[考研数学必备知识框架]考研数学公式手册随身看--全

合集下载

考研数学一公式手册大全(最新整理全面)

考研数学一公式手册大全(最新整理全面)
k n
三角函数的有理式积分:
2u 1 u 2 x 2du sin x , cos x , u tg , dx 2 2 2 1 u 1 u 1 u 2
第 1 页
全国考研数学一公式手册
一些初等函数: 两个重要极限:
e x ex 双曲正弦 : shx 2 x e ex 双曲余弦 : chx 2 shx e x e x 双曲正切 : thx chx e x e x arshx ln( x x 2 1) archx ln( x x 2 1) 1 1 x arthx ln 2 1 x
cos cosα sinα -sinα -cosα -cosα -sinα sinα cosα cosα
tg -tgα ctgα -ctgα -tgα tgα ctgα -ctgα -tgα tgα
ctg -ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα
全国考研数学一公式手册
高等数学公式
导数公式:
(tgx) sec 2 x (ctgx) csc x (sec x) sec x tgx
2
(arcsin x)
1
(csc x) csc x ctgx (a x ) a x ln a (log a x)
a b c 2R sin A sin B sin C
·余弦定理: c a b 2ab cos C
2 2 2

·正弦定理:
·反三角函数性质: arcsin x

2

考研数学二必背公式及知识点(自己精心总结整理)

考研数学二必背公式及知识点(自己精心总结整理)

[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) ( n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0, 则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sin α+sin β=2(sin α+β2)(cosα−β2) sin αcos β=12(sinα+β2+cosα−β2)sin α-sin β=2(cosα+β2)(sinα−β2) cos αcos β=12(cos α+β2+cosα−β2)cos α+cos β=2(cos α+β2)(co sα−β2) sin αsin β=-12(cosα+β2-cosα−β2)cos α-cos β=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan β cot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x) csc(x) cot(x)arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]函数极限x→•:(6)limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x) =A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设lim x→x 0f(x)=A(∃),lim x→x 0f(x)=B(∃),则○1lim x→x 0 [f (x )±g (x )]=A±B. ○2lim x→x 0[f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小(9)sin x 1−cos x ~12x 2 arc sin x a x −1~lna ⋅xtan x (1+x )α−1~αx ~xarctan xln (1+x )e x −1lim n→∞√n n =1 , lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn =max {a i }i =1,2,…,m;a i >0洛必达法则:“00”型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞”型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)及h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)在 (x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }(x n ≠x 0),极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 ,·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

最新全国考研资料数学公式大全(全国考研资料必备,免费下载)打印版.doc

最新全国考研资料数学公式大全(全国考研资料必备,免费下载)打印版.doc

高等数学公式篇·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]导数公式:基本积分ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰+-+--=-+++++=+-===-Ca x x a a x xdx a x Ca x x a a x xdx a x I nn xdx xdx I n n nn ln 22)ln(221cos sin 22222222222222222ππ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

考研数学公式大全(考研必备,免费下载)

考研数学公式大全(考研必备,免费下载)

高等数学公式篇·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]导数公式:基本积分ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰+-+--=-+++++=+-===-Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn ln 22)ln(221cos sin222222222222222220ππ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y na b x f y y y y n a b x f y y y na b x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==⎰⎰--==⋅=⋅=babadtt f ab dxx f ab y k rm m kF A p F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

考研数学常用公式总结

考研数学常用公式总结

考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。

在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。

本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。

1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。

- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。

(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

2023-2024年考研《数学》必备知识点考点汇编

考研数学公式整理1 1.等价代换的补充2.泰勒公式3.基本导数公式4.几个常用函数的高阶导数5.不定积分的基本积分公式6.定积分性质7.渐近线8.微分中值定理考研数学公式整理2 ⚫二重积分的性质⚫对称性⚫ 莱布尼茨判别法则⚫麦克劳林级数⚫狄利克雷收敛定理⚫奇偶函数的傅里叶级数⚫常用的二次曲面考研数学公式整理31.行列式的性质()()()11121311121321222321222331323331323311111212131321222331.0,0.,.,.T A A k k ka ka ka a a a a a a k a a a a a a a a a a b a b a b a a a a ==+++行列互换,其值不变,即某行列全为则行列式的值为某行列有公因子则可把提到行列式外面某行列每个元素都是两个数之和则可拆成两个行列式之和性质1 性质2 性质3 性质4 ()()()11121311121321222321222332333132333132331112131112132122231121122213313233..0..a a ab b b a a a a a a a a a a a a a a k a a a a a a a a a ka a ka a ka a a a =+=++两行列互换,行列式的值变号两行列元素相等或对应成比例,则行列式的值为某行列倍加到另一行(列),行列式的值不变性质5 性质6 性质7 23313233a a a a +2.抽象型行列式—解法解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。

主要的公式有:11112121.,2.,3.,4.5.6.,,,,7..T T n n n n A n A A A A A n kA k A A B n AB A B A n A AA n A A n A A n AB A B λλλλλλ−*−−=======L L 若是阶矩阵是的转置矩阵,则;若是阶矩阵则;若都是阶矩阵,则;若是阶矩阵,则;若是阶可逆矩阵,则;若是阶矩阵的特征值则;若阶矩阵与相似,则4.逆矩阵的性质()()111111111111;10;;.A A kA A k k AB B A AA AB A B −−−−−−−−−−−−==≠==+≠+1)()2)()3)();4) 没公式特别注意:5.逆矩阵—解法()()()()111111111110,..,,,.0000.0000A A A AA E E A AB n AB E A B A B AB A A A B B BB A*−−−−−−−−−−−≠=→==+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦若则都是阶矩阵则对型化为型.;方法一:用伴随方法二:用初等变换方法三:用定义方法四:用单位矩阵恒等变形方法五:用分块公式6.矩阵的秩定理8.具体向量组如何判定相关无关()()1212121212,,,,,,0,,,1.,,,,,,00.m m m n n x r m m n n n n ααααααααααααααα⇔=⇔<=+⇔=≠L L L L L 对具体(含参数)向量组如何判定相关无关?向量组相关(无关)齐次方程组有非零解(只有零解)(向量个数)((向量个数)).个维向量必相关个维向量相关(无关)()定理1推论1推论21212112121212,,,,,,,,,,,,,,,,,,,,,m m m m nm m m r m ααααααααβββααααααβββ++−⎧⎨⎩⎧⎨⎩L L L L L L L 若向量组相关,增加个数后的向量组则仍相关;对应减少向量坐标后的向量组若向量组无关,减少个数后的向量组则仍无关.对应增加向量坐标后的向量组定理29.抽象向量组如何证明无关10.特征值和特征向量的性质11.相似矩阵的性质()()111,.A B nnii ii i i A B A B r A r B E A E B a b λλλλ==⇒=⇒=⇒−=−=⇒=∑∑:()(必要条件);;即;()()()11112,,,,,,,.n n n n n n A B P AP B P A kE P B kE P A P B A B A kE B kE A kE B kE r A kE r B kE A B A B A PB P −−−−=+=+=+++=++=+=:::::()如设则因此由要想到进而;由要想到进而可用相似求 12.矩阵相似对角化的条件()()11,0.n i i nTn ii i A A n A i i n r E A i A n A r A A A a λλαβ=Λ⇔⇔−−=⇐⇐==Λ⇔≠∑::有个线性无关的特征向量;的重特征值有个无关的特征向量,即;有个不同的特征值;是实对称阵.对或的矩阵注:13.正定定理()12,,,0,0000,T n T ii f x x x x Ax x x Ax A A A a A =⇔∀≠>⇔⇔≤L 二次型正定有;的特征值都大于;的全部顺序主子式大于.若的主对角线某元素则必不正定.定理4注:14.等价、相似、合同()(),.,.A B A B A B A B A B P Q PAQ B r A r B ≅⇔=⇔=两个同型矩阵与,若可经过初等变换变成称与等价,记作同型矩阵矩阵与等价存在可逆矩阵和使;判定1,,,.,,A B P P AP B A B A B A B A B A B A B A B A B −=ΛΛΛ::::两个方阵与若存在可逆矩阵使称与相似,记作若与的迹或秩或行列式或特征值不相等,则与不相似;若,但不能对角化则与不相似;若,且则与相似.判定,,,..T T T A B C C AC B A B A B A B x Ax x Bx A B =⇔⇔:两个实对称矩阵与若存在可逆矩阵使称与合同,记作实对称矩阵与合同二次型和有相同的正、负惯性指数;实对称矩阵与有相同的正、负特征值个数判定考研数学公式整理41.概率基本公式()()()()()()()()()()()()()()()()()()1.=.3.=..P A P A P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC P A B P A P AB P AB =−+−=++−−−+−−=U U U 正面直接求概率困难时可考虑此公式,比如涉及"至少、至多"等字眼.超过个事件的加法公式往往会有两两互斥的条件考减法公式是考试的重点;(1)逆事件的概率(2)加法公式(3)减法公式注:注:注: ()()()()()()()()()()()()0,,=.1;.P A A B P AB P B A P B A P A P B A P B A P B A P B C A P B A P BC A P BC A >=−−=−= 若称在发生的条件下,发生的概率为条件概率记为,且条件概率也是概率,满足概率的一切性质与公式,如(4)条件概率注:()()()()0,=.P A P AB P A P B A >⋅如果则 (5)乘法公式()()()()121=,,1,,.,.n i j ni i i i A A A A A i j n B P B P A P B A B A B P B =Ω=Φ≤≠≤=∑U UL U I 若且则对任一事件有如果某个事件的发生总是与某些原因或前一阶段的某些结果有关则总是使用全概率公式把各种导致发生的可能性(概率)加起来求(6)全概率公式 注:()()()()()()()121=,,1,0,.,,.n i j i jj niii j j A A A A A i j n P A P B A B P B P A B P A P B A B A P A B =Ω=Φ≤≠≤>=∑U UL U I 若且,则对任一事件只要则如果已知发生了去探求是某原因导致发生的可能性(概率)则总是使用贝叶斯公式看这一原因占总的原因的比例注(7)贝叶斯公式 :2. 独立与互斥、包含的关系()()01,01,,P A P B A B A B <<<<设如果与互斥或存在包含关系则与不独立.3.常见的分布{}()(){}()()()1011,0,1.0101,1,.1,0,1,,.,01,,.12,,kk n k k kn X P X k p p k X p p X B p X P X k C p p k n X n p p X B n p n X X B n p −−−==−=<<−==−=<<:L ::1.分布如果随机变量的分布律为则称服从参数为()的分布记为2.二项分布如果随机变量的分布律为则称服从参数为()的二项分布记为()次伯努利试验中试验成功的次数服从二项分布;()对最可能发生(成注:()(){}(){}()()1111.,0,1,2,!0,.1,1,2,1,.k k k n p k n p e X P X k k k X X P X P X k p p k X p p X G p X λλλλλ−−+−≤≤+===>==−=<<L:L:功)的次数满足3.泊松分布如果随机变量的分布律为则称服从参数为()的泊松分布记为4.几何分布如果随机变量的分布律为则称服从参数为(0)的几何分布记为伯努利试验中首次成功所需的试验次数服从几何分布.注:()()()()(){}5.1,,0,0,,,,.,.1,,,,.a x b X f x b a x a x a X a b X U a b X F x a x b b a x b d cX U a b a c d b P c X d b a⎧<<⎪=−⎨⎪⎩<⎧⎪−⎪=≤<⎨−⎪≥⎪⎩−≤<≤<<=−::均匀分布如果随机变量的概率密度为其他则称服从上的均匀分布记为的分布函数为若对则注: ()()()(){}{}{}o o ,0,00,1,0..0,0,10,;2,0,.x x a e x X f x e x X X E X F x x X E a P X a e t s P X t s X s P X t λλλλλλλλ−−−⎧>=>⎨⎩⎧−≥=⎨<⎩∀>≥=∀>≥+≥=≥::6.指数分布如果随机变量的概率密度为其中为参数;其他则称服从参数为的指数分布,记为的分布函数为若则对则对则注:()()()()()()()()()()()()()222222222o 2o ,.,,,.,0,10,1;,;.1,,0,1;21,0x x x x x X f x x X X N X N x x x t dt dt X X N N x x μσμσμσμσϕϕμμσσ−−−−−∞=−∞<<+∞===−∞<<+∞Φ==−Φ−=−ΦΦ=⎰⎰::::7.正态分布如果随机变量的概率密度为:则称服从参数为的正态分布记为特别地当时称为记为概率密度分布函数若则标准化标准正态分布,注:()()o 222o 1;23,,,;4,X N aX b N a b a X Y aX bY μσμσ+++::若则若分别服从正态分布,且相互独立,则服从正态分布.4. 两个常见的二维连续型随机变量1.二维均匀()()()()(){},,1,,,0,,,,,D D GDX Y D X Y DS f x y S D S X Y D G D P X Y G S ⎧∈⎪=⎨⎪⎩⊂∈=在平面区域上服从均匀分布则,其中是的面积.其他设在区域上服从均匀分布若则;注:2.二维正态()()()()()222212121212221122,,,,;.,,,;1,1.,,,,,,,,0.X Y N EX EY DX DY X N Y N X Y aX bY X Y X Y μμσσρμμσσρμσμσρ====∈−+⇔=:::其中(1)反之不对(独立时可以);(2)的条件分布都是正态分布;(3)服从正态分布;(4)独立不相关即注:5.期望{}()()()()()()()()()()111,2,,.,.i i i i i i i i X P X x p i Y g X X EX x p Eg X g x p X f x Y g X X EX xf x dx Eg X g x f x dx ∞∞==+∞+∞−∞−∞=========∑∑⎰⎰L 设离散型随机变量的分布律为是的函数,则;设连续型随机变量的概率密度为是的函数,则;(1)一维离散型(2)一维连续型(){}()()()()()()()()()()()()11,,,1,2,,,,,,.,,,,,,,,.i j iji j ij i j X Y P X x Y y p i j Z g X Y X Y Eg X Y g x y p X Y f x y Z g X Y X Y Eg X Y g x y f x y dxdy ∞∞==+∞+∞−∞−∞========∑∑⎰⎰L 设二维离散型随机变量的联合分布为是的函数,则设二维连续型随机变量的联合概率密度为是的函数,则(3)二维离散型(4)二维连续型()()()o o o o 1234,,.Ec c E aX c aEX c E X Y EX EY X Y E XY EX EY =+=+±=±=⋅;;;若独立则(5)性质6.方差()()222.DX E X EX EX EX =−=−(1)定义()()()()()()()()2o 2o o 2o o 2210,;20342,5,,,.DX EX EX DX Dc D aX b a DX D X Y DX DY Cov X Y X Y D X Y DX DY D XY DXDY DX EY DY EX ≥=+=+=±=+±±=+=++;;;若独立则(2)性质7.常用分布的数学期望和方差()()()()()()()()()()()o o o o 22o o 2o 22o 11,,12,,13,114,5,,212116,7,,280,11.X B p EX p DX p p X B n p EX np DX np p X P EX DX p X G p EX DX p pb a a bX U a b EX DX X E EX DX X N EX DX X N E X D X λλλλλλμσμσπ==−==−==−==−+========−::::::::如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则8.协方差()()()()()()()()()()()()()()()o oo o 121211122122,.1,,,,2,03,,,,,,,.Cov X Y E X EX Y EY E XY EX EY Cov X Y Cov Y X Cov X X DX Cov X c Cov aX bY abCov X Y Cov aX bX cY dY acCov X Y adCov X Y bcCov X Y bdCov X Y =−−=−⋅⎡⎤⎣⎦====++=+++;;;4(1)定义(2)性质9.相关系数,0,.XY XY Cov X Y X Y ρρ==如果称和不相关(1)定义{}oo o o 1123=1,11,04,1,0XY YX XX XY XY XYa b P Y aX b a Y aX b a ρρρρρρ==≤⇔=+=>⎧=+=⎨−<⎩;;1;存在使;如果则.(2)性质10.大数定律1.依概率收敛{}1212,,,,,,0,lim 1,,,,,,,.n n n Pn n X X X a P X a X X X a X a εε→∞>−<=⎯⎯→L L L L 对随机变量序列和常数如果对任意的有则称随机变量序列依概率收敛于记为2.切比雪夫大数定律1211,,,,,,,1,2,,110,lim 1.n k k k n ni i n i i X X X EX DX DX k P X EX n n εε→∞===⎧⎫>−<=⎨⎬⎩⎭∑∑L L L 设独立,期望方差都存在,方差有一致上界则对任意的有3.伯努利大数定律(),,,,0,lim 1.n X n A A p X X B n p P p n εε→∞⎧⎫>−<=⎨⎬⎩⎭:设是重伯努利试验中事件发生的次数每次试验事件发生的概率为即则对任意的有4.辛钦大数定律1211,,,,,,0,lim 1.n n k i n i X X X EX P X n μεμε→∞=⎧⎫=>−<=⎨⎬⎩⎭∑L L 设独立同分布,期望存在则对任意的有11.中心极限定理1.列维—林德伯格中心极限定理()22122,,,,,,,,lim .n k k n t i x n X X X EX DX X n x P x dt x μσμ−−∞→∞==⎧⎫−⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰L L 设独立同分布期望方差都存在,则对任意的有2.拉普拉斯中心极限定理()()22,,lim .t x n X B n p x P x dt x −→∞⎧⎫⎪≤==Φ⎬⎪⎭⎰:设,则对任意的有12.三大抽样分布()()()()(){}()()()()()()()2122222222212122222222,,,01,,.01,,,2;n n n n X X X N X X X n X X X n P n n f x dx f x n n n X n EX n DX n X ααχαχχααχχαχχχαχχ+∞++++++<<>====⎰L L L :::设相互独立且都服从标准正态,则服从自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则若221.χn 分布(1)定义:(2)上α分位点(3)χ分布的性质()()()221212,,,.n Y n X Y X Y n n χχ++::,且独立则()()()()(){}()()()()()()()()()()()()21201,,,,.01,,,01,1,t n X N Y n X Y n t t n P t n t n fx dx fx t n t n t n t f x t n t n n t n N t t n t F αααααχαααα+∞−<<>===−⎰:::::设,且独立,的分布对于给定的()称满足(是的概率密度)的数为的上分位点.分布的概率密度是偶函数故,且当自由度充分大时分布近似于,;则2.t 分布(1)定义:(2)上α分位点(3)t 分布的性质().n()()()()(){}()()()()()()()122212111212221212,12121212,,,,,.01,,,,,,1,,F n n X n Y n X Y X Xn n n n F F n n Y Y n n P F n n F n n f x dx f x F n n F n n F n n F F n n F Fαααχχαααα+∞<<>==⎰:::::设且独立,则服从第一自由度为,第二自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则3.F 分布(1)定义:(2)上α分位点(3)F 分布的性质()()()()211211221,1,,,.,n n F F n n F n n F n n αα−=:;若则13.矩估计的求法1222111,...11()n kk k k i i n ni ii i A X EX n X EX X EX X EX X EX X X DX n n α======⎧⎧==⎪⎪⎨⎨=−=⎪⎪⎩⎩∑∑∑:用样本矩替换总体矩——即:对一个未知参数的情形 令对两个未知参数的情形 令或原理步骤14.最大似然估计的求法()()()()121121.,,,;,,,,;,.ln ln .0,.ln 0,ln .i nn i i i nn i i a L x x x f x L x x x p x b Ld L c d d L L d θθθθθθθθ=====⎡⎤⎣⎦=⎡⎤⎣⎦==∏∏L L :写出样本的似然函数取对数得求导解出即可若无解即单调,则应该用定义法找出的最大似然估计量步骤连续型离散型15.估计量的评价标准121212,.,,,.0,lim 1,,Pn E D D P θθθθθθθθθθθεθθεθθθθ∧∧∧∧∧∧∧∧∧∧∧→∞=<⎧⎫>−<=⎯⎯→⎨⎬⎩⎭若则称是的无偏估计量设都是的无偏估计量若则称比更有效若对任意的有即则称是的一致估计量.(1)无偏性(2)有效性(3)一致性16. 求置信区间的步骤{}1212,,12:,,.T a b P a T b a T b ααθθθθθθ∧∧∧∧<<=−⎛⎫<<<< ⎪⎝⎭(1)构造统计量并确定其分布;(2)给定,确定常数使得;(3)由()反解出的范围得置信区间。

(word完整版)考研数学公式汇总最完整版,推荐文档

最新最全版考研数学公式,奉献给大家高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2ta n^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

「考研数学公式大全(考研必备)」

高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰ )1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰ C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰ C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx C aln adx a Cx csc xdx cot x csc Cx sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222xx 2222C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ aBd Ac =+B ,A b Bc Ad ⇒=-aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目 录 一、高等数学 ......................................................................................1 (一) 函数、极限、连续 ......................................................1 (二) 一元函数微分学 ..........................................................5 (三)一元函数积分学 ..........................................................13 (四) 向量代数和空间解析几何 ........................................20 (五)多元函数微分学 ..........................................................30 (六)多元函数积分学 ..........................................................36 (七)无穷级数 ......................................................................41 (八)常微分方程 ..................................................................48 二、线性代数 ....................................................................................53 (一) 行列式 ........................................................................53 (二)矩阵 ..............................................................................55 (三) 向量 ............................................................................58 (四)线性方程组 ..................................................................61 (五)矩阵的特征值和特征向量 ..........................................63 (六)二次型 ..........................................................................64 三、概率论与数理统计 ....................................................................67 (一)随机事件和概率 ..........................................................67 (二)随机变量及其概率分布 ..............................................71 (三)多维随机变量及其分布 ..............................................73 (四)随机变量的数字特征 ..................................................76 (五)大数定律和中心极限定理 ..........................................79 (六)数理统计的基本概念 ..................................................80 (七)参数估计 ......................................................................82 (八)假设检验 ......................................................................85 经常用到的初等数学公式 ................................................................87 平面几何 ............................................................................92 一、高等数学 (一) 函数、极限、连续

考试内容 公式、定理、概念

函数和隐函数

函数:设有两个变量x和y,变量x的定义域为D,如果对于D中的每一个x值,按照一定的法则,变量y有一个确定的值与之对应,则称变量y为变量x的函数,

记作:yfx

基本初等函数的性质及其图 形,初等函数,函数关系的建立:

基本初等函数包括五类函数: 1幂函数:yxR;

2指数函数xya(0a且1a); 3对数函数:logayx( 0a且1a); 4三角函数:如sin,cos,tanyxyxyx等; 5反三角函数:如 arcsin,arccos,arctanyxyxyx等.

初等函数:由常数C和基本初等函数经过有限次四则运算与有限此复合步骤所构成,并可用一个数学式子表示的函数,称为初等函数. 数列极限与函数极限的定义及其性质,函数的左极限

1000lim()()()xxfxAfxfxA 2000lim()()(),lim()0xxxxfxAfxAaxax其中 3(保号定理) 与右极限 0lim(),0(0),0xxfxAAA设又或则一个,

000(,),()0(()0)xxxxxfxfx当且时,或

无穷小和无穷大的概念及其 关系,无穷小的性质及无穷小的比较

lim)0,lim()0xx设( ()(1)lim0,())()xxxx若则是比(高阶的无穷小,

记为(x)=o((x)).

()(2)lim,())()xxxx若则是比(低阶的无穷小,

()(3)lim(0),())()xccxxx若则与(是同阶无穷小,

()(4)lim1,())()xxxx若则与(是等价的无穷小,

记为(x)(x)

()(5)lim(0),0,())()kxcckxxx若则是(的k阶无穷小

0x常用的等阶无穷小:当时 sinarcsintan,arctanln(1)e1xxxxxx

x

21

11cos21(1)1nxxxxn



无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的无穷小的倒数为无穷大 极限的四则运算

lim(),lim().fxAgxB则 (1)lim(()())fxgxAB; (2)lim()()fxgxAB; ()(3)lim(0)()fxABgxB

极限存在的两个准 则:单调有界准则和夹逼准则,两个重要极限:

1()()(),xxfxx0夹逼定理)设在的邻域内,恒有( 00lim()lim(),xxxxxxA且0lim()xxfxA则 2单调有界定理:单调有界的数列必有极限 3两个重要极限:

0sin(1)lim1xxx 10(2)lim(1)exxx

重要公式:0010111011,lim0,,nnnnmmxmmanmbaxaxaxanmbxbxbxbnm 4几个常用极限特例 lim1,nnn limarctan2xx

limarctan2xx limarccot0,xx limarccotxx lime0,xx lime,xx 0lim1,xxx

函数连续的概念:函数间断 点的类 型:初等函数的连续性:闭区间上连续函数的性质

连续函数在闭区间上的性质: (1) (连续函数的有界性)设函数fx在,ab上连续,则fx

在,ab上有界,即常数0M,对任意的,xab,恒有 fxM.

(2) (最值定理)设函数fx在,ab上连续,则在,ab上 fx至少取得最大值与最小值各一次,即,使得:



max,,axbffxab;



min,,axbffxab.

(3) (介值定理)若函数fx在,ab上连续,是介于fa与 fb(或最大值M与最小值m)之间的任一实数,则在,ab

上至少一个,使得.fab (4) (零点定理或根的存在性定理)设函数fx在,ab上连 续,且0fafb,则在,ab内至少一个,使得

相关文档
最新文档