔融的硫酸盐硬化而析出白色的结晶状小滴)和硫酸盐结石(硫酸盐在玻璃中的溶解度很小); 为什么在芒硝完全分解前后须分别保持还原气氛和氧化气氛? 为保证芒硝能以较低的温度分解在熔化前期,芒硝未完全分解之前,须保持还原气氛;在熔化后期,为防止硫酸盐进一步被还原而生成硫化物并与铁的硫化物生

玻璃工艺课后习题

玻璃工艺学前十六章课后习题 第一章玻璃的结构和组成 1-1名词解释 硼-铝反常:当硅酸盐玻璃中不存在B2O3时,Al2O3代替SiO2能使折射率变大、密度等增大,体现在一系列性质变化中,如折射率、密度、硬度、弹性模量。在介电常数与膨胀系数变化曲线中显得很模糊。色散、电导与介质损耗等不出现硼反常现象。 硼-氧反常:B2O3加入Na2O后,氧化钠所提供的氧使【BO3】三角体变成【BO4】四面体,导致B2O3玻璃结构由两度空间转变为三维的架状结构,从而加强了网络,并使玻璃的各种物理性质变好,这与相同条件下的硅酸盐玻璃相比,其性质随Na2O或NaO的加入量的变化规律相反,出现硼铝酸盐的硼反常现象。 硼反常:由于Na2O的加入,氧化钠所提供的氧使【BO3】三角体变成【BO4】四面体,导致B2O3玻璃结构由两度空间转变为三维的架状结构。 铝反常:氧化铝的结构状态依氧化铝和碱金属相对含量的不同而变化的这种现象称为铝反常现象。 解聚:在熔融SiO2,O/Si比为2:1,【SiO4】连接成架状。若加入Na2O则使氧硅比比例升高,随加入量增加,氧硅比可由原来的2:1逐步升高到4:1,【SiO4】连接方式由架状到层状、带状、链状、环状直至断裂而形成【SiO4】岛状,这种架状【SiO4】断裂称为熔融石英的分化过程。 积聚:在熔融SiO2,O/Si比为4:1,【SiO4】连接成岛状。若释放Na2O则使氧硅比比例降低,随释放量增加,氧硅比可由原来的4:1逐步升高到2:1,【SiO4】连接方式由岛状到层状、带状、链状、环状直至断裂而形成【SiO4】架状,这种岛状【SiO4】断裂称为熔融石英的积聚过程。 混合碱效应:在二元碱硅玻璃中,当玻璃中碱金属氧化物的含量不变时,用一种碱金属氧化物取代另一种氧化物时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混和碱效应。 压制效应:在含碱硅酸盐中随RO的升高,使R﹢在扩散中系数下降,这种现象叫做压制效应。 逆性玻璃:如果玻璃中同时存在两种以上金属离子,而且它们的大小和所带电荷不相同时,情况就大为不同,即使Y<2也能制成玻璃,而且某些性能随金属离子数的增到而变好。一般称为逆性玻璃。 网络外体:单键强度小于250KJ/mol,这类氧化物不能形成玻璃,但能改变网络结构,从而

系统解剖学重点知识梳理

《系统解剖学》重点知识梳理 骨学 1.骨的分类、构造如何?骨髓、骨膜各有何作用? 答:●骨按形态可分为四类。①长骨:长管状,如肱骨。分一体两端,体又称骨干,腔称髓腔,有黄骨髓,两端称骺。②短骨:形似立方体,如腕骨。③扁骨:板状,如顶骨。④不规则骨:形状不规则,如椎骨。 ●骨的构造主要包括:①骨质,是骨的主要成分,分为骨密质和骨松质。②骨膜,贴于骨表面, 对骨具有营养、生长和修复的功能。③骨髓,位于骨髓腔和骨松质,分为红骨髓和黄骨髓。 ●骨髓分为红骨髓和黄骨髓,红骨髓有造血功能,黄骨髓由红骨髓转化而来。 ●骨膜对骨具有营养、生长和修复的功能。 2.椎骨的一般形态如何?各部椎骨有何特征? 答:●椎骨由椎体和椎弓组成。椎体与椎弓围成椎孔;椎弓分椎弓根和椎弓板,椎弓板上发出七个突起:棘突一个,横突一对,上关节突一对,下关节突一对。 ●颈椎共7块,椎体较小,椎孔较大,横突上有孔,称横突孔。棘突大部分较短,末端分叉。第 一颈椎又名寰椎,无椎体;第二颈椎又名枢椎,有齿突;第七颈椎又名隆椎,棘突特长,末端不分叉。 ●胸椎共12块,椎体侧面上、下缘有上、下肋凹,横突末端有横突肋凹,棘突较长,斜向后下 方,呈叠瓦状排列。 ●腰椎共5块,椎体粗壮,椎孔呈卵圆形,棘突宽而短,呈板状,水平伸向后方。 ●骶骨由5块骶椎融合而成,呈倒三角形。上缘中份向前的隆凸称岬,前面有四对骶前孔,后面 有四对骶后孔,骶骨部有骶管,下端的裂孔称骶管裂孔,裂孔两侧的突起称骶角。 ●尾骨由3~4块尾椎长合而成,上接骶骨,下端游离。 3.椎骨上可见哪些孔?岬、骶角的位置及意义如何? 答:●椎骨上可见椎孔(椎体与椎弓围成),椎间孔(相邻椎骨的椎上、椎下切迹围成),骶前孔(骶骨前面),骶后孔(骶骨后面),骶管裂孔(骶骨下端),横突孔(颈椎横突上)。 ●岬位于骶骨上缘中份,向前隆凸,临床上常作为测量骨盆大小的标志。 ●骶角位于骶管裂孔的两侧,向下突出,临床上常作为骶管麻醉的标志。 4.胸骨分几部?肋的概念?肋骨的形态如何? 答:●胸骨分胸骨柄、胸骨体和剑突三部分。●肋由肋骨和肋软骨组成,共12对。第1~7对肋与胸骨直接相连称真肋,第8~12对肋不直接与胸骨相连称假肋。 ●肋骨属扁骨,分体和前、后两端。后端膨大,称为肋头,肋头外侧稍细,称肋颈,肋颈外侧的 粗糙突起,称肋结节。肋体长而扁,面下缘处有肋沟。第一肋骨扁、宽、短。 5.颅前、中、后窝各有哪些主要的孔、管、裂、门? 答:●颅前窝有筛孔;颅中窝有视神经管、颈动脉管口、眶上裂、圆孔、卵圆孔、棘孔、破裂孔;颅后窝有枕骨大孔、颈静脉孔、舌下神经管口、耳门。 6.鼻旁窦包括哪些?各开口于何处? 答:●鼻旁窦包括额窦,开口于中鼻道;上颌窦,开口于中鼻道;蝶窦,开口于蝶筛隐窝;筛窦,前中群开口于中鼻道,后群开口于上鼻道。

玻璃工艺学重点内容

玻璃的定义:结构上完全表现为长程无序的、性能上具有玻璃转变特性的非晶态固体。 玻璃的通性:各向同性、介稳性、无固定熔点、性质变化的连续性、性质变化的可逆性 晶子学说:玻璃是由无数“晶子”所组成的,晶子是具有晶格变形的有序排列区域,分散在无定形介质中,从“晶子” 部分到无定形部分是逐步过渡的,二者之间并无明显界线。 无规则网络学说:玻璃的近程有序与晶体相似,即形成阴离子多面体,多面体顶角相连形成三维空间连续的网络,但其排列似拓扑无序的。 玻璃结构和熔体结构的关系: ⑴玻璃结构除了与成分有关以外,在很大程度上与熔体形成条件、玻璃的熔融态向玻璃态转变的过程有关。(玻 璃的结构不是一成不变的) ⑵玻璃似过冷的液体,玻璃的结构是熔体结构的继续。(继承性) ⑶玻璃冷却至室温时,它保持着与该温度范围内某一温度相应的平衡结构状态和性能。(对应性) 单元系统玻璃的结构主要有:石英玻璃结构、氧化硼玻璃结构、五氧化二磷玻璃结构。 硼氧反常现象:当氧化硼与玻璃修饰体氧化物之比达到一定值时,在某些性质变化曲线上出现极值或折点的现象。根据无规则网络学说的观点,一般按元素与氧的单键能的大小和能否生成玻璃,将氧化物分为:网络生成体氧化物、网络外体氧化物和中间体氧化物。 混合碱效应:二元碱硅玻璃中,碱金属氧化物总含量不变,用另一种逐渐取代一种时,玻璃的性质出现极值。 T f:玻璃膨胀软化温度 T g:玻璃转变温度 玻璃的形成方法:熔体冷却法和非熔融法 三元玻璃形成区: ①由于新的共熔区的形成,三元系统形成区中部出现突出部分。 ②含有两种网络形成体(F)的三元系统,突出位置受到共熔点位置的影响,即突向低熔点的一侧。 ③三元系统只有一种网络形成体(F)时,突出部分偏向低熔点氧化物的一侧。 ④网络中间体(I)可使网络修饰体(M)较多的区域重新形成玻璃,在有I的三元系统中,形成区突向偏M的一侧,呈半圆形。 ⑤F-M、F-I等不能形成玻璃的二元系统加入新的氧化物,由于新的共熔物形成,可以在其中间部位形成较小的不稳定的玻璃形成区。 玻璃的分相:玻璃在高温下为均匀得熔体,在冷却过程中或在一定温度下热处理时,由于内部质点迁移,某些组分发生偏聚,从而形成化学组成不同得两个相,此过程称为分相 玻璃分相的原因:一般认为氧化物熔体的液相分离是由于阳离子对氧离子的争夺所引起的。当网络外体的离子势较大、含量较多时,由于系统自由能较大而不能形成稳定均匀的玻璃,它们就会自发的从硅氧网络中分离出来,自成一个体系,产生液相分离。 分相对玻璃析晶的影响: ①为成核提供界面:玻璃的分相增加了相间的界面,成核总是优先产生于相的界面上。 ②分散相具有高的原子迁移率:分相导致两液相中的一相具有较母相明显大的原子迁移率,这种高的迁移率能够 促进均匀形核。 ③使成核剂组分富集于一相:分相使加入的成核剂组分富集于两相中的一相,因而起晶核作用。 微晶玻璃:是用适当组成的玻璃控制析晶或者诱导析晶而成,它含有大量(95%~98%)细小的(在1μm以下)晶体和少量残余玻璃相。 影响玻璃黏度的因素 ⑴玻璃的黏度随温度的升高连续变化,温度越高粘度越低。 ⑵玻璃的结构对黏度影响分两个方面:玻璃网络结构越稳定,玻璃的黏度越大; 玻璃中碱金属离子或者碱土金属离子使玻璃网络聚合,玻璃的黏度越大。 ⑶玻璃组成对黏度的影响主要为: ①玻璃中氧化物的性质与数量:倾向于形成更大的阴离子基团的氧化物,使玻璃黏度增大;碱性氧化物使玻璃形成的网络解离,玻璃的黏度降低; ②氧-硅比:氧硅比越大,硅氧四面体群解离,玻璃黏度降低

玻璃复习题

玻璃工艺学课后答案 第1章: 1、名词解释 硼反常: 由于Na2O的加入,氧化钠所提供的氧使【BO3】三角体变成【BO4】四面体,导致B2O3玻璃结构由两度空间转变为三维的架状结构。 混合碱效应:在二元碱硅玻璃中,当玻璃中碱金属氧化物的含量不变时,用一种碱金属氧化物取代另一种氧化物时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混和碱效应。 压制效应:在含碱硅酸盐中随RO的升高,使R﹢在扩散中系数下降,这种现象叫做压制效应。 铝反常:氧化铝的结构状态依氧化铝和碱金属相对含量的不同而变化的这种现象称为铝反常现象。 金属桥:认为在铅四方椎体中,在靠近4个氧离子的一面,因惰性电子被推开,相当于失去两个电子,可以把一面近似看作是零价的铅离子,这样,四方锥体中铅离子。这样,四方锥体中的铅离子可以“1/2Pb4+-1/2Pb0”称为“金属桥”。 2、简答 (1)、玻璃的热历史对玻璃的结构和性能的影响? 答:玻璃的热历史是指玻璃从高温热态冷却,通过转变区域和退火区域的经历。对于玻璃的成分来说,热历史必然有其对应的结构状态,而一定的结构状态必然反应在外部的性质上。急冷淬火玻璃较慢冷淬火玻璃具有较大的体积和较小的黏度。在加热过程中淬火玻璃加热到300~400℃ 时,在热膨胀曲线上出现体积收缩,伴随着体积还有着放热效应。 (2)、硅酸盐玻璃结构中氧化物的分类及作用? 答:当加入碱金属氧化物时,石英玻璃中原有的“大分子”发生解聚作用,这是由于碱金属提供氧使硅氧值发生变化所致。 当加入碱土金属时,钠钙硅玻璃的性质和结构发生明显变化,主要表现在结构的加强和一系列的物理性质的变好。 (3)、含铅玻璃的结构特点及其应用? 答:铅是元素,核外电子层多,离子半径大,电子云易变形,这些都决定了铅玻璃电阻大,介电损耗小,折射率和色散高以及吸收高能辐射等性能。 第3章: 1、在硼硅酸盐玻璃中,分相结构对性能的影响? 答:在硼硅酸盐玻璃的生产中,必须注意分相对化学稳定性的影响。就化学稳定性性来说,如果富碱硼相以滴状分散嵌入富硅氧基相中时,由于化学稳定性来说,如果富碱硼相以滴状分掩护碱硼相免受介质的侵蚀,这样的分相将提高玻璃的化学稳定性,反之,如果在分相过程中,高钠硼相和高硅氧形成相互连接的结构时,由于化学稳定性不良的硼碱相直接暴露在侵蚀介质中,玻璃的化学稳定性将发生急剧恶化。 2、微晶玻璃的制备原理及其工艺过程。 答:有控制的析晶和诱导析晶是制备微晶玻璃的基础。成核和晶体长大是实现控制析晶的关键,对成核相晶体长大的控制,可使玻璃形成具有一定数量和大小的

系统解剖学考试重点

系统解剖学考试重点 一,名词解释: 椎间盘:连接上、下椎体之间的软骨垫(第1、2颈椎间除外)称椎间盘。它由周围部的纤维软骨环和中后部的髓核以及上下两表面的软骨板构成。 心传导系:位于心壁内由特殊分化的心肌纤维所构成,能节律性地产生并传导冲动的一个系统。 联合关节两个或两个以上构造独立,而又必须同时进行运动的关节。 翼点:在颅的侧面,额、顶、颞、蝶骨会合处最为薄弱,常构成H形的缝,称翼点。其内面有脑膜中动脉前支通过。 骨单位:骨单位(osteon)为在内、外环骨板之间的大量长柱状结构,又称哈弗斯系统(Haversian system),是长骨中起支持作用的主要结构。位于内、外环骨板之间,数量多,长筒状,其方向与骨干长轴一致。由同心圆排列的哈弗斯骨板围绕中央管构成突触:突触(synapse)两个神经元之间或神经元与效应器细胞之间相互接触、并借以传递信息的部位 咽峡:由腭垂、腭帆游离缘、两侧的腭舌弓及舌根共同围成的咽峡,它是口腔通向咽的分界,也是口腔和咽之间的狭窄部。 真肋:第1-7对肋借助软骨与胸骨构成关节称为真肋 假肋:第8-10对肋接前端肋软骨与上位肋软骨相连,形成左右肋弓,称为假肋。 浮肋 :又称浮动弓肋11~12肋的前端游离于腹壁肌层中,不与胸骨相连,故称浮肋 肝门:肝脏面有H形三条沟,其中横沟位于脏面正中,有肝左、右管,肝固有动脉左、右支,肝门静脉左、右支,肝的神经和淋巴管等由此出入,故称为肝门。 肺门:肺的内侧面中央有一椭圆形的凹陷称为肺门,是主支气管、肺动脉、肺静脉以及支气管动、静脉、淋巴管和神经进出的地方。 肾门:肾内侧缘中部凹陷,是肾血管、淋巴管、神经和肾盂出入部位,称为肾门。 肾窦:肾门向肾内续一个较大的腔隙,称为肾窦,窦内含有肾动脉的主要分支、肾静脉的主要属支、肾小盏、肾大盏。 淋巴:血液经动脉运行到毛细血管动脉端时,其中一部分液体经毛细血管壁滤出,进入组织间隙形成组织液。组织液与组织进行物质交换后,大部分在毛细血管静脉端和和毛细血管后静脉处被吸入静脉,小部分则进入毛细淋巴管成为淋巴。 血液循环:血液由心室射出,依此流经动脉、毛细血管和静脉,最后又返流回心房,血液这种周而复始往返不止地流动现象称为血液循环。 中央凹:视网膜上黄斑中央凹陷称中央凹,此区无血管,是感光最敏锐处,由密集的视锥细胞构成。中央凹可用眼底镜窥见。 胸骨角:胸骨角是胸骨柄与胸骨体的结合处,所形成的微向前方突出的角。胸骨角的侧方平对第二肋,是计数肋骨的体表标志。 体循环 :体循环的途径是:动脉血从左心室→主动脉→各级动脉分支→全身各部毛细血管→静脉血经各级静脉→上、下腔静脉和冠状窦→右心房 肺循环:肺循环的途径:静脉血从右心房→肺动脉干及其分支→肺泡毛细血管→动脉血经肺静脉→左心房 黄体:排卵后,卵泡液流出,卵泡腔内压下降,卵泡壁塌陷,形成许多皱襞。残留在卵泡壁的细胞和内膜细胞开始向内侵入,胞体增大,逐渐演化成黄体细胞,并有丰富的血管和结缔组织同时侵入,周围仍有结缔组织的外膜包裹,这样就共同形成黄体。

玻璃工艺学复习练习题.docx

玻璃工艺学复习练习题 分相结构对玻璃的性质有何影响? 对第一类性质的影响:由离子的迁移特性决定的性质,如电阻率、化学 稳定性等对玻璃的分相结构十分敏感。若性质较差的相以连通结构的形 式存在,玻璃的性质将明显变坏。若性质较差的相呈孤立液滴状分布于 性质较好的连续基相中,则能保持较好的性质。 对玻璃析晶的影响——分相有利于析晶 1.为成核提供界面。 2.分相导致其中的一相比均匀母相具有较大的质点迁移率,这有利于晶核的形成和长大。 3.分相使成核剂浓集于其中的一相,从而促进晶核的形成。 4.分相使其中的一相或两相更加接近某种晶体的组成,这有利于结晶。 对光学性质的影响 1.使玻璃的透光率下降 分和产生的相界面使光线发生散射,导致透光率下降,严重时,会产生乳浊现象。 2.影响玻璃的颜色 分相过程屮,过渡元素几乎全部集中在微相液滴中。这种选择性富集可 以用来发展有色玻璃,激光玻璃、光敏玻璃和光色玻璃等。 1.玻璃分相对析晶有何影响? 对玻璃析晶的影响分相有利于析晶 1.为成核提供界面。 2.分相导致其屮的一相比均匀母相具有较大的质点迁移率,这有利于晶核的形成和长大。 3.分相使成核剂浓集于其中的一相,从而促进晶核的形成。 4.分相使其中的一相或两相更加接近某种晶体的组成,这有利于结晶。 2.玻璃成型后为何还要退火 原因之一:玻璃生产过程屮,因经受激烈的、不均匀的温度变化会产生热应力。 这种热应力会降低玻璃制品的强度和热稳定性。成型后的玻璃制品和经过热加工 的玻璃制品,若不经过退火处理,让其自然冷却,在以后的存放和机械加工过程 中很可能会自行破裂。 原因之二:玻璃制品从高温自然冷却室温,其内部结构是不均匀的,由此会造成玻璃光学性质的不均匀。对玻璃进行退火处理就是让玻璃的结 构趋向均匀,使玻璃中的热应力消除或减小的热处理过程。 16.玻璃的料性?短性玻璃?长性玻璃?对成型和退火过程有何影响? 答:生产上常把玻璃的粘度随温度变化的快慢称为玻璃的料性,粘度随温度变化快的玻璃称为短性玻璃,反之称为长性玻璃?这一性质对成型作业有直接的关系,例如用压延法生产压花玻璃时最好选择料性较短的玻璃,这样玻璃被轧花辗压出花纹之后,随温度降低,粘度能迅速地增长,形状可以快速固定下来,从而保证压出的花纹清晰.退火是通过粘滞流动和弹性来消除玻璃中的应力,故这一性质对退火的效率也有很大影响 23 ?试述水对硅酸盐玻璃的侵蚀机理。 答:硅酸盐玻璃在水中的溶解比较复杂。水对玻璃的侵蚀开始于水中的1< 和

玻璃工艺学复习资料

第一章玻璃的定义与结构 1、解释转变温度、桥氧、硼反常现象和混合碱效应。 转变温度:使非晶态材料发生明显结构变化,导致热膨胀系数、比热容等性质发生突变的温度范围。 非桥氧:仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥 氧。 桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。 硼反常性:在钠硅酸盐玻璃中加入氧化硼时,往往在性质变化曲线中产生极大值和极小值,这现象也称为硼反常性。 混合碱效应:在二元碱玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。这一效应叫做混合碱效应。 2、玻璃的通性有哪些? 各向同性;无固定熔点;介稳性;渐变性和可逆性; ①.各向同性 玻璃态物质的质点总的来说都是无规则的,是统计均匀的,因此,它的物理化学性质在任何方向都是相同的。这一点与液体类似,液体内部质点排列也是无序的,不会在某一方向上发现与其它方向不同的性质。从这个角度来说,玻璃可以近似地看作过冷液。 ②.无固定熔点 玻璃态物质由熔体转变成固体是在一定温度区域(软化温度范围)内进行的,(从固态到熔融态的转变常常需要经历几百度的温度范围),它与结晶态物质不同,没有固定的熔点。 ③.介稳性 玻璃态物质一般是由熔融体过冷而得到。在冷却过程中粘度过急剧增大,质点来不及作有规则排列而形成晶体,因而系统内能尚未处于最低值而比相应的结晶态物质含有较高的能量。还有自发放热转化为内能较低的晶体的倾向。 ④.性质变化的渐变性和可逆性 玻璃态物质从熔融状态到固体状态的过程是渐变的,其物理、化学性质变化是连续的和可逆的,其中有一段温度区域呈塑性,称“转变”或“反常”区域。 3、分别阐述玻璃结构的晶子学说和无规则网络学说内容。 答:(1)玻璃的晶子学说揭示了玻璃中存在有规则排列区域,即有一定的有序区域,这对于玻璃的分相、晶化等本质的理解有重要价值,但初期的晶子学说机械地把这些有序区域当作微小晶体,并未指出相互之间的联系,因而对玻璃结构的理解是初级和不完善的。总的来说,晶子学说强调了玻璃结构的近程有序性、不均匀性和不连续

玻璃工艺学考试复习2

1.玻璃主要原料:指向 玻璃中引入各种氧化 物的原料。 2.玻璃辅助原料:指使 玻璃获得某些必要的 性质和加速熔制过程 的原料。 3.澄清剂:向玻璃配合 料或玻璃熔体中加入 一种高温时自身能汽 化或分解放出气体, 以促进除玻璃中气泡 的物质。 4.着色剂:使玻璃着色 的物质。 5.乳浊剂:是玻璃生产 不透明的乳白色的物 质。 6.助溶剂:能使玻璃熔 制过程加速的原料。 7.氧化剂:在玻璃熔制 时,能分解放出氧的 原料。 8.还原剂:在玻璃熔制 时,能夺取氧的原料。 9.玻璃原料的选择原 则:a原料的质量必须 符合要求,而且稳定; b易于加工处理;c成 本低,能大量供应;d 少用过轻和对人体健 康、环境有害的原料; e对耐火材料的侵蚀 要小。 10.石英砂颗粒与颗粒组 成对玻璃生产有何影 响?a颗粒粒度适中。 颗粒大时会使熔化困 难,并常常产生结石、 条纹等缺陷;b粒度组 成合理。细级别含量 高,其表面能增大, 表面吸附和凝聚增 大。当原料混合时, 发生成团现象,另外 细级别多,在贮存、 运输过程中受震动和 成锥作用的影响与粗 级别间产生强烈的离 析,这种离析的结果 使得进入熔窑的原料 化学成分处于极不稳 定状态。 11.引入二氧化硅、氧化 钠、氧化钙、氧化铝、 氧化硼常用的原料有 哪些? a二氧化硅:石英砂、 砂岩、石英岩、石英; b氧化钠:纯碱和芒 硝;c氧化钙:方解石、 石灰石、白垩、沉淀 碳酸钙;d氧化铝:长 石、粘土、蜡石、氢 氧化铝、含氧化铝的 矿渣、含长石的尾矿; e氧化硼:硼酸、硼砂 和含鹏矿物。 12.玻璃组成设计的原则 有哪些?a根据组成、 结构、和性质的关系, 使设计的玻璃能满足 预定性能要求;b根据 玻璃形成图和相图, 使设计的组成能够形 成玻璃,析晶倾向小; c根据生产条件使设 计的玻璃能适应熔 制、成形、加工等工 序的实际要求。d玻璃 的化学组成设计必须 满足绿色、环保的要 求;e所设计的玻璃应 当价格低廉,原料易 获取。 13.配合料计算步骤有哪 些?计算配合料时, 采用联立方程式法和 比例计算相结合的方 法。列联立方程时, 先以适当未知数表示 各种原料的用量,再 按照各种原料所引入 玻璃中的氧化物与玻 璃组成氧化物的含量 关系。 14.配合料的质量要求有哪 些?a具有正确性和稳 定性;b合理的颗粒级 配;c具有一定的水分; d具有一定气孔率;e必 须混合均匀;f一定的配 合料的氧化还原态势。 15.配合料料仓的两种布 置方式,以及它们各 自的优缺点。a塔仓。 优点:占地面积小, 可以将几个料仓紧凑 地布置在一起,合用 一套称量系统,除尘 系统和输送系统,可 以减少设备,节约投 资。缺点:对设备维 护保养要求很高,布 局紧凑,给维修带来 一定的困难。b排仓。 优点:每个料仓都设 置独立的称量系统和 输送系统,生产能力 较大。维修方便。缺 点:占地面积大,投 资高,设备利用率不 足,集中治理粉尘有 困难。 16.在玻璃熔制过程中, 配合料发生哪些物 理、化学和物理化学 变化?a物理:1配合 料加热,2吸附水的排 除,3个别组分的熔 化,4多晶转变5个别 组分的挥发;b化学:

系统解剖学考试重点完整版

名词解释 1、胸骨角:胸骨柄和胸骨体连接处,形成向前凸的角,其两侧接第二肋软骨, 是计数肋序数的体表标记。 2、翼点:颞窝内额、顶、颞、蝶四骨相交点,此处骨质最薄,内面有脑膜中动 脉前支通过,此处外伤骨折,易损伤该血管造成颅内出血。 3、椎间盘:位于椎体之间,由外部纤维环和内部的髓核构成,连接相邻椎体,并起缓冲减震作用。 4、足弓:由跗骨和跖骨借起连结而形成凸向上的弓,分为前后方向的内、外纵弓,左右方向的横弓。 足弓的存在,使足三点着地,增加足的弹性和稳定性。 5、盆骨:由骶骨、尾骨和两侧的髋骨及其连结构成。 6、麦氏点:阑尾根部的体表投影点,通常在右髂前上棘与脐连线中外的1/3 交点处,该点称麦氏点。 问答题 1、分别写出臂部前、后肌群和大腿前、后肌群及其主要功能。 答:臂部前肌群有:肱二头肌、肱肌、喙肱肌,主要功能是屈肘关节; 后群肌有:肱三头肌,功能:伸肘。 大腿前肌群有:缝匠肌,股四头肌,主要功能:缝匠肌屈髋关节,屈膝关节;股四头肌能伸膝关节。 大腿后肌群有:股二头肌、半腱肌、半膜肌,主要功能:伸髋关节;半腱肌、半膜肌能屈膝关节。 2、写出隔的位置、作用及主要裂孔名称。 答:膈肌为向上呈穹窿的扁薄阔肌,位于胸腹腔之间,成为胸腔的底和腹腔的顶。肌束起自胸廓下口的周缘和腰椎的前面。分部:胸骨部;肋部;腰部。位于第12胸椎前方有主动脉裂孔,有主动脉和胸导管通过;平第10胸椎前方有食管裂孔,有食管和迷走神经通过;平第8胸椎高度有腔静脉孔,有下腔静脉通过。膈肌收缩时胸腔容积扩大,助吸气,松弛时胸腔容积减小,助呼气。 3、试述肩关节的组成及结构特点。 答:肩关节是上肢最大的关节,由肱骨头和肩胛骨关节盂构成。关节盂浅而小, 周缘有纤维软骨构成盂唇,加深关节窝,肱骨头面积大;关节囊薄而松弛,其上部前、后、外侧有肌、肌腱和韧带加强;关节囊下部薄弱易形成肱骨头从下部脱位。肩关节可作屈、伸、内收、外展、旋内、旋外和环转运动,是人体活动范围最大,最灵活的关节。 4、颈、胸、腰椎的主要区别。 答:颈椎均具有横突孔。胸椎在椎体两侧的上、下和横突末端有小的关节面,即 肋凹。腰椎无上述特点。 第二部分内脏学 名词解释 1、咽峡:腭垂、腭帆游离缘、两侧腭舌弓和舌根共同围成的咽峡,是口腔和咽的分界。 2、齿状线:各肛柱下端与肛瓣附着缘共同围成齿状的环形线称齿状线。 3、肝蒂:肝门内有左右肝管、肝固有动脉左右支、肝门静脉左右支、淋巴管和 神经出入,这些出入肝门的结构,被结缔组织包绕,构成肝蒂。 4、肝门:肝的脏面中部有略呈“H”形的三条沟,其中横行的沟位于脏面中央,有左、右肝管,肝固有动脉 左、右支,肝门静脉左、右支和肝的神经,淋巴管等由此出入,故称肝门。 5、肺根:肺门有支气管、肺动脉、肺静脉、支气管动脉、支气管静脉、淋巴管和神经等出入,这些结构被

系统解剖学重点知识梳理

系统解剖学重点知识梳理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《系统解剖学》重点知识梳理 骨学 1.骨的分类、构造如何骨髓、骨膜各有何作用 2. 答:●骨按形态可分为四类。①长骨:长管状,如肱骨。分一体两端,体又称骨干,内腔称髓腔,内有黄骨髓,两端称骺。②短骨:形似立方体,如腕骨。③扁骨:板状,如顶骨。④不规则骨:形状不规则,如椎骨。 ●骨的构造主要包括:①骨质,是骨的主要成分,分为骨密质和骨松质。②骨膜, 贴于骨表面,对骨具有营养、生长和修复的功能。③骨髓,位于骨髓腔和骨松质内,分为红骨髓和黄骨髓。 ●骨髓分为红骨髓和黄骨髓,红骨髓有造血功能,黄骨髓由红骨髓转化而来。 ●骨膜对骨具有营养、生长和修复的功能。 3.椎骨的一般形态如何各部椎骨有何特征 4. 答:●椎骨由椎体和椎弓组成。椎体与椎弓围成椎孔;椎弓分椎弓根和椎弓板,椎弓板上发出七个突起:棘突一个,横突一对,上关节突一对,下关节突一对。 ●颈椎共7块,椎体较小,椎孔较大,横突上有孔,称横突孔。棘突大部分较短, 末端分叉。第一颈椎又名寰椎,无椎体;第二颈椎又名枢椎,有齿突;第七颈椎又名隆椎,棘突特长,末端不分叉。 ●胸椎共12块,椎体侧面上、下缘有上、下肋凹,横突末端有横突肋凹,棘突较 长,斜向后下方,呈叠瓦状排列。 ●腰椎共5块,椎体粗壮,椎孔呈卵圆形,棘突宽而短,呈板状,水平伸向后方。 ●骶骨由5块骶椎融合而成,呈倒三角形。上缘中份向前的隆凸称岬,前面有四对 骶前孔,后面有四对骶后孔,骶骨内部有骶管,下端的裂孔称骶管裂孔,裂孔两侧的突起称骶角。 ●尾骨由3~4块尾椎长合而成,上接骶骨,下端游离。 5.椎骨上可见哪些孔岬、骶角的位置及意义如何 6. 答:●椎骨上可见椎孔(椎体与椎弓围成),椎间孔(相邻椎骨的椎上、椎下切迹围成),骶前孔(骶骨前面),骶后孔(骶骨后面),骶管裂孔(骶骨下端),横突孔(颈椎横突上)。 ●岬位于骶骨上缘中份,向前隆凸,临床上常作为测量骨盆大小的标志。 ●骶角位于骶管裂孔的两侧,向下突出,临床上常作为骶管麻醉的标志。 7.胸骨分几部肋的概念肋骨的形态如何 答:●胸骨分胸骨柄、胸骨体和剑突三部分。●肋由肋骨和肋软骨组成,共12对。第1~7对肋与胸骨直接相连称真肋,第8~12对肋不直接与胸骨相连称假肋。 ●肋骨属扁骨,分体和前、后两端。后端膨大,称为肋头,肋头外侧稍细,称肋 颈,肋颈外侧的粗糙突起,称肋结节。肋体长而扁,内面下缘处有肋沟。第一肋骨扁、宽、短。

玻璃工艺学第四章答案

1试述黏度在生产中的应用。2试述玻璃表面张力的工艺意义。3 影响玻璃黏度的主要因素有哪些?4 何谓玻璃的料性?对成型和退火有何影响?5 为何使用粘度描述玻璃生产工艺过程更为科学?6玻璃表面组成与主体玻璃有何不同?分析原因。 1答:在生产中玻璃的熔化、澄清、均化、供料、成型、退火等工艺过程的温度制度,一般是以其对应的黏度为依据制定的。 2答:在熔制过中,表面张力在一定程度上决定了玻璃液中气泡的长大和排除,在一定条件下,微小气泡在表面张力作用下,可溶解于玻璃液中。均化时,条纹及节瘤扩散和溶解的速度取决于主体玻璃和条纹表面张力的相对大小。如果条纹的表面张力较小,则条纹力求展开成薄膜状,并包围在玻璃体周围,这种条纹就很快的溶解而消失。相反,如果条纹(节瘤)的表面张力叫主体玻璃大,条纹力求成球形,不利于扩散和溶解,因而较难消除。 在玻璃成形过程中,人工挑料或吹小泡及滴料供料时,都要借助表面张力使之达到一定的形状。拉制玻璃管、玻璃棒、玻璃丝时,由于表面张力的作用才能获得正确的圆柱形。玻璃制得拱火、火抛光也是借助表面张力。 3答:影响玻璃黏度的因素主要有化学组成和温度,在转变温度范围内,还与时间有关。 4答:是指玻璃随着温度变化其年黏度变化的速度称为玻璃的料性。黏度随温度变化快的玻璃称为短性玻璃,反之称为长性玻璃。这一性质对成型作业有直接的关系,如用压延法辊压出花纹之后,随温度的降低,黏度能迅速地增长,形成可以快速固定下来,从而保证压出的花纹清晰,退火是通过粘滞流和弹性来消除玻璃中的应力。故这一性质对退火效率也有很大影响。 5在玻璃生产中,许多工序(和性能)都可以用黏度作为控制和衡量的标志。使用黏度来描述玻璃生产全过程较温度更加确切与严密,但由于温度测定简便、直观、而黏度和组成关系的复杂性和习惯性,因此习惯上用温度来描述和规定玻璃生产工艺过程的工艺制度。 6玻璃表面与玻璃主体的化学组成有一定差异,即沿玻璃截面(深度)的各成分的含量不是恒值,其组成随深度而变化。熔制、成形、热加工过程中,高温造成某些组分的挥发;各组分对表面能贡献的不同使有些组分在表面富集,有些减少。

人体解剖学期末考试

人体解剖学期末考试重点 绪论: 1、系统解剖学:系统解剖学是按人体器官功能系统阐述人体正常器官形态结构的科学。 2、标准姿势也称解剖学姿势为:人体直立,两眼向前平视,上肢自然下垂躯干两侧,两足并拢,掌心和足尖向前。 3、轴: ①垂直轴:为上下方向垂直于地面,与人体长轴平行的轴。 ②矢状轴:为前后方向与垂直轴垂直,平行于地面的轴。 ③冠状轴:又称额状面,为左右方向,与上述两轴相垂直的轴。 面:①矢状面(纵切面):按前后方向将人体或器官纵切为左右两部分,其断面即为矢状面。将人体分为左右对称两半的矢状面,叫正中矢状面。 ②冠状面(额状面):为按左右方向将人体纵切为前后两部分的断面。 ③水平面(横断面):与人体的垂直轴垂直面的平面,将人体横切为上下两部分。第一章:骨学 1、运动系统由骨、骨连结和骨骼肌组成。 2、骨的分类:成人有206块骨,按部位分为颅骨、躯干骨、四肢骨。颅骨、躯干骨统称中轴骨。按形态特征分为:长骨(如肱骨和股骨)、短骨(如腕骨跗骨)、扁骨(如颅、胸、盆部)、不规则骨(如椎骨)。 3、骺线:随着骨软骨的骨化,骨干与骺融为一体,其间遗留一骺线。 4、骨主要由骨质、骨膜和骨髓构成,此外还有血管、神经等。骨质分为骨松质和骨密质。内、外板之间为骨松质,称板障,有板障静脉经过。骨髓分为红骨髓和黄骨髓。 5、骨的化学成分和物理性质:有机质:胶原纤维束和粘多糖蛋白等。无机质:碱性磷酸钙等。 6、中轴骨包括躯干骨和颅。 7、躯干骨包括:椎骨24、骶骨1、尾骨1、胸骨1、肋12对,共51块。其中椎骨包括:颈椎7、胸椎12、腰椎5、骶椎1(5)、尾椎1(3-4)。 8、椎骨的一般形态:椎体、椎弓 9、第一颈椎又叫寰椎,与第二颈椎的齿突相关节,寰椎无椎体、棘突和关节突。第二颈椎又叫枢椎。第七颈椎又叫隆椎。 10、腰椎:椎体粗壮,横断面呈肾形。 11、柄与体连接处微向前突,称胸骨角。 12、肋包括肋骨和肋软骨,共12对,第1~7对肋前端直接与胸骨连接,称真肋,、第8~12对肋不直接与胸骨相连称假肋;其中第8~10对肋前端与上位肋借肋软骨构成软骨间关节,形成肋弓,第11~12对肋前端游离,称浮肋。 13、颅分为脑颅骨和面颅骨,其中脑颅骨8块分为:顶骨2、颞骨2、额骨1、筛骨1 、枕骨1、蝶骨1。

玻璃工艺学思考题

玻璃的结构 一. 玻璃的通性 1.各向同性:玻璃的物理化学性质在任何方向都相同。 2.无固定熔点:玻璃从固体变为液体是在一定的温度范围内进行的。 3.亚稳性:玻璃的内能比晶体高,它不是处在最低能量状态。但一般情况下,玻璃不会自发转变成晶体。 4.性质变化连续可逆:玻璃转变过程中,其物理化学性质的变化是逐渐而连续的,而且是可逆的。 5.成分可变:玻璃的成分可以在一定范围内调整、改变,从而使玻璃的性质发生改变。 1.在各种玻璃中,石英玻璃的膨胀系数最小。这是为什么? Si—O键相当大,整个硅氧四面体正负电荷重心重合,不带极性。[SiO4]四面体以角顶相连,形成向三维空间发展的无规则的连续架状网络结构。 2.在石英玻璃中加入碱性氧化物其结构与性能将如何变化? 碱性氧化物加入到石英玻璃中,使完整的硅氧网络断裂,形成不连续的网络结构。 3.在碱硅玻璃中加入氧化钙后其结构与性能将如何变化? CaO的加入,使玻璃的结构得到加强。机械强度较高、热膨胀系数较小、耐热性能、介电性能和化学稳定性较好、融体粘度较高。 4.在硼玻璃中加入碱性氧化物其结构与性能将如何变化? [BO3]部分转变为[BO4];层状结构部分转变为三维的架状网络结构。与B2O3玻璃相比,玻璃的各种物理化学性能得到改善。 5.何谓硼反常? 碱金属氧化物加入到B2O3玻璃中,使玻璃的结构得到加强,物理化学性能得到改善。这与碱金属氧化物加入到石英玻璃中的情形恰好相反。这是一种硼反常。 在钠硅玻璃中加入B2O3,玻璃的结构随B2O3增加而逐渐加强,玻璃的性质得到改善。但B2O3的含量超过某数值时,将出现逆转:随着B2O3的增加,玻璃结构逐渐弱化,玻璃的性质逐渐劣化,在玻璃的性质变化曲线上出现极值。这是另一种硼反常。 6.何谓逆性玻璃? 逆性玻璃是指结构和性质的变化趋势(变化方向)与一般玻璃相反的玻璃。“逆性”包括两方面的含义: A. 结构强度变化趋势与一般玻璃相反。 B. 性能变化趋势与一般玻璃相反。 7.何谓玻璃的转变温度区? 玻璃从流动性的熔体转变为具有刚性的固体,要经过一个过渡温度区。这个过渡温度区称为玻璃的转变温度区,一般用T g和T f代表转变温度区的下限和上限。 8.何谓玻璃的热历史? 玻璃的热历史是指玻璃在转变温度区和退火温度区的经历。 9.玻璃的热历史对玻璃的结构与性能有何影响? 对密度的影响:急冷密度小;慢冷密度大。 对粘度的影响:急冷玻璃,粘度较低,加热时粘度增大。慢冷玻璃,粘度较高,加热时粘度降低。 对热膨胀的影响:T<T g时,淬火玻璃的热膨胀系数比退火玻璃大。T>T g时,淬火玻璃会发生零膨胀或负膨胀,而退火玻璃则会加速膨胀。 10.玻璃的两类性质有何不同? 第一类性质与玻璃成分的关系比较复杂,不能根据玻璃的成分和加和法则进行计算的性质。如:粘度、电导、介电损耗、离子扩散速率、化学稳定性等。 第二类性质与玻璃成分的关系比较简单,可以根据加和法则进行推算的性质。如:折射率、密度、弹性模量、硬度、热膨胀系数和介电常数等。 第一类性质一般通过离子(主要是阳离子)的活动或迁移体现出来。 第二类性质不是通过离子的活动而是通过网络和网络外离子的整体作用体现出来。常温下,这类性质可以大致看作构成玻璃的各种离子性质的总和,故可以用简单的加合法则进行推算。 11.碱性氧化物对Si-O玻璃的结构和性能有何影响? 破坏Si-O2玻璃的网络结构,导致性能劣化。 12.何谓双碱效应(混合碱效应)?

系统解剖学名词解释

系统解剖学名词解释(重点解释) 1.胸骨角:胸骨柄与体连接处微向前突称胸骨角,其两侧平对第2肋,向后平对第4胸椎体下缘,是计数肋的重要标志。 2.Pterion(翼点):在颅的侧面,额、顶、颞、蝶四骨会合处,最为薄弱,常 形成“H”形的缝,称翼点。其内面有脑膜中动脉前支通过。 3.蝶筛隐窝:蝶筛隐窝为上鼻甲后上方与蝶骨之间的间隙,是蝶窦开口的部位。 4. 黄韧带:位于椎管内,连结相邻两椎弓板间的韧带,由黄色的弹性纤维构成。协助围成椎管,并有限制脊柱过度前屈的作用。 5.界线(骨盆上口):由骶骨岬向两侧经弓状线、耻骨梳、耻骨结节至耻骨联合上缘构成的环形界线,分为上方的大骨盆和下方的小骨盆。 6.骨盆下口:由尾骨尖、骶结节韧带、坐骨结节、坐骨支、耻骨支和耻骨联合下 缘围成,呈菱形。 7.足弓:跗骨和跖骨借其连结形成凸向上的弓,称为足弓,分内侧弓、外侧弓和横弓。 8.斜角肌间隙:由前斜角肌、中斜角肌与第一肋之间共同构成的裂隙,其中有臂 丛神经和锁骨下动脉通过。 9.腹股沟韧带:腹外斜肌的下缘卷曲增厚连于髂前上棘和耻骨结节之间所形成的一个具有弹性和韧性的腱性结构;其在局部可形成腔隙韧带、耻骨梳韧带以及腹股沟管浅环。 10.Hesselbach Triangle (海氏三角):位于腹前壁下部,由腹直肌外侧缘、 腹股沟韧带和腹壁下动脉共同围成的三角区域;是腹壁下部的薄弱区,腹腔内容物由此区膨出形成腹股沟直疝。 11. 咽峡:由腭帆后缘、左右腭舌弓及舌根共同围成的狭窄处称咽峡,为口腔通 咽的孔裂是口腔和咽的分界处。

12. 肝门 :在肝的脏面有近似“H”形的沟,其中的横沟称肝门,是肝固有动脉左、右支,肝门静脉左、右支、肝左、右管、神经和淋巴管出入肝的部位肝蒂:出入肝门的结构,即肝固有动脉左、右支、肝门静脉左、右支、肝左、右管、神经和淋巴管等被结缔组织包绕,称肝蒂。又称肝十二指肠韧带。 13. Calot三角:由胆囊管、肝总管和肝的脏面围成的三角形区域称胆囊三角。因为胆囊动脉一般在此三角内经过,所以此三角是胆囊手术中寻找胆囊动脉的标志。 14. 纵隔:纵隔是左、右纵隔胸膜之间的全部器官、结构与结缔组织的总称。 15. 肾门:肾内侧缘中部的凹陷称肾门,为肾的血管、神经、淋巴管及肾盂出入之门户。 16. 肾蒂:出人肾门的肾动脉、肾静脉、肾盂、神经和淋巴管等合称为肾蒂。肾蒂内结构的排列关系由前向后为:肾静脉、肾动脉、肾盂;由上向下为:肾动脉、肾静脉、肾盂。 17. 肾区:肾区即脊肋角,在竖脊肌的外侧缘与第12肋之间的夹角区域叫肾区,其深面为肾门和肾的内侧缘,患某些肾病时,此区可有叩击痛。 18. Trigone of bladder(膀胱三角):在膀胱底内面,由两侧输尿管口与尿道内口之间所围成的三角形区域,称为膀胱三角。此区由于缺少粘膜下层,无论膀胱在充盈或空虚时都保持平滑状态。是膀胱结核、肿瘤的易发区。 19. 输尿管间襞:在膀胱内面,两输尿管口之间的横行皱襞叫输尿管间襞,是膀胱镜检时,寻找输尿管口的标志 20. 子宫峡:子宫颈阴道上部的上端与子宫体相接处较狭细,称子宫峡。非妊娠期此部不明显,在妊娠末期可延长至7~11cm,峡壁渐变薄,剖宫产术常在此进行。 21. 阴道穹:阴道的上端包绕子宫颈阴道部,二者间形成的环形凹陷称阴道穹,可分前部、后部和2个侧部。其中,以阴道穹后部最深并与直肠子宫陷凹紧密相邻。临床上可经此穿刺或引流陷凹内的积液。

玻璃工艺学-130425

《玻璃工艺学》课程教学大纲 课程编号:4102105 英文名称:Glass Technology 编写人:赵彦钊编写日期:2013年7月 审核人:杨海波 一、课程说明 1.课程类别/课程性质:专业课/必修课 2.开课学期:第六学期 3.学时与学分:64/4 4.适用专业:无机非金属材料工程(玻璃方向) 5.先修课程:无机材料物理化学、硅酸盐热工设备 6.推荐教材或参考书目: 推荐教材赵彦钊、殷海荣主编. 玻璃工艺学. 化学工业出版社.2006 参考书目 [1]西北轻工业学院主编.玻璃工艺学.轻工业出版社.1982 [2]华东化工学院等主编.玻璃工艺原理.中国建筑工业出版社.1981 [3]作花济夫等编(蒋国栋等译).玻璃手册.中国建筑工业出版社.1985 [4]上海玻璃与搪瓷研究所主办.玻璃与搪瓷(杂志) 7. 考核方式:闭卷考试,平时成绩25%-35% 8.课外自学要求:按教学进程布置作业。 9. 主要实践教学环节:工艺综合实验40学时(实验单独设置) 二、课程的目的和任务 玻璃工艺学是材料科学与工程学院材料专业(玻璃方向)的专业必修课。本课程是研究玻璃的结构、性能、制备工艺以及玻璃组成、结构、性能三者关系等综合性应用技术科学。本课程要求学生系统地深入理解并掌握玻璃组成、结构、性能以及三者之间联系的玻璃物理化学;玻璃工艺原理、工艺流程、工艺因素;了解各种制品的生产流程、生产技术。 本课程的先修课程为无机材料物理化学、硅酸盐热工设备。 三、能力培养要求 通过学习本课程,培养学生在实践中运用课程所学的理论知识,分析和解决生产实践中的工艺技术问题,增长实践操作技能,巩固理论知识。 四、教学基本要求 通过本课程的各个教学环节,达到以下基本要求: 第一章玻璃的结构与组成

相关文档
最新文档