六年级数学 假设法解题

合集下载

六年级奥数分册第10周 假设法解题-精华版

六年级奥数分册第10周 假设法解题-精华版

第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。

解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。

练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱? 2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人? 3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。

(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个? 3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只 例题3。

六年级假设法解题练习题

六年级假设法解题练习题

六年级假设法解题练习题一、题目描述假设你是六年级学生小明,以下是关于饮食健康的一些假设,根据提供的假设和相关信息,回答问题。

1. 假设小明每天早餐都吃面包,午餐都吃米饭,晚餐都吃面条,能保证他的膳食均衡吗?2. 假设小明每天吃很多巧克力,他会变得更高吗?3. 假设小明经常吃糖果和甜饮料,他的牙齿会更健康吗?4. 假设小明非常喜欢吃垃圾食品,这对他的身体有什么影响?二、解题过程1. 饮食的均衡是指摄入的食物中包含了充足的营养元素。

尽管小明每天吃的是不同种类的主食,但仅仅靠面包、米饭和面条是无法保证膳食的均衡。

膳食均衡应包括五大类食物,即谷物、蔬菜、水果、肉类和奶制品。

建议小明在餐食中适当增加蔬菜和水果的摄入,以确保膳食的均衡。

2. 吃巧克力并不能让人变得更高。

人的身高主要由遗传因素和生长发育水平决定。

巧克力含有糖分和脂肪,过量摄入可能会导致肥胖和牙齿问题。

因此,小明应该适量饮食,保持均衡营养,而不是指望吃巧克力来增加身高。

3. 糖果和甜饮料含有大量的糖分,过量摄入对牙齿是有害的。

糖分容易被细菌利用,形成酸性环境,导致牙齿脱矿、蛀牙等问题。

因此,频繁食用糖果和甜饮料不利于牙齿的健康。

建议小明减少对这些食物的摄入,并养成良好的口腔卫生习惯,例如刷牙、漱口等。

4. 垃圾食品通常指含有高糖、高脂肪、高盐等不健康成分的食物。

经常食用垃圾食品会引发多种健康问题,如肥胖、心脏病、高血压等。

对于小明来说,经常吃垃圾食品可能导致体重增加、营养不良,还可能影响他的身体发育和免疫力。

因此,建议小明远离垃圾食品,选择健康的食物,保持良好的饮食习惯。

三、小结通过对以上假设的分析,我们可以得出以下结论:- 小明单一主食的饮食习惯无法保证膳食均衡,应适当增加其他食物的摄入。

- 吃巧克力并不能增加身高,应均衡膳食来维持健康。

- 经常食用糖果和甜饮料会对牙齿健康产生不利影响,应减少摄入并注意口腔卫生。

- 垃圾食品会对身体健康产生负面影响,应远离这些食物,选择健康的饮食。

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。

根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。

2.设冰箱数量为x,则洗衣机数量为126-x。

根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。

3.设上学期男同学数量为x,则女同学数量为750-x。

本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。

根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。

4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。

根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。

5.设甲队挖了x米,则乙队挖了300-x米。

根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。

6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。

根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。

最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。

7.设去年初中招生人数为x,则高中招生人数为4752-x。

今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。

根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。

六年级假设法解题

六年级假设法解题

假设法解题l、例题彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,那么还比黑白电视机多5台。

问两种电视机原来各有多少台?2、光明小学今年春季共植杨树、柳树120棵,其中杨树棵树比柳树棵树的5/8少10棵,杨树多少棵?3、师徒二人共同加工170个零件。

已知师傅加工个数的1/3比徒弟加工个数的1/4多10个。

那么,徒弟加工了多少个?4、甲乙两个工程队合挖了一条长300米的水渠,甲队挖的2/5比乙队挖的1/4多55米,甲乙两个工程队各挖了多少米?5、某商店有冰箱和洗衣机共126台,卖出冰箱的1/6和洗衣机的2/9共23台,原来冰箱和洗衣机各有多少台?6、育红小学上学期有男、女同学共750人,本学期男同学增加1/6 ,女同学减少1/5 ,共有710人。

求本学期男、女同学各多少人?假设法解题1、苹果和梨共145筐,如果苹果卖出1/5,则比梨多8筐,问:苹果和梨原来各多少筐?2、兄弟俩共存钱2300元,如果弟弟取出1/3,还比哥哥多200元。

兄弟俩各存钱多少元?3、甲、乙两人共做了184个零件,其中甲做的5/8与乙做的3/4共123个。

问甲乙两人各做了多少个零件?4、有两块地共72公顷,第一块地的2/5和第二块地的5/9种西红柿;两块地余下的共39公顷种茄子,问第一块地是多少公顷?5、一次奥林匹克数学竞赛上共有84人参加,已知获奖人数的5/8与未获奖人数的3/4共有57人,求获奖人数。

6、学校买来排球和足球共64个,从中借出排球个数的1/4 和足球个数的1/3后,还剩46个,两种球原来各有多少个?7、饲养场有黄牛和奶牛共66头,奶牛的1/3比黄牛的1/6多4头,这个饲养场有黄牛和奶牛各多少头?8、姐妹俩养兔100只,姐姐养兔只数的1/3比妹妹养兔只数的1/10多16只。

求姐妹各养兔多少只?9、甲、乙两数的和是125,甲数的2/5比乙数的1/6多16,甲乙两数各是多少?10、光明小学共有800名学生,其中男学生的2/5比女学生的1/2多50人,光明小学有男、女生各多少人?11、师徒共加工一批零件,师傅比徒弟多加工120个,又知师傅加工零件个数的5/8比徒弟加工零件的2/3多60个,师傅和徒弟各加工多少个?12、一个人从A地到B地要乘汽车,从B地到C地需乘火车,原来从A地到C地需要250元的交通费;现由于汽车票上涨10%,火车票上涨20%,结果从A地到B地共花去280元,汽车票现在要用多少元?13、一项工程,甲、乙两人合作5天可以完成。

六年级假设法解题思路和步骤

六年级假设法解题思路和步骤

假设法是一种常用的解决问题的方法,特别适用于一些复杂的实际问题。

在六年级的数学学习中,假设法主要用于解决一些百分比、倍数等比例关系的问题。

以下是一般的解题思路和步骤:1. 阅读问题:仔细阅读问题,确保理解问题的要求和条件。

2. 确定假设:根据问题内容,确定一个合适的假设。

假设是对问题中未知部分的猜测或推测。

3. 推导结果:利用所给条件和已知信息,推导出与假设相关的结果。

使用逻辑推理和数学运算等方法进行推导。

4. 验证假设:将推导出的结果与问题中给出的要求进行对比,验证假设是否成立。

5. 分析结果:根据验证结果,判断假设是否正确。

如果假设成立,则得到最终答案;如果假设不成立,则需重新考虑假设并重复上述步骤。

下面是一个简单的示例来说明假设法解题的步骤:问题:某个数字的百位数字是3,十位数字是4,个位数字是1,它能被5整除吗?步骤:1. 阅读问题:数字的百位数字是3,十位数字是4,个位数字是1,要求判断是否能被5整除。

2. 确定假设:假设这个数字是XYZ(百位是X,十位是Y,个位是Z),所以假设这个数字是341。

3. 推导结果:由于我们已经假设百位是3,十位是4,个位是1,所以数字341能被5整除的条件是个位是0或者5。

但是341的个位数字是1,所以假设不成立。

4. 验证假设:根据推导结果,我们发现341不能被5整除,与问题要求相反,说明假设不正确。

5. 分析结果:根据验证结果,我们得出结论:数字341不能被5整除。

通过以上步骤,我们使用假设法解题,最终得出了数字341不能被5整除的结果。

在使用假设法时,一定要确保假设是合理且能够帮助解答问题的。

同时,要记住最后一步是对结果的检验,以确保答案的正确性。

人教版六年级数学分数应用题之假设法解题

人教版六年级数学分数应用题之假设法解题

2
5
几小时可以返回?
4、一条铁路,修完 800 千米后,剩余部分比全长的 3 少 200 千米,这条铁路长多少千米? 5
5、某修路对三天修完了一条路,第一天修了全长的 1 多 150 米,第二天修了全长的 2 少 100
3
5
米,第三天修了 1950 米,这条路全长多少米?
6、五年级一班和二班共有学生 96 人。抽一班人数的 3 ,二班人数的 3 ,组成 66 人的鼓号
14、师徒两人各加工一批两件,师傅加工的零件数比徒弟多 1 ,而徒弟加工零件的时间比 3
师傅多 1 ,那么,师傅的工作效率比徒弟高百分之几? 8
15、东方小学六(1)班举行数学竞赛,全班平均分为 85 分,男生人数是女生人数的 3 , 4
女生平均分比男生平均分多 7 分。六(1)班男生平均分是多少?
16、A、B 两种商品售价相同,已知 A 商品赚了 1 ,B 商品亏了 1 ,两者合算共亏 2 元,求
5
5
每种商品的成本价?
17、甲、乙两种商品,甲的成本价是乙的 1 2 倍,出售时甲得利 20%,乙亏损 25%,两者核 3
算还得利 20 元,求甲、乙两种商品的成本价?
18、修一段路,甲工程队单独修 75 天完成,乙工程队单独修 50 天完成,现在由两个工程队 合修,中途甲工程队临时支援别的工程几天,结果整段修了 40 天才完工,甲工程队中途离
5、 把发生的事件假设为未发生的事件。
1、甲、乙、丙三个数的和是 100,已知甲数的 1 等于乙数的 1 等于丙数的一半。甲、乙、
3
5
丙三个数各是多少?
2、某修路队修一条公路,原计划每天修 300 米,12 天修完,实际每天比原计划多修 20%, 实际几天可以修完?

(完整word版)六年级奥数假设法解题答案

(完整word版)六年级奥数假设法解题答案

第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。

解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。

练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19 ,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。

(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。

(完整版)六年级数学假设法解题

(完整版)六年级数学假设法解题

分数应用题解决策略(七)---假设法班级: 姓名:假设法-----根据题目特征,把两个不同的数量,或者分率假设成为相同的数量和分率,再寻找两次的量相差数,从而理清数量关系,以达到解决问题的目的。

1、有甲、乙两块地共4.8公顷,已知甲地的13 加上乙地的25共1.73公顷。

两块地各有多少公顷?2、学校买来足球和篮球共91个,从中借出足球的27 和篮球的38后,还剩60个。

足球和篮球各买来多少个?3、小红和小明共有图书78本,如果小红捐出图书的110,还比小明多17本,小红和小明原来各有多少本图书?4、学校绿化买来杨树和柏树共200棵,后来杨树增加了14 ,柏树减少了15,杨树和柏树的总棵数变为196棵。

原来杨树和柏树各有多少棵?5、甲、乙、丙三所学校共有学生2900人,如果甲校学生减少111,乙校学生增加14人,则三所学校人数相等。

求甲、乙、丙三校原来各有多少人?6、水果店有梨和苹果共72筐,卖出梨的35 和苹果的58后,还剩28筐,问水果店原有梨和苹果各多少筐?7、甲乙两个容器中共装有药水2000克,从甲容器中取出13 ,从乙容器中取出14,这是两个容器里还剩药水1400克,问两个容器中原来各有药水多少克?8、纯金放在水里重量减轻119 ,纯银放在水里重量会减轻110,现有一块金银合金共重840克,放在水中减轻了48克,求这块合金的含金量?9、一块长方形土地的周长是100米,如果长增加13 ,宽增加14,那么周长就增加30米,这块土地原来的面积是多少平方米?10、一辆卡车司机为玻璃厂运送一批玻璃,厂里规定:每块运费1元钱,但是如果到达目的地后如果破损不但不给运费,还要每块赔偿0.5元。

该司机共运送3000块玻璃,结果只领到2985元的运费。

问途中破损了多少块玻璃?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数应用题解决策略(七)---假设法
班级: 姓名:
假设法-----根据题目特征,把两个不同的数量,或者分率假设成为相同的数量和分率,再寻找两次的量相差数,从而理清数量关系,以达到解决问题的目的。

1、有甲、乙两块地共4.8公顷,已知甲地的13 加上乙地的25
共1.73公顷。

两块地各有多少公顷?
2、学校买来足球和篮球共91个,从中借出足球的27 和篮球的38
后,还剩60个。

足球和篮球各买来多少个?
3、小红和小明共有图书78本,如果小红捐出图书的110
,还比小明多17本,小红和小明原来各有多少本图书?
4、学校绿化买来杨树和柏树共200棵,后来杨树增加了14 ,柏树减少了15
,杨树和柏树的总棵数变为196棵。

原来杨树和柏树各有多少棵?
5、甲、乙、丙三所学校共有学生2900人,如果甲校学生减少111
,乙校学生增加14人,则三所学校人数相等。

求甲、乙、丙三校原来各有多少人?
6、水果店有梨和苹果共72筐,卖出梨的35 和苹果的58
后,还剩28筐,问水果店原有梨和苹果各多少筐?
7、甲乙两个容器中共装有药水2000克,从甲容器中取出13 ,从乙容器中取出14
,这是两个容器里还剩药水1400克,问两个容器中原来各有药水多少克?
8、纯金放在水里重量减轻119 ,纯银放在水里重量会减轻110
,现有一块金银合金共重840克,放在水中减轻了48克,求这块合金的含金量?
9、一块长方形土地的周长是100米,如果长增加13 ,宽增加14
,那么周长就增加30米,这块土地原来的面积是多少平方米?
10、一辆卡车司机为玻璃厂运送一批玻璃,厂里规定:每块运费1元钱,但是如果到达目
的地后如果破损不但不给运费,还要每块赔偿0.5元。

该司机共运送3000块玻璃,结果只领到2985元的运费。

问途中破损了多少块玻璃?。

相关文档
最新文档