六年级奥数第5讲 还原法解题资料

合集下载

5还原法解题

5还原法解题

还原问题(1)【小学四年级奥数】添加时间:2012年11月02日浏览:1449次顿悟教育小学奥数培优训练营来自:顿悟教育网杨老师专题简析对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。

这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。

1、定义:一个数通过一系列的运算后得到一个答案,求这个数。

也就是已知一个数的变化过程和最后结果,求原来的数,通常称此类问题叫“还原问题”。

2、解题方法:解答“还原问题”一般采用倒推法,简单地说:就是倒过来想。

我们可以采用从结果出发,按它变化的相反方向一步步倒着想,直到解决问题。

同时也可以利用线段图、表格、示意图等方式来帮助理解题意。

例题精讲例1、一个数减24加上15,再乘以8得432。

求这个数。

分析:这个问题可以看成(□—24+15)×8=432,求出□,我们倒着看,如果乘以8以前的数应该是432÷8=54,54是在这个数减24以后栽加15得到的,如果不加15,那么差应该是54-15=39,39是这个数减24以后得到的,如果不减24,那么这个数是39+24=63.解:432÷8-15+24=63答:这个数是63.【练习1】1、一个数加上3,乘以3,再减去3,最后除以3,结果还是3。

求这个数。

2、一个数的4倍加上6减去10,再乘以2得88。

求这个数。

3、一个数缩小3倍,再缩小2倍得80。

求这个数。

例2、马小虎在做一道整数减法题时,把减数个位上的3看成8,把减数十位上的7看成1,结果算得差是216,你知道正确的差应该是几吗?分析:像这种问题,我们要分析清楚错误的差与正确的差多少,多算的要减去,少算的要补上。

马小虎错把减数个位上的3看成8,多减了8-3=5,那么差就少减了5,这个5要补上,他把减数十位上的7看成1,少减了70-10=60,那么差就增加了60,这个60要减去。

2019年六年级奥数还原问题

2019年六年级奥数还原问题

2019年六年级奥数还原问题指点迷津有些数学问题,叙述某一个未知量,经过一系列的已知变化后变成另一个已知数量,而要求原来的未知量。

解答这类问题的关键在于“还原”。

从最后一个已知数出发,逐步递推回去直至推出问题的答案。

这种解决问题的方法叫做逆推法,也叫还原法。

范例点拨例1 有甲、乙两堆小球,按下面的规律移动,第一次从甲堆拿出和乙堆同样多的小球放到乙堆;第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆。

照这样移动四次以后,甲、乙两堆的小球刚好都是16个。

甲、乙两堆小球原来各有多少个?思路提示:从最后一个条件出发,进行逆推。

尝试解答:例2 张华在一本存折中支出生活费。

第一次取出存款的51,第二次取出余下的41,第三次又取出余下的31,这时存折中还剩200元。

他原有存款多少元?思路提示:从最后剩200元,可推出第三次取之前的钱数,再求出第一次取出后的钱数,进而求出他原来的存款钱数。

尝试解答:例 3 一段公路,第一次修了全长的31又31km ,第二次修了剩下的41又41km ,第三次修了剩下的21又21km 。

这段公路长多少千米?思路提示:从最后的问题入手,倒推回去。

先求出第二次剩下的千米数,再求出第一次剩下的千米数,最后求公路的全长。

尝试解答:例4 甲、乙、丙三人各有若干本书,甲给乙、丙两人一部分书,使两人书的本数增加1倍,然后乙也照样送给甲、丙两人,最后丙也照这样送给甲、乙两人。

结果甲有书48本,是丙的书本数的54,乙的本数是丙的书本数的1571。

甲、乙、丙三人原来各有多少本数?思路提示:我们可以计算出最后三人书的本数,再用逆推法求出最初三人书的本数。

尝试解答:触类旁通1.从第一堆橘子里拿一半放到第二堆里,拿出35个放到第三堆里,又拿出剩下的一半放到第四堆里,最后又从第一堆里拿出2个吃掉,这时第一堆里还有48个。

第一堆里原来有橘子多少个?2.四个袋子里共有168粒棋子,现在把棋子作如下的调整:丁袋调3粒到丙袋,丙袋调6粒到乙袋,乙袋调6粒到甲袋,甲袋调2粒到丁袋。

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。

解题思路和方法:解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。

简言之就是反其道而行之就能算出结果。

例题1:将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?解:1、本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。

2、由最后的结果出发,除以6商是6,那么之前就是6×6=36;减去6是36,那么之前是36+6=42;乘6是42,那么之前是42÷6=7;加上6是7,那么之前数7-6=1。

例题2:修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?解:1、本题考查的是一半与整体关系还原,关键是抓住最后的数量,从后往前推理。

2、根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度;又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米),这样得出剩下的长度的2倍就是全长,即150×2=300(米)。

例题3:甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?解:1、本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。

2、根据题意我们可以列表如下:3、最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。

4、因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。

六年级下册奥数讲义-奥数方法:还原法(练习无答案)全国通用

六年级下册奥数讲义-奥数方法:还原法(练习无答案)全国通用

有一类问题,告诉我们最后的结果,让我们从结果出发,根据已知条件和现有的知识,一步步倒着分析推理,直到退还到原来的出发点。

这类问题叫做还原问题;这样逆向推理,解决问题的方法叫做还原法(也叫倒推法)。

解决还原问题的基本思路是:一步一步退回去。

也就是说,原来加的,退回去用减;原来减的,退回去用加;原来乘的,退回去用除;原来除的,退回去用乘。

还原法的精髓就是先找原运算的逆运算。

原问题,所以根据我们的基本思路:一步步往回退,从结果5出发,做除的逆运算乘,接着做减的逆运算加,然后做乘的逆运算除,最后做加的逆运算减,即可得最初的数。

解答(1)如果没有除以5,这个数是:5×5=25(2)如果没有减去5,这个数是:25+5=30(3)如果没有乘以5,这个数是:30÷5=6(4)如果没有加上5,这个数是:6-5=1综合算式:(5×5+5)÷5-5=(25+5)÷5-5=30÷5-5=6-5=1答:这个数为1。

[例3] 小东在做整数加法运算时,把一个加数个位上的7看成了1,把另一个加数十位上的3看成了8,结果所得的和是342,请问这道题的正确答案应该是多少?思路剖析把个位上的7看成了l,那么和就减少了(7-1)=6,把十位上的3看成了8,那么和就增加了(8-3)×10=50,再根据加和减的互逆关系,把错误的和加上减少的,减去增加的,就可得出正确的答案。

解答要求这道题的正确答案是多少,可以先求出当把个位上7看成1时,和减少了多少,还需要求出当把十位上的3看成8时,和增加了多少?(1)把个位上的7看成1时,和减少了:7-l=6(2)把十位上的3看成8时,和增加了:【例‘1】李老师在黑板上写了若干个从l开始的连续正整数l,2,3,…然后擦掉其中一个,剩下的数的平均数是10.8。

那么,被擦掉的那个正整数是多少?分析与解答以上分数的分子表示去掉一个正数的和,分母表示个数。

奥数还原问题ppt课件

奥数还原问题ppt课件

• [分析与解]:第一个猴子取走了一半,说明桃子还剩下一半, 就是原数除以2,这是第一次变化,变化成第二个方框图。 又零一个,即是在新的变化后又减去1……,最后猴子取 完后恰好取尽,说明最后剩0,画出过程框图如下
?÷2-1
?÷2-1
?÷2-1
?÷2-1
=0

倒过来算就是:
(0+1)
×
2=2
(2+1) ×2=6
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
二、还原问题
2、甲乙两人各有若干本图书,如果甲先拿出和乙同样多的
书给乙,乙再拿出和甲同样多的书给甲,这时两都有28
本书,那么甲乙两人原来各有多少本书?
解题思路:这个题目与上一个类似,我们可以用列表的方法 解决,由于比较简单我们也可以用线段图来帮助我们思考 首先画出最后他们的关系:
迷身上原有多少个铜板?
6、2、小朋在做一道整数加法题时,把个位上的6 看作了9,把十位上的8看作了3,结果得出的和 为123,问正确的答案应该是多少?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
二、还原问题
• 还原问题思路:还原问题经常是知道最终
的结果,求最初的数量或状态,解决还原 问题是要进行逆向思考,通过已知的最后 的结果,反着推导上一次的结果,直到回 到最初状态。
二、还原问题
1、甲、乙、丙三位小朋友共有81个玻璃球,开始甲给了比
乙多1倍的球给乙,然后乙给了比丙多1倍的玻璃球给丙, 最后丙给了比此时的甲多1倍的玻璃球给甲,这样甲、乙、 丙三人的玻璃球数正好相等,原来甲乙丙各有玻璃球多少

六年级下册数学试题-奥数专题讲练:还原法、假设法、替换法无答案全国通用

六年级下册数学试题-奥数专题讲练:还原法、假设法、替换法无答案全国通用

解决问题的策略还原法、假设法、替换法一、知识梳理1、还原法(倒推法)从结果开始,一步一步倒推回去,每步倒推时所用的方法要刚好和原来相反,例如原来加的倒推回去就是减,原来减得倒回去就是加,原来乘的倒回去就是除,原来除的就倒回去乘,一直推到最初的数据。

2、替换与假设:“替”指的是替代,“换”指的是更换,替换就是将实际问题中的数量用别的数量来代替,从而使问题简化。

假设是指对条件和问题进行假定和预设,然后根据数量之间的关系,对假定和预设进行调整,从而得到问题的答案。

转化:把较复杂的问题变成较简单的问题,把新颖的问题变成已经解决的问题。

二、精讲例题例1、甲、乙两位师傅共做零件135个,如果从甲做的零件中拿36个给乙,而又从乙做的零件中拿出45个给甲,这时乙的零件个数是甲的1.5倍,原来甲、乙师傅各做零件多少个?分析:根据和倍问题先求出甲现有零件的个数,135:(1.5+1)=54 (个),再逆推出他原有零件的个数:54-45+36=45 (个),乙原有零件135-45=90 (个)。

例2、甲、乙、丙、丁各有棋子若干枚,甲先拿出自己棋子的一部分给乙、丙,使乙、丙每人的棋子各增加一倍,然后乙也把自己的棋子的一部分以同样的方式给丙、丁,丙也将自己的棋子的一部分以这样的方式给了甲、丁,最后丁也将自己的棋子的一部分以这样的方式给了甲、乙。

这时四人的棋子都是16枚。

原来甲、乙、丙、丁四人各有棋子多少枚?分析:最后一次四人的棋子都是16枚,每次变化中,有一人的棋子数未动,有两人的棋子数增加一倍,倒推时应除以“2”,另一个人的棋子数减少了两人增加的总数。

我们可以用列表法进行倒推:例3、王师傅和李师傅一起打一份稿件。

王师傅打5分钟,李师傅打6分钟,两人一共打了757个字。

已知王师傅每分钟比李师傅多打15个字。

王师傅每分钟打多少个字?李师傅每分钟打多少个字?分析:王师傅每分钟比李师傅多打15个字,王师傅5分钟就比李师傅多打了15*5=75个字,757-75=682,也就是李师傅在11(5+6)分钟打了682个字,每分钟打682/11=62个字,王师傅每分钟打15+62=77个字。

奥数还原问题全部课堂PPT

奥数还原问题全部课堂PPT
22
李白喝酒诗
李白街上走,提壶去买酒。 遇店加一倍,见花喝一斗。 三遇店和花,喝光壶中酒。 借问此壶中,原有多少酒?
23
遇店加一倍,见花喝一斗。 三遇店和花,喝光壶中酒。
原有?酒
店(×2)
花(-1)
店(×2) 花(-1) 店(×2)
花(-1)
喝光(0)
24
最后遇花喝一斗前:0+1=1; 最后遇店加一倍,则原有 :1÷2=1/2; 第二次遇花喝一斗,原有: 1/2+1=3/2; 第二次遇店加一倍,则原有: 3/2÷2=3/4; 第一次遇花喝一斗,原有: 3/4+1=7/4; 第一次遇店加一倍,则原有: 7/4÷2=7/8 综合以上得7/8斗
17
帮他找一找: 小华去参观动物园,先从大门向北走2格到熊
猫馆,再向西北走1格到百鸟园,再向东走4格到 猴山,最后向南走2格到蛇馆。

北 4
3 百鸟园

2 熊猫馆


猴山

你能在图中标出其 他几个景点和大门 的位置吗?


大门
蛇馆●
1 2● 3 4 5 6 7 8
18
通过这节课的学习,你有什么收获?
2
想一想
我的年龄加上3,再除以3, 就和咱们班大多数同学的年龄 相等。你能推算出我的年龄吗? 你猜对了吗?
3
什么是还原问题
一个数量经过若干次变化成 了另一种结果,我们从结果 出发根据每一次变化的情况, 一步步倒着想,把结果还原 成开始状态,这类问题叫还 原问题。
4
5
6
7
甲杯倒入乙杯 40毫升
28
小新在做一道加法题时,把 一个加数个位上的 9 看作 6, 十位上的 6 看作 9,结果和 是 174,那么正确的结果应该 是多少呢?

小学奥数还原问题

小学奥数还原问题

还原问题知识导航还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。

解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。

列综合算式时,要特别注意运算顺序,为此要正确使用括号。

如小莉要把一个包装精美的盒子打开。

她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。

妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。

小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。

小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。

这是生活中常会遇到的“还原问题”。

在数学中,还原问题也很多。

【例1】一次数学考试后,李军问于昆数学考试得多少分。

于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得52。

”小朋友,你知道于昆得多少分吗?【例2】某数加上5,乘以5,减去5,除以5,其结果等于5。

求这个数。

【例3】在做一道加法试题时,某学生把个位上的5看作9,把十位上的8看作3,结果“和”得123。

正确的答案是多少?【例4】小马虎做一道减法题,把被减数十位的6当作9,把减数个位的3当作5,结果是217,正确的答案是多少?【例5】妈妈从超市买回几个面包。

第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天吃了再余下的一半又半个,恰好吃完。

妈妈从超市买回多少个面包?【例6】一群猴子分一堆桃子,第一个猴子取走了一半零一个,第二个猴子取走剩下的一半零一个,……直到第七个猴子按上述方式取完后恰好取尽。

这堆桃子一共有多少个?【例7】有一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,最后还剩2.5米,这根铁丝原来长多少米?【例8】有一堆西瓜第一次搬走一半,第二次搬走剩下的一半多3个,第三次搬走剩下的一半少3个,第四次搬走剩下的一半多3个,第五次搬走剩下的一半,最后还剩3个,这堆西瓜原有多少个?【例9】书架分上、中、下三层,一共分放192本书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、1/2,8天后剩下5个硬币,原来储蓄罐 • 内共有多少个硬币?
试一试3.
• 山顶有棵橘子树,一只猴去偷吃橘子,第一天偷了1/10, 以后8天分别偷了当天现有橘子的1/9、1/8、...、1/3、1/2 ,偷了9天,树上留下了10只橘子,问树上原有橘子多少 只?
例题4.
• 有一堆煤,第一天用去了1/2多1吨,第二天用去了余下的 2/3少2吨,第三天用去了再余下3/4,最后还剩下12吨, 原来这堆煤有多少吨?
试一试5.
• 甲、乙、丙三个容器里有水,先从甲杯取出一些给乙和丙 ,使乙和丙的水都比原来增加了3倍,乙再取出一些给甲 和丙,使甲和丙的水都比原来增加了3倍,丙再取出一些 给乙和甲,使乙和甲的水比原来增加了3倍,结果三杯水 都为32升。三杯水原来各有多少升?
例题6.
• 小明和小红各有若干块糖,小明拿出20%给小红后,小红 又拿出25%给小明,这时他们各有18块糖,问小红、小明 原来各有多少块糖?
试一试6.
• 甲、乙两个水桶共装水24升,先从甲桶倒出1/5给乙桶,接 着再从乙桶倒出1/4给甲桶,这时两桶装水一样多。原来两 桶各装水多少升?
• • 1. 已知的具体数量是最后的结果,把原来的总数
确定为单位“1”。 • • 2. 每一次变化都以上一次(或上上一次)所余下
的为基准数目来进行变化。 • 3. 一般所求的是最初(原来)的总数。
• 用还原法解答的关键是: • • 1. 根据题目所求的问题,找出相应的两个条件,
弄清所求的单位“1”是谁,“量”和“率”是否 对 • 应。 • • 2. 数量关系比较复杂可借助表格、线段图或流程 图等帮助分析。
试一试4.
• 有一批水泥,第一天用去了总数1/2多1吨,第二天用去了 余下的1/3少2吨,第三天用去了再余下1/4,最后还剩下 12吨,原来这批水泥有多少吨?
例题5.
• 甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些给乙和 丙,使乙和丙的钱数都比原来增加了两倍,结果乙的最多;乙 拿出一些给甲和丙,使甲和丙的钱数都比原来增加了两倍,结 果丙的最多;丙又拿出一些给乙和甲,使乙和甲的钱数都比原 来增加了两倍,结果三人的钱数一样多。如果他们三人原来共 有81元,则三人原有的钱分别是次减去15并乘1/4,再加上4后除 以1/5,恰好是100岁,小明奶奶今年多少岁?
试一试1.
• 有一老人说“把我的年龄加17并乘4/1,再减去15后除以 1/10,恰好是100岁。”这
• 位老人今年多少岁?
例题2.
• 小炎新买了一本《神探柯南》,第一天看了全书的2/5 • ,第二天看了剩下的5/8,还有36页没有看,这本书一共
第5讲 还原法解题
学法指导
• 有些题目,如果按照一般方法,顺着题意一步一 步求解根本无从下手或计算过程比较繁琐,那么 在解题时,我们可以从最后的结果出发,运用加 与减、乘与除之间的互逆关系,从而往前一步一 步的逆推,从而推算出原数,这种思考问题的方 法叫做还原法或逆推法。
• 能运用还原法去解答的应用题,基本含有下列特 征:
有多少页?
试一试2.
• 张师傅加工一批零件,第一天加工了总数的3/8,第二天 加工了剩下的2/3,第三天又加工了250个正好完成,这批 零件共有多少个?
例题3.
• 甜甜储蓄罐内存有1元硬币若干个。她每天上学取出一部 分买早点,第一天取出91
•, • 以后7天分别取出当天现有硬币的1/8、1/7、1/6、...、1/3
相关文档
最新文档