【精品】六年级下册数学奥数试题 假设法解题 人教版
小学六年级奥数:假设法解题

小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。
根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。
2.设冰箱数量为x,则洗衣机数量为126-x。
根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。
3.设上学期男同学数量为x,则女同学数量为750-x。
本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。
根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。
4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。
根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。
5.设甲队挖了x米,则乙队挖了300-x米。
根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。
6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。
根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。
最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。
7.设去年初中招生人数为x,则高中招生人数为4752-x。
今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。
根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。
六年级奥数分册第10周 假设法解题-最新精品

第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、 乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
六年级奥数 第10讲 假设法解题(一)

第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?1,则比黑白电视机多5【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出9台。
问:两种电视机原来各有多少台?练习2:1,还比妹妹多10只,姐姐和妹妹各养了多少只1、姐妹俩养兔120只,如果姐姐卖掉7兔?1后,比足球少1个,原来篮球和足球各有多2、学校有篮球和足球共21个,篮球借出3少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
(最新)六年级奥数分册第10周 假设法解题

第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
【精品】六年级奥数分册第10周 假设法解题

第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
人教版六年级数学分数应用题之假设法解题

2
5
几小时可以返回?
4、一条铁路,修完 800 千米后,剩余部分比全长的 3 少 200 千米,这条铁路长多少千米? 5
5、某修路对三天修完了一条路,第一天修了全长的 1 多 150 米,第二天修了全长的 2 少 100
3
5
米,第三天修了 1950 米,这条路全长多少米?
6、五年级一班和二班共有学生 96 人。抽一班人数的 3 ,二班人数的 3 ,组成 66 人的鼓号
14、师徒两人各加工一批两件,师傅加工的零件数比徒弟多 1 ,而徒弟加工零件的时间比 3
师傅多 1 ,那么,师傅的工作效率比徒弟高百分之几? 8
15、东方小学六(1)班举行数学竞赛,全班平均分为 85 分,男生人数是女生人数的 3 , 4
女生平均分比男生平均分多 7 分。六(1)班男生平均分是多少?
16、A、B 两种商品售价相同,已知 A 商品赚了 1 ,B 商品亏了 1 ,两者合算共亏 2 元,求
5
5
每种商品的成本价?
17、甲、乙两种商品,甲的成本价是乙的 1 2 倍,出售时甲得利 20%,乙亏损 25%,两者核 3
算还得利 20 元,求甲、乙两种商品的成本价?
18、修一段路,甲工程队单独修 75 天完成,乙工程队单独修 50 天完成,现在由两个工程队 合修,中途甲工程队临时支援别的工程几天,结果整段修了 40 天才完工,甲工程队中途离
5、 把发生的事件假设为未发生的事件。
1、甲、乙、丙三个数的和是 100,已知甲数的 1 等于乙数的 1 等于丙数的一半。甲、乙、
3
5
丙三个数各是多少?
2、某修路队修一条公路,原计划每天修 300 米,12 天修完,实际每天比原计划多修 20%, 实际几天可以修完?
(完整word版)六年级奥数假设法解题答案

第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
小学六年级奥数-假设法解题练习题(含解析)(1)

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少?练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设法解题
知识导航:
由于一些含有两个或两个以上未知量的问题,我们在解答时可以根据情况采用假设法解决,所谓假设法就是把两个或两个以上的未知量假设为同一个未知量,然后按照题目中的已知条件进行推算,从而找到答案。
假设法作为一种重要的解题方法应用很广,我们不仅可以把不同的事物进行假设,还可以把事物的几种不同情况假设成同一种情况,本讲我们就此展开探究。
经典例题1、鸡和兔共27个头,72只脚。
鸡、兔各有多少只?
举一反三1、
1、鸡和兔共60个头,160只脚。
鸡、兔各有多少只?
2、鸡比兔多16只,鸡的脚比兔的脚多12只。
鸡、兔各有多少只?
3、某城市实行峰谷电价,收费标准如下:
小刚家8月份用电150千瓦时,缴纳电费70.5元,你知道小刚家谷时用电多少千瓦时吗?请你算乙算。
经典例题2、星期天,小丹和姐姐去游乐场玩,她们买了1元、2元、5元的游乐劵共40张,面值共计75元,且1元的游乐劵比2元的游乐劵多5张,三种游乐劵各有多少张?
举一反三2、
1、明明有10元、2元、5元的游乐劵27张,面值共计108元,且10元的游乐劵比5元的少7张。
三种游乐劵各有多少张?
2、王阿姨买10元、5元、4元的公园门票20张,共用去115元,其中10元和5元的门票张数相等。
三种门票各买了多少张?
3、某公司有大、中、小型卡车共19辆,每次共运货155箱。
每辆大型卡车每次运10箱,每辆中型卡车每次运9箱,每辆小型卡车每次运6箱。
中型卡车和小型卡车的辆数一样多。
大卡车有多少辆?
经典例题3、物资公司用大、小两种型号的卡车运货,每辆大卡车装16箱,每辆小卡车装12箱。
共有27车货,价值5000元。
若每箱便宜2元,则这批货价值4200元。
大卡车、小卡车各有多少辆?
举一反三3、
1、超市运来一批西瓜准备按大小分两类卖,大西瓜每千克1.2元,小西瓜每千克1元,这批西瓜共卖了168元。
如果每千克西瓜降价0.2元,这批西瓜只能卖138元。
大西瓜、小西瓜各有多少千克?
2、商场有鸡蛋18箱,每个大箱装180个鸡蛋,每个小箱装120个鸡蛋,这批鸡蛋价值756元,若将每个鸡蛋便宜2分出售,则这批鸡蛋价值705.6元。
大箱、小箱各有多少个?
3、一辆汽车共载客50人,根据乘坐距离的不同有两种票价,一种1元的,一种2元的。
售票员最后统计出:所卖的2元的票比所卖的1元的票多10元。
买1元的票和2元的票的各有多少人?
经典例题4、王叔叔目前有43条微博,张叔叔目前有35条微博,从今天开始,王叔叔每天更新2条微博,张叔叔每天更新8条微博,多少天后,张叔叔的微博数量是王叔叔的3倍?
举一反三4、
1、甲店有水果82箱,乙店有水果68箱,现在甲店每天进4箱水果,乙店每天进20箱水果,多少天后、乙店的水果箱数是甲店的2倍?
2、制酒厂有甲、乙两个池子,甲池有水112吨,乙池有水120吨。
现每小时从甲池向乙池注水9吨,多少小时后,乙池水的吨数是甲池的3倍?
3、数学活动课上,王老师拿出一个盒子,里面有红、黄两种颜色的球,红球的个数是黄球的3倍多2个。
王老师每次从盒子里拿出10个黄球、20个红球,拿了若干次后,盒子里只剩下3个黄球,61个红球。
盒子里原来有多少个红球?。