6.2立方根的课件.2立方根

合集下载

最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根

最新人教版七年级下册数学辅导班同步培优课件11-第六章6.2立方根

3.计算:(1)- 3 1 =
3
;(2) 3 3 =
;
64
8
(3) 3 -0.027 =
;(4) 3 (-2)3 =
.
答案 (1)- 1 (2) 3 (3)-0.3 (4)-2
4
2
解析
(1)∵
1 4
3
=
1 64
,∴-
3
1 64
=- 1
4
.
(2) 3
33 8
=3
27 8
=3
3 3 2
=3.
2
(3)∵(-0.3)3=-0.027,∴ 3 -0.027 =-0.3.
6.2 立方根
5.若一个数的平方根与它的立方根完全相同,则这个数是 (
栏目索引
)
A.1 B.-1 C.0 D.±1,0
答案 C 根据平方根与立方根的性质,一个数的平方根与它的立方根完 全相同,则这个数是0.故选C.
6.(-6)3的立方根是
.
答案 -6
解析 易知 3 a3 =a,∴ 3 (-6)3 =-6.
知识点二 立方根的性质
6.2 立方根
栏目索引
7.下列式子不正确的是 ( )
A. 3 -a =- 3 a
B. 3 a3 =a
C.( 3 a )3=a D.(- 3 a )3=a
答案 D 由立方根的性质知(- 3 a )3=-a,故选项D中式子不正确.
8.下列语句正确的是 (
6.2 立方根
)
栏目索引
答案 A 设棱长为x cm,则x3=100,∴x= 3 100 ,∵64<100<125,∴4< 3 100 <5, 故选A.

人教版七年级下册数学6.2 立 方 根课件

人教版七年级下册数学6.2 立  方  根课件

3a3
.
解:(1) 3 64 3 64 -4 ;
(2) 3 0.064 3 0.43 0.4 ;
(3) 3 27 3 3 3 3 ; 125 5 5
(4) 3 a 3 a.
提示:求一个负数的立方根,可以先求出这个负 数绝对值的立方根,然后再取它的相反数.
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值. 例4 用计算器求下列各数的立方根:343,-1.331.
如∵ (3)2 9 , ∴ ﹢3 是9的算术平方根,
即 9 3
式子读作“9的算术平方根等于3” 或“根号9等于3” 规定:0的算术平方根是0
填空:
求平方
1 1
1
2 2
4
3
9
3
平方 互逆 运算
开平方
求平方根
1
1 1
4
2 2
9
3
3
求一个数a的平方根的运算,叫做开平方.
你能类比平方根的定义给出立方根的定义吗?
立方根的估算 50的立方根记作
3 50 .
问题:3 50 有多大呢?
因为 33 27 , 43 64
所以
3
‗‗‗‗3‗.6‗8
3
50
‗3‗.6‗9‗4‗‗‗‗
因为 3.63 46.656 , 3.73 50.653
所以 ‗‗‗3‗.‗6‗3‗.‗68‗ 3 50 3‗.6‗39‗.7‗‗‗‗‗
你能看出正数,0,负数的立方根各有什么特点?
8的立方根是 2
0.125的立方根是
1 2
-8的立方根是 -2 0的立方根是 0
归纳:
一个数的立方根只有一个; 正数的立方根是正数; 零的立方根是零; 负数的立方根是负数。

6.2 立方根

6.2 立方根
也就是把根号里的“负号”直接从根号里 面提到了根号“外面” 。
由此得出求一个负数的立方根的一般方法:
3 a 3 a
也就是说,求一个负数的立方根,可以先 求出这个负数的绝对值的立方根,然后再取它 的相反数。
例2:求下列各式的值。
(1) 3 8 ;(2)3 8 ;(3) 3 0.125
(4) 3 3 3 (5) 3 64
(4)0;
(5) 8 125
解:∵ (3)3 27
∴ -27的立方根是-3。
即 3 27 3
问题:
正数有立方根吗?如果有,有几个。
负数呢? 零呢? 从上面的例1可知:一个正数有一个正的立 方根;一个负数有一个负的立方根,零的立方根 是零。
从上面的例题可知:
3 27 3 3 27 3
由此可得出: 3 27 3 27
是负数。
表示 a的平方根表示为
a
a的立方根表示为:
3a
3、开立方
开平方
开立方

求一个数a的平方根 的运算,叫做开平方。
求一个数a的立

方根的运算,叫 算;
②它是一种运算,而 不是结果,它的结果是平 方根。
①它与立方 互为逆运算;
②它是一种
运算,而不是结
果,它的结果是
(5) 0的平方根和立方根都是0 √
练一练
2.求下列各式的值(口答):
(1) 31000
(3) 3 1
(2) 3 0.001
(4) 3 64 125
试一试:
1.21 的立方根是 3 21 ,- 21 的立方根是 3 21
2.若一个数的平方根是 8,则这个数的立方根是 2
3.- 8的立方根与9的平方根的积是 ± 6

人教版初一数学 6.2 立方根PPT课件

人教版初一数学 6.2 立方根PPT课件
习题6.2第1,2,3,5,6,9题.
2.七彩作业.
第六章
实数
6.2 立方根
学习目标
1.了解立方根的概念,初步学会用根号表示一个数的立方
根,建立符号意识.
2.理解开立方与立方互为逆运算,会用立方运算求某些数
的立方根,提升运算能力.
3.经历用计算器探索数学规律的过程,发展推理能力.
学习重难点
学习重点:立方根的概念及求法.
学习难点:立方根与平方根的区别与联系.
有一个,是正数
0
负数
0

0
有一个,是负数
探究新知
学生活动四【一起探究】
完成下面的填空:
3
(1)因为 −8=
3
(2)因为 −27=
(3)因为
3
-2
3
,- 8=
-3
3
-2
,- 27=
3
,所以 −8
-3
3
=
,所以 −27
3
- 8.
=
3
- 27.
1
1 3
3
1
1
1 = 3 1

= 5 ,= 5 ,所以 −
.
125
125
125
125
探究新知
思考: 3 −a与- 3 a有何关系?
解: 3 −a=- 3 a.
探究新知
学生活动五【一起探究】
利用计算器探究被开方数的小数点与立方根的小数点之间的变
化规律.
(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?
你能说说其中的道理吗?


3
0.000 216
3
(4) −8=-2;(5)

人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】

人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】


156 157 153 165 159 157 155 164 156

图 的 步 骤
1、计算最大值与最小值的差(极差)
在以上数据中, 最大值-最小值= 17_2_-__14_9__=__2_3___.
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
三、研读课文
158 158 160 168 159 159 151 158 159

168 158 154 158 154 169 158 158 158

159 167 170 153 160 160 159 159 160

149 163 163 162 172 161 153 156 162
例3 求下列各式的值(口答): (1)3 0.001 ; (2)3 1000 ;(3)3 216000 .
例4 求下列各式中的x:
(1) x3=0.125;
(2) 1
4
(10-x)3+54=0.
利用计算器算一算:
0.1
3 0.001
3 1 1
-0.06
3 0.000216
二、学习目标
1 了解频数及频数分布,掌握划分法 2 会用表格整理数据表示频数分布.
三、研读课文
认真阅读课本第145至149页的内容,
知 完成下面练习并体验知识点的形成过程. 识 点 一 问题 为了参加学校年级之间的广播体操比
赛,七年级准备从63名同学中挑出身高相 差不多的40名同学参加比赛.为此收集到这 63名同学的身高(单位:cm)如下:

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。

《立方根》课件精品 (公开课)2022年数学PPT


(3) 3 3; 8
(3)
3 2
3
27 8
3 3, 8
3 3的立方根是 3,
8
2
即 3 33 3 . 82
(4)0.216;
(4) 0.63 0.216,
0.216 的立方根是0.6, 即3 0.216 0.6.
(5)-5.
(5) -5的立方根是3 -5.
练一练 因为 3 8 =_–__2_, 3 8 =_–__2_, 所以 3 8 __=__ 3 8 ; 因为 3 2 7 =_–__3_, 3 2 7 =_–_3__, 所以 3 2 7 __=__ 3 2 7 ;
__5_和__-_5__.
-5
-2 0 2
5
要点归纳
1.互为相反数的两个数分别位于原点的两侧(0除外); 2.互为相反数的两个数到原点的距离相等.
几何意义
3.一般地,设a是一个正数,数轴上与原点的距离是 a的点有两个,它们分别在原点的两侧,表示a和 -a,这两点关于原点对称.
归纳总结
1. 一般地,设a是一个正数,数轴上与原点的距离是 a的点有___两__个,它们分别在原点的__左__右__,表示 __-_a_和__a_,我们说这两点_关__于__原__点__对__称_____.
讲授新课
活动2:请观察这两个数,它们有什么异同点?你还能 列举两个这样的数吗?
符号不同
2.5
2.5
数字相同
要点归纳
1.定义:只有符号不同的两个数叫做互为相反数.
2.一般地,a和-a互为相反数.
代数意义
练一练
判断题:
(1)-5是5的相反数;(√ )
(2)-5是相反数;( × )
(3)2

6.2立方根

1 8
3
1 64 8 5.说出下列各式所表示的意义,并求值.
3
64
3
27 64
3 0.125
四、课堂检测
课本第51页练习1,3,4.
课本第51页习题6.2第1,2.
五、课堂小结
1.立方根的概念及表示 2.立方根的性质
3.求一个数的立方根
六、课后作业 正式作业: 51页课本习题6.2第3,5,8,9题
家庭作业: 练习册练习四 下一课: 复习平方根和立方根.
一、复习引入
1. 平方根的概念是什么?试举例说明. 2.平方根有哪些性质?试举例说明. 3.要制作一个容积为27m3的正方体形状的包装 箱,这种包装箱的棱长应该是多少?
二、呈现目标
1.理解立方根的概念和性质.
2.学会求一个有理数的立方根.
三、自主学习、合作探究
认真阅读课本第49至50页内容,思考并完成下列问题. 1.认真看课本49页问题后的Байду номын сангаас容,总结立方根的概 念,谈谈你对概念的理解,并举例说明. 2.认真看课本50页归纳后的内容,学习如何表示一个 数的立方根?并举例说明. 3.完成课本49页及50页探究,总结立方根有哪些性质? 4.求下列各数的立方根. 64 0.001

初中数学七年级下册 6.2 立方根课件2


探究 先填写下表,再回答问题:
a 0.000 001
3 a 0.01
a 0.000 216
0.001
0.1
0.216
1 1 000
1 10
216
3 a 0.06
0.6
6
1 000 000
100
216 000
60
问题:从上面表格中你发现了什么规律?
归纳:被开方数的小数点每向右(或左) 移动三位,开方后立方根的小数点就向右 (或左)移动一位.
x 3 27.
∴x=-3.
(2) 125x3-64=0. x3 64 . 125 x 3 64 . 125
∴x=
4. 5
例3 你能求出下列各式中的未知数x吗? (1)x3+27=0; (2)125x3-64=0; (3)2(x+1)3-16=0.
解:(3) 2(x+1)3-16=0. 2(x+1)3=16. (x+1)3=8.
例2 估计3,4,3 50 的大小.
Q 解: 3 27 3, 3 64 4, 27 50 64,
3 27 3 50 3 64, 3 3 50 4.
练习 比较下列各组数的大小.
(1) 3 9与2.5
(2) 3 3与 3
2
解: ( 3 9 )3 =9,
(2.5)3 ( 5 )3 2
x 1 3 8.
x+1=2. ∴x=1.
1.估计68的立方根在( C ) A. 2与3之间 B.3与4之间 C. 4与5之间 D.5与6之间
2.一个正方体的水晶砖,体积为100 cm³, 它的棱长大约在 ( A )
A.4 ㎝~5 ㎝之间 B.5 cm~6 cm之间 C.6 ㎝~7 ㎝之间 D.7 ㎝~8 ㎝之间

《立方根》优质课件

5. 总结
回顾立方根的几何意义和应用 ,强调重点和难点,并引导学 生探索其背后的原理和应用拓
展。
04
课堂活动与探究
活动一:寻找生活中的立方数
总结词
培养学生观察生活、应用数学的能力
详细描述
让学生从生活中的实例出发,如橡皮的体积、饮料瓶的容量等,感受立方数在生活中的应用。
活动二:利用立方根解决实际问题
让学生参与讨论,提出自己的看法 和问题。
5. 总结
回顾立方根的应用和拓展,强调重 点和难点。
实例三:立方根的几何意义
总结词
理解、掌握、探索
详细描述
通过几何图形的演示和讲解,让学生理解立方根的几何意义,掌握其在实际生活 中的应用,探索其背后的原理。
实例三:立方根的几何意义
教学方法:讲解、演示、探究 教学步骤
情境创设与问题提
创设情境
通过实际问题,如计算容积、密度等 问题,引导学生思考如何求解立方根 。
问题提出
通过实际问题和模型,提出求解立方 根的必要性,激发学生学习兴趣。
02
知识讲解
立方根的定义
立方根的定义
立方根是指一个数的立方等于另一个数时,这个数就是被开方的数的立方根, 也称为三次方根。例如,如果x³=a,那么x就是a的立方根。
总结词
提高学生分析问题、解决问题的能力
详细描述
通过实例分析,如求一个盒子的体积,让学生掌握立方根在 实际问题中的应用,并能够自主解决问题。
活动三:探索立方根的规律
总结词
加深学生对立方根的理解,培养学生的 探究能力
VS
详细描述
通过一系列的探究活动,如比较不同数的 立方根、找规律等,引导学生发现立方根 的规律,进一步加深对立方根的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档