高考数学圆锥曲线分类汇编理
2020高考数学分类汇编--解析几何圆锥曲线

2020年普通高等学校招生全国统一考试一卷理科数学4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2B .3C .6D .911.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为 A .210x y --= B .210x y +-=C .210x y -+=D .210x y ++=15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 . 20.(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.4.C11.D15.220.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t(x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得221227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).2020年普通高等学校招生全国统一考试二卷理科数学5.若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A .55B .552C .553D .554 8.设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于E D 、ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .3219.(12分)已知椭圆1C :()012222>>=+b a b y a x 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与的2C 的顶点重合. 过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且AB CD 34=. (1)求1C 的离心率;设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.2020年普通高等学校招生全国统一考试理科数学5.设O 为坐标原点,直线x =2与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = A .1 B .2 C .4 D .820.(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 5.B11.A20.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试一卷文科数学6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A .1B .2C .3D .411.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为 A .72B .3C .52D .221.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 6.B11.B21.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y G t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2020年普通高等学校招生全国统一考试二卷文科数学8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为A B C D 9.设O 为坐标原点,直线x =a 与双曲线C :2222-x y a b=l(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .3219.(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 8.B9.B19.解:(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a-;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.2020年普通高等学校招生全国统一考试三卷文科数学6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :()220y px p =>交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .(14,0) B .(12,0) C .(1,0) D .(2,0)14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.21.(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 6.A7.B1421.解:(1=22516m =,所以C 的方程为1252516+=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试(北京卷)(5)已知半径为1的圆经过点)4,3(,则其圆心到原点的距离的最小值为(A )4 (B )5 (C )6 (D )7(7)设抛物线的顶点为O ,焦点为F ,准线为l ;P 是抛物线异己O 的一点,过P 做PQ ⊥l 于Q ,则线段FQ 的垂直平分线 (A )经过点O (B )经过点P(C )平行于直线OP (D )垂直于直线OP(12)已知双曲线:163C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________. (20)(本小题15分)已知椭圆22221x y C a b+=:过点()21A --,,且2a b =(I )求椭圆C 的方程:(II )过点4,0B -()的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 求PBBQ的值 2020年普通高等学校招生全国统一考试(江苏卷)6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 6.3218.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.2020年普通高等学校招生全国统一考试(天津卷)7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 7.D12.518.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=.(Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-. 2020年普通高等学校招生全国统一考试新高考9.已知曲线22:1C mx ny +=.A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 13.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 22.(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.9.ACD13.16322.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+, 代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=. 将①代入上式可得22222264(1)(2)(1)401212m km k km k m k k -+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.2020年普通高等学校招生全国统一考试(浙江卷)8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图象上的点,则|OP |=A .2BCD 15.已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______.21.(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.8.D1521.满分15分。
历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切, 则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )62.已知椭圆22:12x C y +=的右焦点为F ,右准线为l , 点A l ∈, 线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =(A).2 (B). 2 (C).3 (D). 33.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线, 该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =u u u r u u u r, 则双曲线的离心率是 ( )A .2B .3C .5D .104.已知椭圆22221(0)x y a b a b+=>>的左焦点为F , 右顶点为A , 点B 在椭圆上, 且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =u u u r u u u r, 则椭圆的离心率是( )A .3 B .22 C .13 D .125.点P 在直线:1l y x =-上, 若存在过P 的直线交抛物线2y x =于,A B 两点, 且|||PA AB =, 则称点P 为“点”, 那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点, 则双曲线的离心率为( ).A.45B. 5C. 25D.57.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)A.24y x =±B.28y x =±C. 24y x = D. 28y x =8.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切, 则r= (A )3 (B )2 (C )3 (D )69.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点, F 为C 的焦点。
2012年高考真题汇编——理科数学(解析版)10:圆锥曲线

2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y ab-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.3B2C.D.【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,by a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bc a x bc bcy --=-,令0=y ,得)1(22ba c x +=,所以c ba c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-yx ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30 的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C.4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
浙江历年高考数学试题及答案汇编十圆锥曲线

浙江历年高考数学试题及答案汇编十圆锥曲线1.若双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,则双曲线的离心率为$\sqrt{1+\frac{b^2}{a^2}}$。
2.图中给出的是一个斜三角形$ABP$,要求点$P$在平面$a$内运动,使得$\triangle ABP$的面积为定值。
根据题意可知,$\triangle ABP$的面积等于$\frac{1}{2}AB\cdot h$,其中$h$为$P$到$AB$的距离。
因此,$h$是一个定值,而$AB$是一个斜线段,所以$P$的轨迹是一条与$AB$垂直的直线。
3.设椭圆的焦点分别为$F_1$、$F_2$,椭圆上任意一点$P$到$F_1$、$F_2$的距离之和为常数$2a$($2a$为椭圆的长轴),即$|PF_1|+|PF_2|=2a$。
根据题意可得$|F_2A|+|F_2B|=12$,因此$|AB|=2a=24-|F_2A|-|F_2B|=12$。
4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两个焦点$F_1$、$F_2$的直线为双曲线的准线,且与$x$轴的夹角为$\theta=\arctan\frac{b}{a}$。
由于双曲线的左、右支分别对称,不妨考虑右支。
右支的渐近线方程为$y=\pm\frac{b}{a}x$。
过$F_1$的直线的斜率为$\tan(\theta+\frac{\pi}{4})=\frac{a}{b}$,因此该直线的方程为$y-\frac{b}{a}x=2b$。
将该直线与双曲线的渐近线联立,解得交点坐标为$B(\frac{2a^2}{b},\frac{2ab}{b})$。
同理,过$F_2$的直线的方程为$y+\frac{b}{a}x=2b$,将其与双曲线的渐近线联立,解得交点坐标为$C(-\frac{2a^2}{b},-\frac{2ab}{b})$。
高考试数学分类汇编圆锥曲线(供参考)

圆锥曲线2016年一般高等学校招生全国统一考试理科数学(1)(5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两核心间的距离为4,那么n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0((10)以抛物线C 的极点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,那么C 的核心到准线的距离为(A )2(B )4(C )6(D )8(20)(本小题总分值12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.2016年一般高等学校招生全国统一考试理科数学(2)(4)圆的圆心到直线 的距离为1,那么a=(A ) (B ) (C(D )2 【解析】A2228130x y x y +--+=10ax y +-=43-34-圆化为标准方程为:,故圆心为,,解得,应选A .(20)(本小题总分值12分)已知椭圆E :的核心在轴上,A 是E 的左极点,斜率为的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当,时,求△AMN 的面积; (II )当时,求k 的取值范围.【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 那么直线AM 的方程为.联立并整理得, 解得或,那么因为,因此 因为,,,整理得, 无实根,因此.因此的面积为. ⑵直线AM的方程为,2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-2213x y t +=x (0)k k >4t =AM AN =2AM AN =4t =22143x y +=()20-,()2y k x =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AM k k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM ⎫==⎪+⎭(y k x =+联立并整理得,解得因此 因此因为因此,整理得,. 因为椭圆E 的核心在x 轴,因此,即,整理得.2016年一般高等学校招生全国统一考试理科数学(3)(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左核心,A ,B 别离为C的左,右极点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .假设直线BM 通过OE 的中点,那么C 的离心率为 (A )13(B )12(C )23(D )34(16)已知直线l:mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 别离做l 的垂线与x 轴交于C ,D 两点,假设|AB |=2√3,那么|CD |=__________________. (20)(本小题总分值12分)已知抛物线的核心为F ,平行于x 轴的两条直线别离交C 于A ,B 两点,交C 的准线于P ,Q 两点.(I )假设F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )假设△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高考试数学分类汇编 圆锥曲线
圆锥曲线2016年普通高等学校招生全国统一考试理科数学(1)(5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0((10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8(20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.2016年普通高等学校招生全国统一考试理科数学(2)(4)圆的圆心到直线 的距离为1,则a=(A ) (B ) (C(D )2 【解析】A圆化为标准方程为:,故圆心为,,解得,故选A .(20)(本小题满分12分)2228130x y x y +--+=10ax y +-=43-34-2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-已知椭圆E :的焦点在轴上,A 是E 的左顶点,斜率为的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当,时,求△AMN 的面积; (II )当时,求k 的取值范围.【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 则直线AM 的方程为.联立并整理得, 解得或,则因为,所以 因为,,,整理得, 无实根,所以.所以的面积为. ⑵直线AM 的方程为,联立并整理得,解得或所以2213x y t +=x (0)k k >4t =AM AN=2AMAN =4t=22143x y +=()20-,()2y k x =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AM k k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM⎫==⎪+⎭(y k x =(2213x y t y k x ⎧+=⎪⎨⎪=⎩()222223230tk x x t k t +++-=x =x =AM ==所以因为所以,整理得,. 因为椭圆E 的焦点在x 轴,所以,即,整理得.2016年普通高等学校招生全国统一考试理科数学(3)(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(16)已知直线l:mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=2√3,则|CD |=__________________. (20)(本小题满分12分)已知抛物线的焦点为F ,平行于x 轴的两条直线分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程。
2024高考数学专项复习圆锥曲线专题:调和点列-极点极线
圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。
同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。
所以称A,B和C,D称为调和共轭。
2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。
3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。
由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。
4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。
圆锥曲线
2013年高考理科数学试题分类汇编:9圆锥曲线 一、选择题 1 .(2013年高考江西卷(理))过点(2,0)引直线l与曲线21yx相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于 ( )
A.yEBBCCD33 B.33 C.33 D.3 【答案】B 2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))双曲线2214xy
的顶点到其渐近线的距离等于 ( ) A.25 B.45 C.255 D.455 【答案】C 3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知中心在原
点的双曲线C的右焦点为3,0F,离心率等于32,在双曲线C的方程是 ( ) A.22145xy B.22145xy C.22125xy D.22125xy 【答案】B
4 .(2013年高考新课标1(理))已知双曲线C:22221xyab(0,0ab)的离心率为52,则C的渐近线方程为 ( ) A.14yx B.13yx C.12yx D.yx 【答案】C 5 .(2013年高考湖北卷(理))已知04,则双曲线22122:1cossinxyC与222222
:1sinsintanyxC的 ( )
A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等 【答案】D 6 .(2013年高考四川卷(理))抛物线24yx的焦点到双曲线2213yx的渐近线的距离是 ( ) A.12 B.32 C.1 D.3 【答案】B 7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,21,FF是
椭圆14:221yxC与双曲线2C的公共焦点,BA,分别是1C,2C在第二、四象限的公共点.若四边形21BFAF为矩形,则2C的离心率是
( ) A.2 B.3 C.23 D.26 【答案】D 8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)xyabab的两条渐近线与抛物线22(0)pxpy的准线分别交于A, B两
备战2014年高考数学全国统考区精选理科试题(详解)分类汇编9:圆锥曲线
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编9:圆锥曲线一、选择题1 .(贵州省六校联盟2013届高三第一次联考理科数学试题)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( )A .3B .2C .332 D .2 【答案】A 【解析】设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+- ,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c cc e e =+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e -+=,解得23e =,所以e ,选A.2 .(甘肃省河西五市部分普通高中2013届高三第二次联合考试 数学(理)试题)若P 点是以A (-3,0)、B (3,0)为焦点,实轴长为52的双曲线与圆922=+yx 的一个交点,则PB PA +=( )A .134 B.142 C. 132 D. 143【答案】C3 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知抛物线方程为24yx =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P 到直线l 的距离为2d ,则22d d +的最小值 ( )A2+ B1 C2- D1 【答案】D 【解析】因为抛物线的方程为24y x =,所以焦点坐标(1,0)F ,准线方程为1x =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学圆锥曲线分类汇编理
The document was prepared on January 2, 2021 2011-2018新课标(理科)圆锥曲线分类汇编 一、选择填空 【2011新课标】7. 设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,AB为C的实轴长的2倍,则C的离心率为( B ) (A)2 (B)3 (C)2 (D)3 【2011新课标】14. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点12
,FF在 x轴上,
离心率为22。过l的直线 交于,AB两点,且 △ABF2的周长为16,那么C的方程为 221168xy 。
【2012新课标】4. 设12
FF是椭圆2222:1(0)xyEabab的左、右焦点,P为直线32ax上
一点, 21FPF是底角为30的等腰三角形,则E的离心率为( C )
【解析】 21FPF是底角为30的等腰三角形221332()224cPFFFaccea
【2012新课标】8. 等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线xy162的准线交
于,AB两点,43AB;则C的实轴长为( C ) 【解析】设222:(0)Cxyaa交xy162的准线:4lx于(4,23)A(4,23)B
得:222(4)(23)4224aaa
【2013新课标1】4. 已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为√52,则C的渐近线方程为( C ) A、y=±14x (B)y=±13x (C)y=±12x (D)y=±x
【解析】由题知,52ca,即54=22ca=222aba,∴22ba=14,∴ba=12,∴C的渐近线方程
为12yx,故选C.
【2013新课标1】10、已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点。若AB的中点坐标为(1,-1),则E的方程为 ( D ) A、x245+y236=1 B、x236+y227=112 C、x227+y218=1 D、x218+y29
=1 【解析】设1122(,),(,)AxyBxy,则12
xx=2,12yy=-2, 2211221xyab ① 2222221xyab
②
①-②得1212121222()()()()0xxxxyyyyab, ∴ABk=1212yyxx=212212()()bxxayy=22ba,又ABk=0131=12,∴22ba=12,又9=2c=22ab, 解得2b=9,2a=18,∴椭圆方程为221189xy,故选D.
【2013新课标2】11. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( C ). A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x
【解析】设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+2p=5,则x0
=5-2p.
又点F的坐标为,02p,所以以MF为直径的圆的方程为(x-x0)2px+(y-y0
)y=0.
将x=0,y=2代入得px0+8-4y0=0,即202y-4y0+8=0,所以y0
=4.
由20y=2px0,得16252pp,解之得p=2,或p=8. 所以C的方程为y2=4x或y2=16x.故选C. 【2013新课标2】12. 已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( B ).
A.(0,1) B.211,22 C.211,23 D.11,32 【2014新课标1】4. 已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条
渐近线的距离为( A ) A. √3 B. 3 C. √3𝑚 D. 3m
【解析】双曲线C:x2﹣my2
=3m(m>0)可化为,
∴一个焦点为(,0),一条渐近线方程为=0, ∴点F到C的一条渐近线的距离为=.故选:A.
【2014新课标1】10. 已知抛物线C:y2
=8x的焦点为F,准线为l,P是l上一点,Q是直线
PF与C的一个交点,若=4,则|QF|=( B ) A. 72 B. 3 C. 52 D. 2 【解析】设Q到l的距离为d,则|QF|=d, ∵=4, ∴|PQ|=3d, ∴直线PF的斜率为﹣2, ∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2), 与y2
=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.
【2014新课标2】10. 设F为抛物线C:23yx的焦点,过F且倾斜角为30°的直线交C于A,B
两点,O为坐标原点,则△OAB的面积为( D )
A. 334 B. 938 C. 6332 D. 94 【2014新课标2】16. 设点M(0x,1),若在圆O:221xy上存在点N,使得∠OMN=45°,则0x的取值范围是___[-1,1]_____.
【2015新课标1】5. 已知M(x0,y0)是双曲线C:2212xy上的一点,F1、F2是C上的两个
焦点,若•<0,则y0的取值范围是( A )
(A)(-33,33) (B)(-36,36) (C)(223,223) (D)(233,
233)
【解析】 【2015新课标1】14. 一个圆经过椭圆221164xy的三个顶点,且圆心在x轴上,则该圆的标准
方程为 22325()24xy 。
【解析】设圆心为(a,0),则半径为4||a,则222(4||)||2aa,解得32a,故圆的
方程为22325()24xy。
【2015新课标2】7. 过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则MN=( C )
(A)26 (B)8 (C)46 (D)10 【2015新课标2】11. 已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,且顶角为120°,则E的离心率为( ) (A)√5 (B)2 (C)√3 (D)√2
【2016新课标1】5. 已知方程222213xymnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( A ) (A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)
【解析】由题意知:2234mnmn,解得21m,1030nn,解得13n,故A选项正确. 【2016新课标1】10. 以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E
两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为( B ) (A)2 (B)4 (C)6 (D)8
【解析】令抛物线方程为22ypx,D点坐标为(2p,5),则圆的半径为254pr, 22834pr,即A点坐标为(234p,22),所以22(22)234pp,解得
4p,
故B选项正确. 【2016新课标2】4. 圆2228130xyxy的圆心到直线10axy 的距离为1,则
a=
( A )
(A)43 (B)34 (C)3 (D)2
【解析】圆2228130xyxy化为标准方程为:22144xy,
故圆心为14,,24111ada,解得43a,故选A
【2016新课标2】11. 已知1F,2F是双曲线E:22221xyab的左,右焦点,点M在E上,1MF
与x轴垂直,sin2113MFF ,则E的离心率为( A ) (A)2 (B)32 (C)3 (D)2
【解析】离心率1221FFeMFMF,由正弦定理得12211222sin321sinsin13FFMeMFMFFF.故选A. 【2016新课标3】11. 已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)左焦点,A、B分别为C的左、右顶点,P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于E,若直线BM经过OE的中点,则C的离心率为( A )
(A)13 (B)12 (C)23 (D)34 【2016新课标3】16. 已知直线l:mx+y=3m-3=0与圆x2+y2=12交于A、B两点,过A、B分别作l的垂线与x轴并于C、D两点,若|AB|=23,则|CD|=___4____ 【2017新课标1】10. 已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直
线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( A )