2016陕西公务员考试行测备考:行程问题解题技巧

合集下载

行程问题的解题技巧和方法

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题指的是计算一个人或物体在一段时间内的移动距离问题。

这类问题中,我们通常会遇到很多不同的变量,包括起点和终点位置、速度、时间等等。

因此,解决这类问题需要一些特定的技巧和方法。

以下是一些解决行程问题的技巧和方法:
1. 确定问题所需的变量
在解决行程问题之前,我们需要先确定问题所涉及的所有变量。

例如,起点和终点位置、速度、时间等。

通过确定这些变量,我们可以更好地规划解题过程,避免出现遗漏或错误。

2. 使用单位转换
在行程问题中,我们通常需要涉及到不同的单位,例如英里、千米、小时、分钟等等。

为了更好地计算问题,我们需要将所有的单位转换成相同的单位。

例如,将小时转换成分钟、将英里转换成千米等等。

3. 利用公式计算
在行程问题中,有很多公式可以用来计算距离、速度和时间等。

例如,速度等于距离除以时间(v=d/t),距离等于速度乘以时间(d=v*t)等等。

通过利用这些公式,我们可以更快速地计算出所需的答案。

4. 注意时间和速度的关系
在行程问题中,时间和速度是密切相关的。

当速度增加时,时间会减少,距离也会相应地减少。

因此,在解决行程问题时,我们需要注意时间和速度的关系,并确保计算过程中这两个变量的一致性。

总之,解决行程问题需要一些具体的技巧和方法,包括确定变量、使用单位转换、利用公式计算、注意时间和速度的关系等等。

只有通过不断练习和实践,我们才能更好地掌握这些技巧和方法,并在实际问题中得到更好的应用。

行程问题解题技巧 让你快速解决的方法

行程问题解题技巧 让你快速解决的方法

行程问题解题技巧让你快速解决的方法行程问题解题技巧学会用正反比例这类行程问题很简单比例思想是考生在做题过程中常常会用到的一种思想,也是行测数量关系局部的重点考察内容,比例问题的难度属于中等偏上,相对于列方程求解这类常规方法而言,假如能巧用正反比,在行程问题中可以到达事半功倍的效果。

下面通过两个例题带大家体会如何利用正反比巧解行程问题。

例1.一战斗机从甲机场匀速开往乙机场,假如速度进步25%,可比原定时间提早12分钟到达;假如以原定速度飞行600千米后,再将速度进步1/3,可以提早5分钟到达。

那么甲乙两机场的间隔是多少千米?A、750B、800C、900D、1000【答案】C。

解析:第一次提速前后速度比4:5,那么时间比为5:4,差了一份,相差12分钟,那么原速走完全程需要1小时,即60分钟。

第二次提速前后速度比为3:4,那么时间比为4:3,差5分钟,即原来的速度走完后面的路程需要20分钟;可得原速走600千米需要60-20=40分钟,那么原速为600千米÷40分钟=15千米/分钟,那么全程为15千米/分钟×60分钟=900千米,应选择C选项。

列方程求解是解决数量关系问题的常规思路,但是在行程问题中列方程那么比拟繁琐,而比例法的好处在于摆脱方程的束缚,利用正反比,可到达快速求解的目的。

例2.一个小学生从家到学校,先用每分钟50米的速度走了2分钟,假如这样走下去,他上课就要迟到8分钟:后来他改用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的间隔是多少米?A、1200B、3200C、4000D、5600【答案】:C。

解析:V1=50,前2分钟走了100米,改变速度后V2=60,因为后一段路程两者走的间隔相等,路程一定的时候,速度和时间成反比。

因为V1:V2=5:6,在速度提升之后,t1:t2=6:5,从慢8分钟到快5分钟,增加了13分钟,1个比例点对应13分钟。

假如以50米/分钟的速度来走剩下的路程,应该走6个比例点,需要13×6=78分钟。

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧资料来源:中政行测在线备考平台行程问题的重点在于三个量:路程、速度、时间,考来考去总是这三个点,那命题人如何增加难度呢?一是改变考查形式,比如直接求速度变成间接求解,二是增加因素,比如流水对船速的影响、车身长对路程的影响,等等。

但归根究底还是考一个公式:路程=速度*时间,命题就围绕这个公式展开,一般都是已知一个或多个运动过程,每个运动过程包含三个量:路程、速度、时间,与此同时,不同的运动过程间这三个量必然存在某个共通点,比如路程相同,或者相同时间。

因此,行程问题的基本解题思路就是:分析题干中的每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然。

1、行程问题之相遇问题答题技巧相遇问题是行程问题的一种考查形式,指两人(或两车等)从两地出发相向而行的行程问题,是研究“速度”、“相遇时间”和“两地距离”三者之间的数量关系的应用题。

三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点。

很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含的已知条件。

尤其,近年来考题难度有所增加,单一的相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案。

2、行程问题之追击问题答题技巧追及问题指的是两人(物)在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

它考虑的是两人(物)在相同时间内所行的路程差。

命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中的“同时同地出发型”,这里要注意一点,它的路程差是一个隐含的已知条件,与追上次数有关。

第一次追上,路程差是一个周长,第N次追上,路程差是n个周长,做题时如果不明白这一点,很难理清思路。

公考行程追击技巧

公考行程追击技巧

公考行程追击技巧今天来聊聊公考行程追击技巧的一些实用技巧。

我有个朋友,他参加公考的时候,一遇到行程追击问题就头疼,感觉那些车呀、人的运动情况搞得自己晕头转向的。

就像在一个大迷宫里找出口,完全摸不着头脑。

其实啊,行程追击问题就像一场赛跑。

咱们先来说一个基本的例子,如果有A和B两个人,A的速度比B 快,他们同时出发,同向而行,这就是典型的追击问题啦。

这里面有个关键公式,就是追击路程等于速度差乘以追击时间。

就好像两个人赛跑,一个人比另一个人跑得快,他每秒能多跑个几步,那多长时间能够追上前面那个人呢,就看这个多跑的速度乘以时间能不能把一开始差的距离给补上。

我自己也做错过不少这类题呢。

有次考试我就想当然地以为很简单,没仔细看条件就直接用公式计算了。

结果啊,人家题目里设了个小陷阱,速度不是恒定不变的。

这就像你以为跑步的一直是匀速跑,没想到他中途突然加速了。

这就是我犯的错误,当时才意识到看清楚题目条件多么重要。

说到这里,我想起一个答题技巧。

遇到这种问题,第一步就是要确定是否是追击问题的模型,这就像在一群人中先找出运动员来。

接下来再过清楚题目里给出的各个量,像速度啦、路程啊,还有出发的时间先后是不是有影响啥的。

然后看看有没有隐藏条件,这就好比是在运动员身上找有没有受伤或者特殊装备这种隐藏的影响比赛的因素。

不过呢,这个技巧也有局限性。

有时候题目表述特别复杂,数据给得又多,可能就不容易一下子判断出来。

那我的替代方案是,根据题目的问法,先假设是追击问题,把相关的量按照公式列出来,再和题目中的条件去比对,看看能不能成立。

你可能会问了,要是没有掌握这个公式怎么办?老实说,我一开始也不懂这个公式是怎么来的。

这时候你可以自己画个简单的图来表示这个行程过程,就像自己画一个小小的跑道,把追击者和被追击者的运动路线画出来。

这就有助于你理解他们之间的路程关系,就算最后不用公式也能把答案推出来。

有趣的是,有时候行程追击问题还会和别的知识综合,像比例关系啦。

行程问题的解题技巧

行程问题的解题技巧

行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。

比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。

这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。

这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。

是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。

比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。

只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。

2016年公务员考试行测:巧解行程问题

2016年公务员考试行测:巧解行程问题

2016年公务员考试行测:巧解行程问题行程问题是历年行政职业能力测验考试的难点题型,也是考查的重点内容之一。

行程问题所涉及的范围非常广,条件多,变化复杂,很难找到已知量与未知量之间的关系,从而列不出正确的方程,因而令许多考生望而生畏。

下面给大家介绍解决行程问题中常用的一种方法——比例法。

所谓比例法,就是根据题目给出的条件,利用基本关系式:速度×时间=距离,找出相关量之间的比例关系,通过比例差值,求出各项数值,最后得出需要的结果。

在行政职业能力测验行程问题中,比例法的应用主要包括以下三类:类型一:路程一定,速度与时间成反比关系【例1】A、B两地有一座桥,甲、乙两人分别从A、B两地同时出发,3小时在桥中间相遇,如果甲加快速度,每小时多行2千米,而乙提前0.5小时出发,则仍旧在桥中间相遇;如果甲延迟0.5小时出发,乙每小时少走2千米,还会在桥中间相遇,则A、B相距( )千米。

A.60B.64C.72D.80【答案】C【解析】设甲的速度为x千米/时,乙的速度为y千米/时。

第一次与第二次相比时,乙的速度及所用时间是一样的,而甲的时间少了0.5小时,因此可得,解得x=10。

同理,第一次和第三次相比,可得,解得y=14。

故A、B间的距离为(10+14)×3=72千米。

因此,本题选择C选项。

【例2】甲乙两人在环湖小路上匀速行驶,且绕行方向不变,19时,甲从A点,乙从B点同时出发相向而行。

19时25分,两人相遇;19时45分,甲到达B点;20点5分,两人再次相遇,乙环湖一周需要多长时间?( )A.72B.81C.90D.100【答案】C【解析】19时25分钟第一次相遇后,甲19时45分(即经过20分钟)到达B点,而乙从B点到第一次相遇的地点需要25分钟,因此甲、乙的速度之比为5:4,两人两次相遇的时间间隔为40分钟,期间路程之和为环湖一周,甲40分钟的路程乙需要50分钟,因此,乙环湖一周需要40+50=90分钟。

公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。

我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。

就像走进了一个迷宫,绕来绕去找不到出口。

首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。

比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。

这种简单题就像是走路碰到一块小石头,轻松就能跨过去。

那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。

两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。

比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。

对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。

后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。

比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。

对了,还有个事儿要说。

在解行程问题的时候,画图是个特别好的方法。

就像给你一堆乱线,你把它整理好画出来就清楚多了。

有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。

但是,我得承认,这个画图法虽然好用,但也有局限性。

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。

在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。

以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。

利用这个公式,我们可以很方便地求解各类行程问题。

2. 比例法:比例法是行程问题中常用的方法之一。

如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。

3. 假设法:假设法适用于一些无法确定具体数值的行程问题。

通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。

4. 方程法:方程法是行程问题中最常见的方法之一。

通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。

5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。

如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。

6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。

通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。

总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。

在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。

行程问题的解题技巧和方法

行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。

解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。

例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。

2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。

因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。

3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。

当我们知道任意两项,都可以通过公式求出另一项。

因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。

4. 求平均速度
有些题目中,物体在行程中可能有多个速度。

此时,我们可以求出平均速度来解决问题。

平均速度的公式是:平均速度=总路程÷总时间。

在求解平均速度时,我们需要注意速度的单位应该统一。

总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。

行程问题公考万能解题口诀

行程问题公考万能解题口诀行程问题啊,说白了就是考咱们的数学思维和速度感,特别是在公考的时候,简直就是必考的“常客”了。

看似简单,其实有点儿“套路”,如果不掌握个诀窍,真有可能被绕进去。

别怕,今天我就给大家来一套行程问题的“万能解题口诀”,帮你一招搞定,简单又高效,保证你考试不掉链子。

首先呢,行程问题大致就是考你如何算出“时间、速度和路程”之间的关系。

三者的关系呀,可以用一个经典的公式来表示,那就是:路程=速度×时间。

没错,就是这么简单的公式,三者之间就像铁三角,缺一不可。

听着容易,做起来可得看清楚题意。

别急,先稳住,接下来告诉你怎么把它拆开来用。

行程问题最常见的两种类型,第一种是“单一行程”,就是说你一个人出发,走一路,到达一个目的地。

你只需要知道你的速度和时间,直接套公式就行。

比如说,某人开车从A地到B地,开了3个小时,平均速度是60公里/小时,那你算一下,总共走了多少路?答案就很简单了,路程=速度×时间=60×3=180公里。

是不是简单?对吧,考场上遇到这种,基本就是几秒钟的事儿,大家心里有数了就行。

但是,如果题目稍微复杂点,开始给你两个人或者两种交通工具,哎呀,麻烦就大了。

不过别怕,给你个诀窍,先记住:“相遇”问题和“追及”问题是行程问题的两大主角。

这些题目出现时,不要慌,照着套路走。

举个例子,假如有两个小伙子,一个骑车从A地出发,另一个骑车从B地出发,两个人相向而行,问题是他们什么时候相遇,路程是多少。

哎呀,这个就需要注意一下啦。

相遇问题嘛,得想象一下,两个小伙子从不同地方出发,最终碰面。

这里有个小诀窍,速度加起来,时间嘛,再按照公式算。

别忘了,两个小伙伴的速度加起来就等于他们两个人“合力”的速度,时间就等于“合力速度”下两人相遇所需的时间。

比如说,A从A地出发,B从B地出发,A骑车的速度是10公里/小时,B骑车的速度是15公里/小时,两人相向而行,问多久会碰面?好啦,这时候你就可以先求出他们的“合力速度”,就是10+15=25公里/小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最全汇总>>>陕西公务员历年真题2016陕西公务员考试行测备考:行程问题解题技巧通过最新陕西公务员考试资讯、大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。

陕西中公教育整理了陕西省考资料大全供考生备考学习。

需要更多指导,请选择在线咨询一对一解答。

行测数学运算中的行程问题一直是困扰众多考生的难点。

行程问题包含了多种知识点,如:简单行程问题、多次相遇、牛吃草等问题,而且其变化方式很多,考生用了大量的时间复习,但在考场上往往还是需要花很多时间去解题或者靠直觉选择答案。

难道行程问题就没有方法可循吗?接下来中公教育专家带您看看行程问题的解题技巧。

行程问题总的来说,数形结合法是必须要掌握的,要能根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,然后选择适当的方法再继续解题。

下面来看下这样一道行程问题:
【例题】甲、乙二人分别从 A、B 两地同时相向出发,往返于A,B 之间,第一次相遇在距 A地30公里处,第二次相遇地点在距A地40公里处。

求甲、乙的速度比。

A.3:4
B.3:2
C.6:5
D.6:7
在考场上看到这样复杂的行程问题,估计大多数人会选择放弃。

其实这样的题型只要稍微复习一下是可以轻松地解出来的。

请大家跟着中公教育专家一起来分析一下这个题目:
本题利用的是行程问题中的相遇模型,甲乙第一次相遇点距A点的距离实际是甲第一次相遇时所走过的路程,记为S甲1=30;甲乙两个人从出发到第二次相遇,总共走了三个全程,对于甲自己来说,他所走的总路程是第一次相遇所走的路程的3倍=90公里,记为S 甲=90。

设A、B两地距离为S,则有90=S+S-40,求出S=65公里,那么第一次相遇,乙走了65-30=35公里,时间相同的时候,速度比=路程比=30:35=6:7。

因此,答案选D。

其实,解此题的核心除了要明确相遇问题中甲和乙的路程关系之外,考察的仍然是比例思想。

在行程问题,vt=S,这个公式中暗含的正反比关系也是需要大家在解题过程中注意应用的。

当v(t)一定时,s和t(v)是成正比例变化的;
当S(路程)一定时,v和t是成反比例变化的。

在此中公教育专家提醒大家,在掌握好行程问题中的相遇、追及模型的同时请结合比例思想进行解题。

最全汇总>>>陕西公务员历年真题更多内容,一起来看看陕西公务员考试课程是如何设置教学的!
中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头
筹!公务员考试题库系统邀请您一同刷题!。

相关文档
最新文档