2019-2020学年济宁市嘉祥县九年级上月考数学试卷(12月)含解析(精品文档)

合集下载

2019-2020学年度第一学期初三年级12月份月考数学试卷

2019-2020学年度第一学期初三年级12月份月考数学试卷

2019-2020学年度第一学期初三年级12月份月考数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的,并将答案填写在下面的空格内否则得0分). 题号 1 2 3 4 5 6 7 8 9 10 答案1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后排序正确的是【 】(A )A →B →C →D (B )D →B →C →A (C )C →D →A →B (D )A →C →B →D北东2.已知3是关于x 的方程34x 2-2a+1=0的一个解,则2a 的值是【 】 (A )11 (B )12 (C )13 (D )143.已知直角三角形的两边长是方程x 2-7x+12=0的两根,则第三边长为【 】 (A )7 (B )5 (C )7 (D )5或74.一个等腰梯形的两底之差为12,高为6,则等腰梯形底边上的一个锐角为【 】 (A )︒30 (B )︒45 (C )︒60 (D )︒755.如图是一个带有圆形空洞和方形空洞的小木板,则下列物体中,既可以堵住圆形空洞,又可以堵住方形空洞的是【 】(A ) (B ) (C ) (D )6.下列命题中错误的【 】(A )两对邻角互补的四边形是平行四边形;(B )一组对边平行,一组对角相等的四边形是平行四边形;(C )等腰梯形的对角线相等; (D )平行四边形的对角线互相平分。

7.在△ABC 中,∠C =90O,BC :CA =3:4,那么sinA 等于【 】 (A )43(B )34 (C )53 (D )54 8.把抛物线2x y -=向左平移2个单位,然后向上平移4个单位,则平移后的抛物线解析式为( )A 4)2(2+--=x yB 4)2(2++-=x yC 4)2(2---=x yD 4)2(2-+-=x y9. 抛物线3)2(2+-=x y 的顶点坐标为( )A (2, 3)B (-2, 3)C (2, -3)D (-2,-3) 10.如图,在直角坐标系中,直线y=6-x 与函数y=x4(x >0)的图象 相交于点A 、B ,设点A 的坐标为(x 1,,y 1),那么长为x 1,宽为y 1 的矩形的面积和周长分别为【 】(A )4,12 (B )8,12 (C )4,6 (D )8,6(第10题图) (第13题图)二.填空题:(3分×5=15分)11.若反比例函数y=x k的图象经过点(1,- 2),则此函数的表达式是 。

九年级上期数学12月月考试卷

九年级上期数学12月月考试卷

2019-2020年九年级上期数学12月月考试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在下表中相应的题号下)1.下列各式中,是的二次函数的是( )A .B .C .D .2.在同一坐标系中,作、、的图象,它们共同特点是 ( )A . 都是关于轴对称,抛物线开口向上 c .都是关于轴对称,抛物线开口向下B . 都是关于原点对称,顶点都是原点 D .都是关于轴对称,顶点都是原点3.抛物线的图象过原点,则为 ( )A .0B .1C .-1D .±1 4.把二次函数配方成顶点式为 ( )A .B .C .D . 5.如图2所示,△的顶点是正方形网格的格点,则sin 的值为 ( ) A .B .C .D .第9题图6.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30º、45º,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一条直线上,则A 、B 两点的距离是( )A.200米B.米C.米D.米 7.如图,Rt △,∠=900, , ,则的长为 ( ) A.4 B. C. D.8、已知二次函数,若a ﹥0,c ﹤0,那么它的图象大致是 ( )第5题第6题第7题A BC第17题A BC30189.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan∠APB 的值是 ( )A. B. C. D.10.已知抛物线y=a (x +1)(x ﹣)与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的a 的值有 ( )A .2个B .3个C .4个D .5个二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请将答案直接填写在下面答题栏内的相应位置)11.若锐角θ满足2sin θ,则θ= °. 12、函数是抛物线,则= . 13、抛物线与轴交点为 .14.抛物线,若其顶点在轴上,则 . 15.抛物线在轴上截得的线段长度是 .16.如图①,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则COS ∠APD 的值是 .17.如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为,斜坡的起始点为,现设计斜坡的坡度,则的长度是 cm .第18题18、如图,在边长为5的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接BM ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动的过程中,线段HN 长度的最小值为 .三、解答题(本大题共有10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.解方程:(8分)(1)x 2﹣5x+6=0; (2)x (x ﹣6)=4.(C) (A) o y x o y xo x y o x y (B) (D)20.求下列各式的值(8分)(1)sin260°+cos60°tan45°;(2).21.(6分)如图,竖立在点B处的标杆AB高2.4m,站立在点F处的观察者从点E 处看到标杆顶A、树顶C在一条直线上,设BD=8m,FB=2m,EF=1.6m,求树高CD.22.(6分)根据条件求函数的关系式(1)已知二次函数y=x2+bx+c经过(﹣2,5)和(2,,﹣3)两点,,求该函数的关系式;(2)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5),求该函数的关系式。

山东省济宁市九年级上学期数学12月月考试卷

山东省济宁市九年级上学期数学12月月考试卷

山东省济宁市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若的值为正数,则x的值为()A . x<﹣2B . x<1C . x>﹣2且x≠1D . x>12. (2分)将抛物线=y=x2+2向右平移1个单位后所得抛物线的解析式是()A . y=x2+3;B . y=x2+1;C . y=(x+1)2+2;D . y=(x-1)2+2.3. (2分)掷一枚质地均匀的硬币10次,下列说法正确的是()A . 每2次必有1次正面向上B . 可能有5次正面向上C . 必有5次正面向上D . 不可能有10次正面向上4. (2分) (2017九上·东莞月考) 二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A . 函数有最小值B . 对称轴是直线x=C . 当x<时,y随x的增大而减小D . 当-1<x<2时,y>05. (2分)如图所示方格纸上一圆经过(2,6)、(﹣2,2);(2,﹣2)、(6,2)四点,则该圆圆心的坐标为()A . (2,﹣1)B . (2,2)C . (2,1)D . (3,1)6. (2分)(2018·浦东模拟) 如果二次函数的图像全部在x轴的下方,那么下列判断中正确的是()A . a<0,b<0B . a>0,b<0C . a<0,c>0D . a<0,c<07. (2分)如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和10米.已知小华的身高为1.6米,那么他所住楼房的高度()A . 8米B . 16米C . 32米D . 48米8. (2分) (2018九上·宁波期中) 下列四个命题中,正确的有()①三点确定一个圆②平分弦的直径平分弦所对的弧③弦长相等,则弦所对的弦心距也相等④相等的弧所对的圆心角相等A . 4个B . 3个C . 2个D . 1个9. (2分)(2018·高台模拟) 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8,则sinB的值是()A .B .C .D .10. (2分) (2020九上·景县期末) 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L. Crelle.1780-1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845-1922)重新发现,并用他的名字命名问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF 的布洛卡点,DQ=1,则EQ+FQ=()A . 5B . 4C . 3+D . 2+二、填空题 (共6题;共7分)11. (1分)有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.12. (1分)(2017·高淳模拟) 如图,点A,B,C在⊙O上,∠ACB的度数是20°,的长为π,则⊙O 的半径是________.13. (1分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数取值范围是________14. (1分) (2018九上·南召期末) 如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为________.15. (1分) (2017七下·惠山期末) 如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB 重合于线段EO,若∠CDO+∠CFO=88°,则∠C的度数为=________.16. (2分) (2017八下·金华期中) 在平面直角坐标系XOY中,有A(3,2),B (﹣1,﹣4 ),P是X轴上的一点,Q是Y轴上的一点,若以点A,B,P,Q四个点为顶点的四边形是平行四边形,则Q点的坐标是________.三、解答题 (共8题;共65分)17. (10分)(2018·广安) 如图,抛物线y= x2+bx+c与直线y= x+3交于A,B两点,交x轴于C、D 两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.18. (10分) (2018九上·兴义期末) 如图,在中,直径AB与弦CD相交于点P, CAB=40 ,APD=65 .(1)求 B的大小;(2)已知AD=6,求圆心O到BD的距离.19. (5分)已知三角形ABC的两个顶点坐标为A(﹣4,0),B(2,0),如图,且过这两个点的边上的高为4,第三个顶点的横坐标为﹣1,求顶点C的坐标及三角形的面积.20. (2分) (2018九上·运城月考) 有甲乙两个不透明的布袋,甲布袋装有2个形状和重量完全相同的小球,分别标有数字1和2;乙布袋装有3个形状和重量完全相同的小球,分别标有数字﹣3,﹣1和0.先从甲布袋中随机取出一个小球,将小球上标有的数字记作x;再从乙布袋中随机取出一个小球,再将小球标有的数字记作y.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标(x,y),求点(x,y)在一次函数y=﹣2x+1图象上的概率是多少?21. (2分) (2017九上·合肥开学考) 某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.22. (15分)(2015·江东模拟) 【提出问题】如图1,小东将一张AD为12,宽AB为4的长方形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P、Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置发生改变.(1)【规律探索】请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)【解决问题】如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.23. (15分)(2017·合肥模拟) 在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.24. (6分)(2017·新泰模拟) 如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共65分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、。

山东省济宁市九年级上学期数学12月月考试卷

山东省济宁市九年级上学期数学12月月考试卷

山东省济宁市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列函数是二次函数的是()A . y=2x-3B . y=+1C . y=-2D . y=-2. (2分) (2019九上·滦南期中) 反比例函数y= 图象经过A(1,2),B(n,-2)两点,则n=()A . 1B . 3C . -1D . -33. (2分)下列关系式中,哪个等式表示y是x的反比例函数()A . y=B . y=C . y= +2D . y=−4. (2分) (2019八下·辉期末) 如图,在正方形中,点边不动,将正方形向左下方推动变形,使点D落在Y轴的点D'处,点C落在点C'处,则经过点C'的反比例函数解析式是()A .B .C .D .5. (2分) (2018九上·郴州月考) 下列说法正确的是()A . 等腰三角形的角平分线、中线、高线互相重合B . 面积相等的两个三角形一定全等C . 用反证法证明命题“三角形中至少有一个角不大于”的第一步是“假设三角形中三个角都大于”D . 反比例函数中函数值随自变量的增大一定而减小6. (2分)(2018·黄石) 已知一次函数y1=x﹣3和反比例函数y2= 的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A . x<﹣1或x>4B . ﹣1<x<0或x>4C . ﹣1<x<0或0<x<4D . x<﹣1或0<x<47. (2分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A .B .C .D .8. (2分)(2020·温岭模拟) 对于一次函数y=2x+4,下列结论中正确的是()①若两点A(x1 , y1),B(x2 , y2)在该函数图象上,且x1<x2 ,则y1<y2.②函数的图象不经过第四象限.③函数的图象与x轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y=2x的图象.A . 1个B . 2个C . 3个D . 4个9. (2分)若反比例函数图象经过点(﹣1,6),则下列点也在此函数上的是()A . (﹣3,2)B . (3,2)C . (2,3)D . (6,1)10. (2分)(2020·武汉) 若点,在反比例函数的图象上,且,则a的取值范围是()A .B .C .D . 或11. (2分) (2017八下·东台期中) 正方形具有而矩形不具有的性质是()A . 对角线互相平分B . 对角线相等C . 对角线互相平分且相等D . 对角线互相垂直12. (2分)(2018·遵义模拟) 如图,四边形ABCD中,点E,F,G分别为边AB,BC,CD的中点,若△EFG 的面积为4,则四边形ABCD的面积为()A . 8B . 12C . 16D . 18二、填空题 (共6题;共7分)13. (1分)已知△ABC∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________.14. (1分)已知函数y=(k﹣3)x 为反比例函数,则k=________.15. (1分)(2019·温岭模拟) 双曲线在第一象限的图象如图,过y1上的任意一点A,作x 轴的平行线交y2于B,交y轴于C,若S△AOB=3,则k的值为________.16. (2分) (2016九下·宁国开学考) 如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有________对相似三角形.17. (1分) (2018九上·郴州月考) 若一次函数的图像与反比例函数的图像没有公共点,则实数的取值范围是________.18. (1分) (2018八上·南昌月考) 如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1 ,得∠A1;∠A1BC和∠A1CD的平分线交于点A2 ,得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017 ,则∠A2017=________°.三、解答题 (共7题;共23分)19. (5分) (2019九上·德惠月考) 如图,,求证:与相似.20. (2分)(2020·四川模拟) 如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B 重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该反比例函数的解析式和点E的坐标.(2)设过(1)中的直线EF的解析式为y=ax+b,直接写出不等式ax+b<的解集.(3)当k为何值时,△AEF的面积最大,最大面积是多少?21. (5分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.22. (2分)(2019·碑林模拟) 如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.23. (2分) (2019九上·上海月考) 已知:如图所示,中,CD⊥AB ,,BD=1,AD=4,求AC的长.24. (5分)(2018·杭州) 如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。

2019-2020学年九年级上数学12月月考试题及答案.doc

2019-2020学年九年级上数学12月月考试题及答案.doc

2019-2020 学年九年级上数学12 月月考试题及答案12 月检测试卷请同学们注意:1、考试卷分试题卷和答题卷两部分,满分120 分,考试时间为 90 分钟.2、所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应.3、考试结束后,只需上交答题卷。

祝同学们取得成功!一、仔细选一选(本题有10 小题,每题 3 分,共 30 分)1、如图,⊙ O是△ ABC的外接圆,∠ OBC=40°,则∠ A 等于(▲)A.30 °B.40 °C.50 °D.60 °2、若当x 3 时,正比例函数y k1 x k1 0 与反比例函数y k2 k2 0 的值相等,则 k1与 k2的比是(▲)。

xA.9:1B.3:1C.1:3D.1:93、将函数y 3x2 1 的图象向右平移2个单位得到的新图象的函数解析式为(▲)。

y 3 x 2y 3 x21A. 2 1B. 2C. y 3x2 2D. y 3x2 24、如图,四边形ABCD的对角线 AC, BD相交于点 O,且将这个四边形分成①、②、③、④四个三角形。

若OA:OC=OB:OD,则下列结论中一定正确的是(▲ )A .①与②相似B.①与③相似C.①与④相似D.②与④相似5、平面有 4 个点,它们不在一条直线上,但有 3 个点在同一条直线上。

过其中 3 个点作圆,可以作的圆的个数是(▲ )A.1 个B.2 个C.3 个D.4 个6、已知点P 是线段 AB 的一个黄金分割点(AP>PB),则 PB:AB 的值为(▲)A. 5 1B.3 5C.1 5 3 52 2 2D.47、在四边形 ABCD中, AC平分∠ BAD,且∠ ACD=∠ B。

则下列结论中正确的是A.AD CD AD B.AC 2 AB ADAB BCACC.BCABD.ACD 的面积 CDADABC 的面积BCCD8、若反比例函数yk与二次函数yax 2 的图象的公共点在第三象限,则一次函数xy ax k 的图象不经过( ▲ )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9、如图, AB 是⊙ O 的直径,弦 AC , BC 的长分别为 4 和 6,∠ ACB 的平分 线交⊙ O 于 D ,则 CD 的长为( ▲ )A. 7 2B.5 2 C.7D.910 、 如 图 , 直 线 y3 k x 0交 于 点 A 。

2019学年山东省九年级上学期12月月考数学试卷【含答案及解析】(1)

2019学年山东省九年级上学期12月月考数学试卷【含答案及解析】(1)

2019学年山东省九年级上学期12月月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列事件中是必然事件的是().A.明天我市天气晴朗B.两个负数相乘,结果是正数C.抛一枚硬币,正面朝下D.在同一个圆中,任画两个圆周角,度数相等2. 下列函数中,是反比例函数的是().A. B. C. D.3. <a href="">a><a href="">a>如图,小正方形的边长均为,则下列图中的三角形(阴影部分)与相似的是().4. 已知反比例函数,下列结论中不正确的是().A.图象经过点B.图象在第一、三象限C.当时,D.当时,随着的增大而增大5. 中,,若,,则的长为().A. B. C. D.6. 已知反比例函数的图象上有两点,,且,则的值是().A.正数 B.负数 C.非正数 D.不能确定7. 如图,钓鱼竿长,露在水面上的鱼线长,某钓鱼者想看看鱼钓上的情况,把鱼竿转动到的位置,此时露在水面上的鱼线为,则鱼竿转过的角度是().A. B. C. D.8. 如图,是平行四边形对角线上的点,,则().A. B. C. D.9. 如图所示,随机闭合开关,,中的两个,能让两盏灯同时发光的概率为().A. B. C. D.10. 如图,直线和双曲线交于,两点,是线段上的点(不与,重合),过点,,分别向轴作垂线,垂足分别是,,,连接,,,设面积是,面积是,面积是,则().A. B. C. D.11. 如图,在中,,与,与,若,,则().A. B. C. D.12. 函数和在同一坐标系中的图象大致是().二、填空题13. 将一颗骰子(正方体)连掷两次,得到的点数都是的概率是 .14. 如果,那么等于 .15. 已知点在反比例函数的图像上,请你再写出一个在此函数图像上的点 .16. 一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有 .17. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .18. 在正方形网格中,的位置如图所示,则的值为 .19. 如图,中,、分别是、上的点(),当或或时,∽.20. 如图,已知双曲线经过直角三角形斜边的中点,与直角边相交于点.若的面积为,则____________.三、解答题21. (6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.22. (本小题10分)如图,已知在中,是平分线,点在边上,且.求证:(1)∽;(2).23. (本小题10分)一个半径为海里的暗礁群中央处建有一个灯塔,一艘货轮由东向西航行,第一次在处观测此灯塔在北偏西方向,航行了海里后到,灯塔在北偏西方向,如图.问货轮沿原方向航行有无危险?24. (本小题10分)如图,已知、是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的的取值范围.25. (本小题12分)如图,在梯形中,,对角线与相交于点,过点作交于点,若,,的面积为,(1)求和的面积;(2)求的长.26. (本小题12分)如图,直线分别交轴于、,点是该直线与反比例函数在第一象限内的一个交点,轴于,且.(1)求点的坐标;(2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当与相似时,求点的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

2019届山东省九年级上学期12月月考数学试卷【含答案及解析】

2019届山东省九年级上学期12月月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. (2015•本溪)如图是由多个完全相同的小正方体组成的几何体,其左视图是()A. B. C. D.2. (2015•无锡)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣123. (2015•牡丹江)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A. B. C. D.4. (2015•遵义)已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<05. (2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或96. (2015•滨州)下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()A.4 B.3 C.2 D.17. (2015•黑龙江)关于反比例函数y=﹣,下列说法正确的是()A.图象过(1,2)点B.图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大8. (2015•衡阳)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50 B.51 C.50+1 D.1019. (2015•本溪)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.4 B.﹣2 C. D.﹣10. (2015•呼和浩特)如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236π B.136π C.132π D.120π11. (2015•长沙)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米12. (2015•滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变二、填空题13. (2015秋•枣庄校级月考)下列四个立体图形中,左视图为矩形的是.14. (2015•滨州)如图,菱形ABCD的边长为15,si n∠BAC=,则对角线AC的长为.15. (2015•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k= .16. (2015•阜新)如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).17. (2015秋•枣庄校级月考)在Rt△ABC中,∠C=90°,AB=3BC,则sinB= ,cosB= .18. (2015•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、计算题19. (2015•郴州)计算:()﹣1﹣20150+|﹣|﹣2sin60°.四、解答题20. (2015•郴州)如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?21. (2015•宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).22. (2015•德州)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.23. (2015•郴州)如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)24. (2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)25. (2015•本溪)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第20题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

2019-2020年九年级(上)月考数学试卷(12月份)(II)

2019-2020年九年级(上)月考数学试卷(12月份)(II)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形2.下列各点中,在函数y=﹣图象上的是()A.(﹣1,4)B.(2,2) C.(﹣1,﹣4) D.(4,1)3.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.44.抛物线y=x2+4x﹣5的对称轴为()A.x=﹣4 B.x=4 C.x=﹣2 D.x=25.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35° B.45° C.55° D.65°6.已知圆锥的母线长为5cm,高为4cm,则这个圆锥的侧面积为()A.12π cm2B.15π cm2C.20π cm2D.25π cm27.如图,下列条件不能判定△ABD∽△CBA的是()A.∠BAD=∠C B.∠ADB=∠BAC C.AB2=BD•BC D. =8.如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为()A.13π平方厘米B.π平方厘米C.25π平方厘米D.无法计算9.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5 B.6 C.8 D.1010.如图,已知△ABC,按如下步骤作图:(1)以A圆心,AB长为半径画弧;(2)以C为圆心,CB长为半径画弧,两弧相交于点D;(3)连接BD,与AC交于点E,连接AD,CD.①四边形ABCD是中心对称图形;②△ABC≌△ADC;③AC⊥BD且BE=DE;④BD平分∠ABC.其中正确的是()A.①② B.②③ C.①③ D.③④二、填空题(本大题共8小题,每小题3分,共24分.)11.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为.12.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.13.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC= °.14.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,则这栋楼的高度为m.15.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是.16.如果一个二次函数的二次项系数为1,那么这个函数可以表示为y=x2+px+q,我们将p,q称为这个函数的特征数.例如二次函数y=x2﹣4x+2的特征数是﹣4,2.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是2,3,将这个函数的图象先向左平移2个单位,再向下平移3个单位,那么此时得到的图象所对应的函数的特征数为.17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.18.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为.三、解答题(本大题共10小题,共96分.)19.已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.20.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.23.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.24.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.25.如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.26.如图,△ABC中,AB=AC=8,BC=12,点P、Q分别在AB、BC边上,且∠AQP=∠B.(1)求证:△BQP∽△CAQ;(2)若BP=4.5,求∠BPQ的度数;(3)若在BC边上存在两个点Q,满足∠AQP=∠B,求BP长的取值范围.27.已知抛物线y=ax2+x+2.(1)当a=﹣1时,求此抛物线的顶点坐标和对称轴;(2)若代数式﹣x2+x+2的值为正整数,求x的值;(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.28.在平面直角坐标系xOy中,点A在直线l上,以A为圆心,OA为半径的圆与y轴的另一个交点为E.给出如下定义:若线段OE,⊙A和直线l上分别存在点B,点C和点D,使得四边形ABCD是矩形(点A,B,C,D顺时针排列),则称矩形ABCD为直线l的“位置矩形”.例如,图中的矩形ABCD为直线l的“位置矩形”.(1)若点A(﹣1,2),四边形ABCD为直线x=﹣1的“位置矩形”,则点D的坐标为;(2)若点A(1,2),求直线y=kx+1(k≠0)的“位置矩形”的面积;(3)若点A(1,﹣3),直线l的“位置矩形”面积的最大值为,此时点D的坐标为.xx学年江苏省南通市通州实验中学九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图形,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.圆D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各点中,在函数y=﹣图象上的是()A.(﹣1,4)B.(2,2) C.(﹣1,﹣4) D.(4,1)【考点】反比例函数图象上点的坐标特征.【分析】分别把各点代入反比例函数的解析式进行检验即可.【解答】解:A、∵当x=﹣1时,y=﹣=4,∴此点在函数图象上,故本选项正确;B、∵当x=﹣1时,y=﹣=﹣2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=﹣1时,y=﹣=4≠﹣4,∴此点不在函数图象上,故本选项错误;D、∵当x=4时,y=﹣=﹣1≠1,∴此点不在函数图象上,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.4.抛物线y=x2+4x﹣5的对称轴为()A.x=﹣4 B.x=4 C.x=﹣2 D.x=2【考点】二次函数的性质.【分析】先根据抛物线的解析式得出a、b的值,再根据其对称轴方程即可得出结论.【解答】解:∵抛物线的解析式为y=x2+4x﹣5,∴a=,b=4,∴其对称轴直线x=﹣=﹣=﹣4.故选A.【点评】本题考查的是二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)的对称轴是直线线x=﹣是解答此题的关键.5.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35° B.45° C.55° D.65°【考点】旋转的性质.【专题】计算题.【分析】先根据旋转的性质得∠ACA′=35°,∠A=∠A′,然后利用互余计算出∠A′的度数,从而得到∠A的度数.【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.已知圆锥的母线长为5cm,高为4cm,则这个圆锥的侧面积为()A.12π cm2B.15π cm2C.20π cm2D.25π c m2【考点】圆锥的计算.【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:底面半径是: =3,则底面周长是6π,则圆锥的侧面积是:×6π×5=15π.故选B.【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,下列条件不能判定△ABD∽△CBA的是()A.∠BAD=∠C B.∠ADB=∠BAC C.AB2=BD•BC D. =【考点】相似三角形的判定.【分析】由∠B是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得C正确,继而求得答案,注意排除法在解选择题中的应用.【解答】解:∵∠B是公共角,∴当∠ABD=∠C或∠ADB=∠BAC时,△ABD∽△CBA(有两角对应相等的三角形相似);故A与B正确;当时,即AB2=BD•BC,则△ABD∽△CBA(两组对应边的比相等且夹角对应相等的两个三角形相似);故C正确;当时,∠B不是夹角,故不能判定△ABD与△CBA相似,故D错误.故选D.【点评】此题考查了相似三角形的判定.此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.8.如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为()A.13π平方厘米B.π平方厘米C.25π平方厘米D.无法计算【考点】扇形面积的计算;正方形的性质.【专题】数形结合.【分析】阴影部分的面积=梯形ABCG的面积+扇形GCE的面积﹣三角形ABE的面积,据此解答即可.【解答】解:解:S阴影=S梯形ABCG+S扇形GCE﹣S△ABE=×(7+10)×7+π×102﹣×7×(7+10),=25π平方厘米.故选C.【点评】此题考查了扇形的面积计算,解决此题的关键是把阴影部分分成常见的平面图形的和与差,进一步求得面积.9.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5 B.6 C.8 D.10【考点】正多边形和圆.【分析】由题意得出拼成的四边形的面积是正六边形面积的六分之一,求出正六边形的面积,即可得出结果.【解答】解:根据题意得:正六边形的面积=6×2=12,故纸片的剩余部分拼成的五边形的面积=12﹣2=10;故选:D.【点评】本题主要考查的是正多边形的性质、三角形面积的计算;熟记正六边形的性质是解决问题的关键.10.如图,已知△ABC,按如下步骤作图:(1)以A圆心,AB长为半径画弧;(2)以C为圆心,CB长为半径画弧,两弧相交于点D;(3)连接BD,与AC交于点E,连接AD,CD.①四边形ABCD是中心对称图形;②△ABC≌△ADC;③AC⊥BD且BE=DE;④BD平分∠ABC.其中正确的是()A.①② B.②③ C.①③ D.③④【考点】作图—复杂作图;全等三角形的判定与性质;中心对称图形.【专题】作图题.【分析】利用作法可判断ACAC垂直平分BD,则可对①③进行判断;利用“SSS”可对③进行判断;通过说明∠ABD≠∠CBD可对④进行判断.【解答】解:由作法得AB=AD,CB=CD,则AC垂直平分BD,点B与点D关于点E对称,而点A与点C不关于E对称,所以①错误,③正确;利用AB=AC,CD=CB,AC为公共边,所以△ABC≌△ADC,所以②正确;由于AD与BC不平行,则∠ADB≠∠CBD,而∠ADB=∠ABD,则∠ABD≠∠CBD,所以④错误.故选B.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.二、填空题(本大题共8小题,每小题3分,共24分.)11.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为﹣1 .【考点】根与系数的关系.【分析】设方程的两个根为a、b,由根与系数的关系找出a+b=﹣3,代入a=﹣2即可得出b 值.【解答】解:设方程的两个根为a、b,∴a+b=﹣3,∵方程的一根a=﹣2,∴b=﹣1.故答案为:﹣1.【点评】本题考查了跟与系数的关系,根据方程的系数找出a+b=﹣3时解题的关键.12.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.【考点】概率公式.【分析】根据概率公式知,骰子共有六个面,其中有一个面上有数字6,故掷该骰子一次,则可得向上一面的数字是奇数的概率.【解答】解:骰子的六个面上分别刻有数字1,2,3,4,5,6六个数字,所以掷该骰子一次,向上一面的数字是奇数的概率是.故答案为:.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC= 36 °.【考点】圆周角定理.【分析】根据圆周角定理得到∠B=∠ADC=54°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠B=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=36°,故答案为:36.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和半圆(或直径)所对的圆周角是直角是解题的关键.14.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,则这栋楼的高度为36 m.【考点】相似三角形的应用.【分析】根据同一时刻物高与影长成正比即可得出结论.【解答】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴=,解得h=36(m).故答案为:36.【点评】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是12 .【考点】位似变换.【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【解答】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为:12.【点评】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.16.如果一个二次函数的二次项系数为1,那么这个函数可以表示为y=x2+px+q,我们将p,q称为这个函数的特征数.例如二次函数y=x2﹣4x+2的特征数是﹣4,2.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是2,3,将这个函数的图象先向左平移2个单位,再向下平移3个单位,那么此时得到的图象所对应的函数的特征数为6,8 .【考点】二次函数图象与几何变换.【专题】新定义.【分析】首先得出函数解析式,进而利用函数平移规律得出答案.【解答】解:特征数是2,3的函数解析式为:y=x2+2x+3=(x+1)2+2,其顶点坐标是(﹣1,2),将这个函数的图象先向左平移2个单位,再向下平移3个单位后的顶点坐标是(﹣3,﹣1),所以平移后的函数解析式为:y=(x+3)2﹣1=x2+6x+8,那么此时得到的图象所对应的函数的特征数为 6,8.故答案是:6,8.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.【考点】翻折变换(折叠问题).【分析】由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a,DN+NC+DC=7a,再通过证明△BMD∽△CDN即可证明AM:AN的值.【解答】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MBD=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,故答案为.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为.【考点】切线的性质;勾股定理;翻折变换(折叠问题).【专题】计算题.【分析】过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,易得四边形AOGO′为矩形,得到O′G=AO=5,根据折叠的性质得与为等弧,则它们所在圆的半径相等,再利用经过切点且垂直于切线的直线必经过圆心得到点O′为所在圆的圆心,则可判断点O 与点O′关于EF对称,所以OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,接着证明Rt△OEH ∽Rt△OO′A,然后利用相似比可计算出x.【解答】解:过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,则四边形AOGO′为矩形,∴O′G=AO=6,∵沿EF折叠后所得得圆弧恰好与半径OB相切于点G,∴与所在圆的半径相等,∴点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∴Rt△OEH∽Rt△OO′A,∴=,即=,解得x=,即O到折痕EF的距离为.故答案为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了折叠的性质.三、解答题(本大题共10小题,共96分.)19.已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)利用配方法把二次函数的一般式化为顶点式即可;(2)令y=0,得到关于x的一元二次方程,解方程即可.【解答】解:(1)y=(x2﹣2x+1)﹣4=(x﹣1)2﹣4;(2)令y=0,得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴这条抛物线与x轴的交点坐标为(3,0),(﹣1,0).【点评】本题考查的是二次函数的三种形式以及求抛物线与x轴的交点坐标,正确利用配方法把二次函数的一般式化为顶点式是解题的关键.20.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.【考点】圆内接四边形的性质;圆周角定理.【专题】证明题.【分析】根据圆内接四边形的任意一个外角等于它的内对角得到∠DAE=∠DCB,由圆周角定理得到∠DAC=∠DBC,等量代换得到∠DCB=∠DBC,根据等腰三角形的性质得到答案.【解答】证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x的增大而增大,进而可得:m﹣5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=﹣x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.【解答】解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.【点评】本题主要考查函数图象的交点及待定系数法求函数解析式,掌握图象的交点的坐标满足两个函数解析式是解题的关键.22.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.【考点】相似三角形的判定与性质.【分析】(1)证相关线段所在的三角形相似即可,即证Rt△ADC∽Rt△CDB;(2)易证得CE:BF=AC:BC,联立(1)的结论,即可得出CE:BF=CD:BD,由此易证得△CED∽△BFD,即可得出∠CDE=∠BDF,由于∠BDF和∠CDF互余,则∠EDC和∠CDF也互余,由此可求得∠EDF的度数.【解答】(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.【点评】此题考查的是相似三角形的判定和性质;识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.23.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【考点】旋转的性质.【分析】(1)先利用直角三角形的性质,求出∠BAD,再由平行得到∠ADF′即可;(2)先求出∠ADF′,再判断△ADF′≌△BDE′即可.【解答】解:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°,(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.【点评】此题是旋转性质题,主要考查了旋转角,全等三角形的判定和性质,解本题的关键是旋转角的计算.24.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.现在随机取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.【解答】解:(1)设两把不同的锁为A、B,能把两锁打开的钥匙分别为a、b,第三把钥匙为c,根据题意,可以画出如下树形图:由上图可知,上述试验所有可能结果分别为Aa,Ab,Ac,Ba,Bb,Bc.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有6种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比25.如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.【考点】切线的判定与性质.【分析】(1)欲证明CD是⊙O的切线,只要证明∠CDO=∠CBO=90°,由△COB≌△COD即可解决问题.(2)先证明∠BAO=∠OAD=∠DAE=∠ABO=30,在RT△AEF中利用30度性质以及勾股定理即可解决问题.【解答】(1)证明:如图,连接OD.∵BC为圆O的切线,∴∠CBD=90°.∵AO平分∠BAD,∴∠OAB=∠OBA.∵OA=OB=OD,∴∠OAB=∠ABO=∠OAF=∠ODA,∴∠BOC=∠DOC,在△COB和△COD中,,∴BOC≌△DOC,∴∠CBO=∠CDO=90°,∴CD是⊙O的切线;(2)∵AE=DE,∴=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在RT△AFE中,∵AE=3,∠DAE=30°,∴EF=AE=,∴AF==.【点评】本题考查切线的判定和性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,发现特殊角30°,属于中考常考题型.26.如图,△ABC中,AB=AC=8,BC=12,点P、Q分别在AB、BC边上,且∠AQP=∠B.(1)求证:△BQP∽△CAQ;(2)若BP=4.5,求∠BPQ的度数;(3)若在BC边上存在两个点Q,满足∠AQP=∠B,求BP长的取值范围.【考点】相似形综合题.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角的性质得到∠PQB=∠CAQ,根据相似三角形的判定定理证明结论;(2)根据相似三角形的性质求出BQ=6,根据等腰三角形的三线合一得到∠CQA=90°,根据相似三角形的性质得到答案;(3)设BQ=x,BP=m,根据相似三角形的性质得到一元二次方程,根据题意和根的判别式计算即可.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠AQP=∠B.∴∠AQP=∠C.又∵∠AQB=∠AQP+∠PQB,∠AQB=∠CAQ+∠C,∴∠PQB=∠CAQ.∴△BQP∽△CAQ.(2)∵△BQP∽△CAQ,∴=.∴=,解得BQ=6.∵BC=12,∴BQ=CQ=6.又∵AB=AC,∴AQ⊥BC,∴∠CQA=90°.∵△BQP∽△CAQ,∴∠BPQ=∠CQA=90°.(3)∵△BQP∽△CAQ,∴=.设BQ=x,BP=m,则=,整理得 x2﹣12x+8m=0.∵在BC边上存在两个点Q,∴方程有两个不相等的正实数根,∴△=122﹣32m>0,解得 m<,∴BP长的取值范围为0<BP<.【点评】本题考查的是相似三角形的判定和性质以及一元二次方程根的判别式的应用,掌握相似三角形的对应边的比相等是解题的关键.27.已知抛物线y=ax2+x+2.(1)当a=﹣1时,求此抛物线的顶点坐标和对称轴;(2)若代数式﹣x2+x+2的值为正整数,求x的值;(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将a的值代入抛物线中,即可求出抛物线的解析式,用配方法或公式法可求出抛物线的顶点坐标和对称轴解析式.(2)可先得出y的值,然后解方程求解即可.(3)可将M、N的坐标分别代入抛物线中,得出a1、a2的表达式,然后令a1﹣a2进行判断即可.【解答】解:(1)当a=﹣1时,y=﹣x2+x+2=﹣(x﹣)2+。

九年级(上)月考数学试卷(12月份)(VI)

2019-2020年九年级(上)月考数学试卷(12月份)(VI)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把答案写在答题纸相应的位置)1.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4 3.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个4.已知二次函数y=﹣2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y 随x的增大而增大.其中说法正确的有()A.1个B.2个C.3个D.4个5.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.6.点P1(0,y1),P2(2,y2),P3(3,y3)均在二次函数y=﹣(x﹣1)2+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y37.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm8.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共10小题,每小题3分,共30分,把答案填写在答题纸相应位置上)9.已知4x=5y,则= .10.线段2cm、8cm的比例中项为cm.11.若关于x的x2+6x+k=0一元二次方程有两个相等的实数根,则k= .12.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是.13.在比例尺为1:40000的地图上,某条道路的长为8cm,则该道路的实际长度是km.14.如图,PA、PB切⊙O于两点,若∠APB=60°,⊙O的半径为4,则阴影部分的面积为.15.已知二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),则代数式m2﹣m+xx的值为.16.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.17.在直角坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D、C、O为顶点的三角形与△AOB相相似,这样的直线一共可以作出条.18.抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表,则下列说法中正确的有.(填序号)x…﹣4﹣3﹣2﹣101…y…﹣37﹣21﹣9﹣133…①当x>1时,y随x的增大而增大②抛物线的对称轴为直线x=.③当x=2时,y=﹣1 ④方程ax2+bx+c=0一个负数解x1满足﹣1<x1<0.三、解答题(本大题共10题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.已知二次函数y=ax2+bx+3的图象过点(﹣1,8)、(1,0),求这个二次函数的表达式.20.如图,在△ABC中,已知DE∥BC,AD=4,DB=8,BC=9,求DE的长.21.已知二次函数y=﹣x2﹣2x+3.(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,写出不等式=﹣x2﹣2x+3>0的解集.22.在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.23.如图,已知二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,3)(1)求此二次函数的解析式;=10,求P点的坐标.(2)已知点P在这个抛物线上,且S△ACP24.如图,抛物线的顶点坐标为(2,1),且经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式和B点的坐标.(2)M是x轴上一点,且△MAB是以AB为腰的等腰三角形,试求M点坐标.25.在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA 为半径的圆弧与BC相切于点D,交AB于点E,连接AD.(1)求证:AD平分∠BAC;(2)已知BE=2,BD=2,求圆弧的半径.26.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x (元)满足一次函数关系,部分对应值如下表:x(元)180260280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;求宾馆当日利润w与房价x之间的函数关系式.(宾馆当日利润=当日房费收入﹣当日支出)27.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)求△BPQ的面积y与t之间的函数关系式;(3)当t为何值时,△BPQ的面积y有最大值,最大值是多少?28.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,(1)求直线AB的函数表达式;(2)若点Q在是该抛物线上直线AB的下方的一点,作QE∥y轴交AB于E,求EQ的最大值;(3)点M是y轴上的点,且△ABM为直角三角形,直接写出所有符合条件的点M的坐标.xx学年江苏省盐城市东台实验中学九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把答案写在答题纸相应的位置)1.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选C.2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【考点】二次函数的三种形式.【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.3.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【考点】相似三角形的判定;平行四边形的性质.【分析】直接利用平行四边形的性质得出AD∥BC,AB∥DC,再结合相似三角形的判定方法得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.4.已知二次函数y=﹣2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y 随x的增大而增大.其中说法正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】根据二次函数的性质得二次函数y=﹣2(x﹣3)2+1的开口向上,对称轴为直线x=3,抛物线的顶点坐标为(3,1);当x<3时,y随x的增大而增大;当x>3时,y随x的增大而减小,然后依次对各命题进行判断.【解答】解:①∵a=﹣2<0,∴图象的开口向下,故①正确;②图象的对称轴为直线x=3,故其图象的对称轴为直线x=﹣3错误;③其图象顶点坐标为(3,1),故其图象顶点坐标为(3,﹣1)错误;④当x<3时,y随x的增大而增大,故④正确;综上所述,说法正确的有①④共2个.故选B.5.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】根据已知条件先求出△ADE∽△ABC,△EFC∽△ABC,再根据相似三角形的性质解答.【解答】解:∵DE∥BC,EF∥AB,∴△ADE∽△ABC,△EFC∽△ABC,∴△ADE∽△EFC,∴,,.故选C.6.点P1(0,y1),P2(2,y2),P3(3,y3)均在二次函数y=﹣(x﹣1)2+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【考点】二次函数图象上点的坐标特征.【分析】首先根据二次函数解析式确定抛物线的对称轴为x=1,再根据a<0可得y随x的变化趋势,进而可得y1,y2,y3的大小关系.【解答】解:∵二次函数y=﹣(x﹣1)2+c,∴对称轴为x=1,∵a<0,∴x<1时,y随x增大而增大,x>1时,y随x的增大而减小,∵P2(2,y2),P3(3,y3),∴y2>y3,∵P1(0,y1),P2(2,y2),抛物线对称轴为x=1,∴y1=y2,∴y1=y2>y3,故选:D.7.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是: MN=5cm.故选:B.8.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a>0,由抛物线的对称轴方程得到b=2a>0,由抛物线与y轴的交点位置得到c>0,则可对①进行判断;根据抛物线与x轴交点个数对②进行判断;把(﹣1,0)代入y=ax2+bx+c+2得a﹣b+c=0,加上b=2a,c>2,则可对③进行判断;利用x=﹣2时,y>0可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①错误;∵抛物线与x轴只有1个交点,∴△=b2﹣4ac=0,所以②正确;把(﹣1,0)代入y=ax2+bx+c+2得a﹣b+c=0,∴c=b﹣a,而b=2a,c>2,∴a>2,所以③正确;∵x=﹣2时,y>0,即4a﹣2b+c>0,所以④正确.故选C.二、填空题(本大题共10小题,每小题3分,共30分,把答案填写在答题纸相应位置上)9.已知4x=5y,则= .【考点】比例的性质.【分析】根据分式的性质,可得答案.【解答】解:等式两边都除以4y,得=,故答案为:.10.线段2cm、8cm的比例中项为 4 cm.【考点】比例线段.【分析】比例的基本性质:两外项之积等于两内项之积.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=2×8,x=±4(线段是正数,负值舍去),故填4.11.若关于x的x2+6x+k=0一元二次方程有两个相等的实数根,则k= 9 .【考点】根的判别式.【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:∵关于x的x2+6x+k=0一元二次方程有两个相等的实数根,∴△=62﹣4k=36﹣4k=0,解得:k=9.故答案为:9.12.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是y=2(x+1)2+3 .【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,﹣1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.13.在比例尺为1:40000的地图上,某条道路的长为8cm,则该道路的实际长度是 3.2 km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=3xx0cm=3.2km.∴这条道路的实际长度为3.2km.故答案为:3.214.如图,PA、PB切⊙O于两点,若∠APB=60°,⊙O的半径为4,则阴影部分的面积为16﹣.【考点】切线的性质;扇形面积的计算.【分析】连接OA,OB,OP,由题意可知阴影部分的面积等于四边形OAPB的面积减去扇形AOB的面积,问题得解.【解答】解:连接OA,OB,OP.根据切线长定理得∠APO=30°,∴OP=2OA=8,AP=OP•cos30°=4,∠AOP=60°.=2××4×4=16;扇形的面积是==,∴四边形的面积=2S△AOP∴阴影部分的面积=16﹣.15.已知二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),则代数式m2﹣m+xx的值为xx .【考点】抛物线与x轴的交点.【分析】把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,即可求出答案.【解答】解:∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+xx=1+xx=xx,故答案为:xx.16.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1 .【考点】抛物线与x轴的交点;一次函数的性质.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.17.在直角坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D、C、O为顶点的三角形与△AOB相相似,这样的直线一共可以作出 4 条.【考点】相似三角形的性质;坐标与图形性质.【分析】本题可根据题意先算出OA、OB、OC的值,再根据△AOB∽△DOC和△AOB ∽△COD两种情况分别谈论,即可得出答案.【解答】解:∵A(﹣3,0),B(0,﹣4),C(0,1),∴OA=3,OB=4,OC=1,△AOB是直角三角形,当△AOB∽△DOC时,DC有两种情况,当△AOB∽△COD时,CD分别在y轴的两侧,有两种情况,因而这样的直线一共可以作出4条.18.抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表,则下列说法中正确的有②③④.(填序号)x…﹣4﹣3﹣2﹣101…y…﹣37﹣21﹣9﹣133…①当x>1时,y随x的增大而增大②抛物线的对称轴为直线x=.③当x=2时,y=﹣1 ④方程ax2+bx+c=0一个负数解x1满足﹣1<x1<0.【考点】抛物线与x轴的交点.【分析】根据表格信息,先确定出抛物线的对称轴,然后根据二次函数的性质对各选项一一判断即可.【解答】解:由表格可知,x=0或1时,对应的函数值都是3,∴对称轴x=,故②正确,∵对称轴左侧,y随x的增大而增大,∴开口向下,∴x>1时,y随x的增大而减小,故①错误,根据对称性可知,x=2时,与x=﹣1时的函数值相同,函数值为﹣1,故③正确,根据表格可知抛物线与x轴的一个交点在(﹣1,0)与(0,0)之间,故④正确.故答案为②③④三、解答题(本大题共10题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.已知二次函数y=ax2+bx+3的图象过点(﹣1,8)、(1,0),求这个二次函数的表达式.【考点】待定系数法求二次函数解析式.【分析】把已知两点的坐标代入入y=ax2+bx+3得到关于a、b的方程组,然后解方程组求出a、b即可.【解答】解:把(﹣1,8)、(1,0)代入y=ax2+bx+3得,解得,所以二次函数的解析式为y=x2﹣4x+3.20.如图,在△ABC中,已知DE∥BC,AD=4,DB=8,BC=9,求DE的长.【考点】相似三角形的判定与性质.【分析】由DE∥BC,判断△ADE∽△ABC,再由相似三角形的性质得出相似比求BC.【解答】解:∵AD=4,DB=8,∴AB=12,∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=3.21.已知二次函数y=﹣x2﹣2x+3.(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,写出不等式=﹣x2﹣2x+3>0的解集.【考点】二次函数与不等式(组);抛物线与x轴的交点.【分析】(1)利用配方法即可解决问题.(2)对于抛物线的解析式,分别令x=0,y=0,解方程即可解决问题.(3)利用抛物线的图象写出在x轴上方部分的x取值范围.【解答】解:(1)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点M的坐标为(﹣1,4).(2)对于抛物线y=﹣x2﹣2x+3,令x=0,得y=3,令y=0,得﹣x2﹣2x+3=0,解得x=﹣3或1,所以A(﹣3,0)B(1,0)C(0,3)(3)由图象可知,﹣3<x<1时,y>0.22.在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(2)由四边形ABCD是平行四边形,可证得△BEF∽△AFD,即可求得EF:FA的值.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.23.如图,已知二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,3)(1)求此二次函数的解析式;(2)已知点P在这个抛物线上,且S△ACP=10,求P点的坐标.【考点】待定系数法求二次函数解析式.【分析】(1)把A点和B点坐标分别代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)通过解方程﹣x2+2x+3=0得C(﹣1,0),设P(t,﹣t2+2t+3),利用三角形面积公式得到×4×|﹣t2+2t+3|=10,即|﹣t2+2t+3|=5,然后解绝对值方程求出t的值即可得到P点坐标.【解答】解:(1)根据题意得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则C(﹣1,0),设P(t,﹣t2+2t+3),∵S△ACP=10,∴×4×|﹣t2+2t+3|=10,即|﹣t2+2t+3|=5,当﹣t2+2t+3=5,即t2﹣2t+2=0,此方程没有实数解;当﹣t2+2t+3=﹣5,即t2﹣2t﹣8=0,解得t1=﹣2,t2=4,∴P(﹣2,﹣5)或(4,﹣5).24.如图,抛物线的顶点坐标为(2,1),且经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式和B点的坐标.(2)M是x轴上一点,且△MAB是以AB为腰的等腰三角形,试求M点坐标.【考点】待定系数法求二次函数解析式;等腰三角形的性质.【分析】(1)设顶点式y=a(x﹣2)2+1,再把A点坐标代入可求出a的值,从而得到抛物线解析式;然后计算自变量为0时的函数值可得到B点坐标;(2)先利用勾股定理计算出AB=,讨论:以点A点圆心,AB为半径画弧交x轴于M′和M″或以点B点圆心,BA为半径画弧交x轴于M,然后分别写出M′、M″和M点的坐标即可.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+1,把A(1,0)代入得a+1=0,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣2)2+1;当x=0时,y=﹣(x﹣2)2+1=﹣3,所以 B(0,﹣3);(2)AB==,以点A点圆心,AB为半径画弧交x轴于M′和M″,则M′(1+,0),M″(1﹣,0),以点B点圆心,BA为半径画弧交x轴于M,则M(﹣1,0),综上所述,M点的坐标为(1+,0)或(1﹣,0)或(﹣1,0).25.在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA 为半径的圆弧与BC相切于点D,交AB于点E,连接AD.(1)求证:AD平分∠BAC;(2)已知BE=2,BD=2,求圆弧的半径.【考点】切线的性质.【分析】(1)连接OD,求出∠ODC=90°,推出OD∥AC,TUIC∠DAC=∠ODA,根据等腰三角形性质推出∠ODA=∠DAO=∠DAC,即可推出答案;(2)过过O作OH⊥AC于H,根据垂径定理求出AE,得出矩形OHCD,求出OH,在△AOH中,根据勾股定理求出半径即可.【解答】(1)证明:连接OD,∵OA为半径的圆弧与BC相切于点D,∴OD⊥BC,∴∠ODB=∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,又∵OA=OD,∴∠ODA=∠OAD,∴∠CAD=∠OAD,∴AD平分∠BAC.(2)解:过O作OH⊥AC于H,∵OH⊥AC,OH过O,∴AH=HE=AE=1,∵OD∥AC,OH⊥AC,∠C=90°,∴OH∥CD,∵OD∥AC,∴四边形OHCD是矩形,∴OH=DC=,∴在Rt△AOH中,由勾股定理得:OA===2,26.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x (元)满足一次函数关系,部分对应值如下表:x(元)180260280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;求宾馆当日利润w与房价x之间的函数关系式.(宾馆当日利润=当日房费收入﹣当日支出)【考点】二次函数的应用.【分析】(1)设一次函数表达式为y=kx+b(k≠0),由点的坐标、利用待定系数法即可求出该一次函数表达式;(2)设房价为x元时,宾馆当日利润为w元,依据“宾馆当日利润=当日房费收入﹣当日支出”即可得出w关于x的二次函数关式.【解答】解:(1)设一次函数表达式为y=kx+b(k≠0),依题意得:,解得:.∴y与x之间的函数表达式为y=﹣x+190.(2)设房价为x元时,宾馆当日利润为w元,依题意得:w=xy﹣100y=﹣x2+240x﹣1900027.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)求△BPQ的面积y与t之间的函数关系式;(3)当t为何值时,△BPQ的面积y有最大值,最大值是多少?【考点】相似形综合题.【分析】(1)根据勾股定理求出AB,分△BPQ∽△BAC、△BPQ∽△BCA两种情况,根据相似三角形的性质列出比例式,计算即可;(2)作PE⊥BC于E,根据相似三角形的性质列出比例式,用t表示出PE,根据三角形的面积公式计算即可;(3)把二次函数的一般式化为顶点式,根据二次函数的性质解答.【解答】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB==10,当△BPQ∽△BAC时, =,即=,解得t=1,当△BPQ∽△BCA时, =,即=,解得,t=,∴当t=1或t=时,△BPQ与△ABC相似;(2)作PE⊥BC于E,则△BPE∽△BAC,∴=,即=,解得,PE=3t,∴y=×(8﹣4t)×3t=﹣6t2+12t;(3)y=﹣6t2+12t=﹣6(t﹣1)2+6,∴t=1,y最大值为6.28.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,(1)求直线AB的函数表达式;(2)若点Q在是该抛物线上直线AB的下方的一点,作QE∥y轴交AB于E,求EQ的最大值;(3)点M是y轴上的点,且△ABM为直角三角形,直接写出所有符合条件的点M的坐标.【考点】二次函数综合题.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2设Q(a,a2),由QE∥y轴交AB于E,得到E(a,a+2)于是得到结论;(3)设M(0,m)解方程组得到A(﹣1,1),B(2,4),根据两点间的距离公式得到AB2=18,AM2=1+(1﹣m)2,BM2=4+(4﹣m)2,然后列方程即可得到结论.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)∵点Q在是该抛物线上直线AB的下方的一点,∴设Q(a,a2),∵QE∥y轴交AB于E,∴E(a,a+2)∴EQ的长度=a+2﹣a2=﹣(a﹣)2+,∴EQ的最大值为;(3)设M(0,m)解得,,∴A(﹣1,1),B(2,4),∴AB2=18,AM2=1+(1﹣m)2,BM2=4+(4﹣m)2,当AB2=AM2+BM2时,即18=1+(1﹣m)2+4+(4﹣m)2,解得m1=,m2=,当AM2=AB2+BM2时,即1+(1﹣m)2=18+4+(4﹣m)2,解得:m=6,当BM2=AB2+AM2时,即4+(4﹣m)2=18+1+(1﹣m)2,解得:m=0,∴M(0,0),(0,6),(0,),(0,).xx年2月6日Jm28993 7141 煁31588 7B64 筤38285 958D 閍20510 501E 倞N36946 9052 遒29355 72AB 犫T32034 7D22 索21403 539B 厛r30779 783B 砻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省济宁市嘉祥县九年级(上)月考数学试卷(12月份)一、选择题(本大题共10小题,每小题3分,共30分)1.将抛物线y=x2先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣22.从图中的四张图案中任取一张,取出图案是中心对称图形的概率是()A.B.C.D.13.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.145°D.70°4.我市药品监察部门为了响应国家解决老百姓看病贵的号召,某药品原价每盒28元,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1﹣2x)=28 C.28(1﹣x)2=16 D.16(1﹣x)2=285.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm6.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)7.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A.B.C.3 D.28.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个9.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10) D.(0,10)10.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD 重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.12.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC= .13.已知一个直角三角形的两条直角边的长恰好是方程x2﹣6x=8(x﹣6)的两个实数根,那么这个直角三角形的内切圆半径为.14.已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为.15.已知AB、AC分别是同一个圆的内接正方形和内接正六边形的边,那么∠BAC的度数是度.三、解答题(本大题共7小题,共55分)16.(8分)解方程:(1)x2﹣4x+1=0(2)x(x﹣2)+x﹣2=0.17.(6分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和﹣2;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.18.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).19.(7分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB 交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O的相切;(2)若AB=4,求线段GF的长.21.(9分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?22.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.2019-2020学年山东省济宁市嘉祥县九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.将抛物线y=x2先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣2【解答】解:∵抛物线y=x2先向左平移2个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(﹣2,﹣2),∴所得抛物线的函数关系式是y=(x+2)2﹣2.故选B.2.从图中的四张图案中任取一张,取出图案是中心对称图形的概率是()A.B.C.D.1【解答】解:在这四个图片中中心对称图形的有第1、2、3幅图片,因此是中心对称称图形的卡片的概率是,故选:C3.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.145°D.70°【解答】解:∵∠C=35°,∴∠AOB=2∠C=70°.故选D.4.我市药品监察部门为了响应国家解决老百姓看病贵的号召,某药品原价每盒28元,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1﹣2x)=28 C.28(1﹣x)2=16 D.16(1﹣x)2=28【解答】解:第一次降价后的价格为28×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(1﹣x),则列出的方程是28×(1﹣x)2=16,故选C.5.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm【解答】解:设圆锥的底面半径是r,则2πr=6π,解得:r=3,则圆锥的高是: =4cm.故选A.6.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【解答】解:如图,正方形ABCD绕D点顺时针旋转90°得到正方形CB′C′D,即旋转后B点的坐标为(4,0).故选D.7.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A.B.C.3 D.2【解答】解:连结OB,作OP′⊥l于P′如图,OP′=3,∵PB切⊙O于点B,∴OB⊥PB,∴∠PBO=90°,∴PB==,当点P运动到点P′的位置时,OP最小时,则PB最小,此时OP=3,∴PB的最小值为=.故选B.8.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)c是二次函数y=ax2+bx+c与y轴的交点,所以当c=0时,函数的图象经过原点;(2)c>0时,二次函数y=ax2+bx+c与y轴的交点在y轴的正半轴,又因为函数的图象开口向下,所以方程ax2+bx+c=0必有两个不相等的实根;(3)当a<0时,函数图象最高点的纵坐标是;当a>0时,函数图象最低点的纵坐标是;由于a值不定,故无法判断最高点或最低点;(4)当b=0时,二次函数y=ax2+bx+c变为y=ax2+c,又因为y=ax2+c的图象与y=ax2图象相同,所以当b=0时,函数的图象关于y轴对称.三个正确,故选C.9.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10) D.(0,10)【解答】解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,a2﹣4ab+4b2+4a﹣8b+10=2﹣4ab,(a+2)2+4(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴a﹣2b=﹣2﹣2×1=﹣4,2﹣4ab=2﹣4×(﹣2)×1=10,∴点A的坐标为(﹣4,10),∵对称轴为直线x=﹣=﹣2,∴点A关于对称轴的对称点的坐标为(0,10).故选:D.10.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,R t△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD 重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.【解答】解:根据题意可得:①F、A重合之前没有重叠面积,②F、A重叠之后到E与A重叠前,设AE=a,EF被重叠部分的长度为(t﹣a),则重叠部分面积为S=(t﹣a)•(t﹣a)tan∠EFG=(t﹣a)2tan∠EFG,∴是二次函数图象;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,﹣(t﹣a)2tan∠EFG,符合二次函数图象,④F与B重合之后,重叠部分的面积等于S=S△EFG直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.12.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=40°,则∠BAC= 20° .【解答】解:∵PA 是⊙O 的切线,AC 是⊙O 的直径, ∴∠PAC=90°.∵PA ,PB 是⊙O 的切线, ∴PA=PB , ∵∠P=40°,∴∠PAB=(180°﹣∠P )÷2=(180°﹣40°)÷2=70°, ∴∠BAC=∠PAC ﹣∠PAB=90°﹣70°=20°. 故答案是:20°.13.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣6x=8(x ﹣6)的两个实数根,那么这个直角三角形的内切圆半径为 2 . 【解答】解:解方程x 2﹣6x=8(x ﹣6), 可得:x 1=6,x 2=8,斜边=,则此直角三角形的内切圆半径=,故答案为:214.已知实数x ,y 满足x 2+3x+y ﹣3=0,则x+y 的最大值为 4 . 【解答】解:由x 2+3x+y ﹣3=0得 y=﹣x 2﹣3x+3,把y 代入x+y 得:x+y=x ﹣x 2﹣3x+3=﹣x 2﹣2x+3=﹣(x+1)2+4≤4, ∴x+y 的最大值为4. 故答案为:4.15.已知AB、AC分别是同一个圆的内接正方形和内接正六边形的边,那么∠BAC的度数是15或105 度.【解答】解:如图1中,∠BAC=∠CAO﹣∠BAO=60°﹣45°=15°,如图2中,∠BAC=∠BAE+∠EAC=90°+15°=105°,故答案为15或105.三、解答题(本大题共7小题,共55分)16.(8分)解方程:(1)x2﹣4x+1=0(2)x(x﹣2)+x﹣2=0.【解答】解:(1)x2﹣4x+4=3(x﹣2)2=3x=2±(2)(x﹣2)(x+1)=0x=2或x=﹣117.(6分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和﹣2;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.【解答】解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(﹣2,﹣2),(﹣2,0),(﹣2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.18.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.19.(7分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为=.20.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB 交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O的相切;(2)若AB=4,求线段GF的长.【解答】(1)证明:过点O作OM⊥AB,垂足是M.如图1所示:∵⊙O与AC相切于点D.∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠NAO,∴OM=OD.∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.如图:2所示:则NG=NF=GF,∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴OM=OB•sin60°=,BM=OB•cos60°=1.∵BE⊥AB,∴四边形OMBN是矩形.∴ON=BM=1,BN=OM=.∵OF=OM=,由勾股定理得:NF=,∴GF=2NF=2.21.(9分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 【解答】解:(1)设y=kx+b ,把(22,36)与(24,32)代入得:,解得:,则y=﹣2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元, 根据题意得:(x ﹣20)y=150, 则(x ﹣20)(﹣2x+80)=150, 整理得:x 2﹣60x+875=0, (x ﹣25)(x ﹣35)=0, 解得:x 1=25,x 2=35,∵20≤x≤28,∴x=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,=﹣2(28﹣30)2+200=192(元),∴x<30时,y随x的增大而增大,即当x=28时,w最大答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.22.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴即:点P(,)时,S四边形APCD最大=,(3)方法1、如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3, 8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).方法2,如图1,∴E(﹣1,0),A(0,5),∵抛物线的解析式为y=﹣(x﹣2)2+9,∴抛物线的对称轴为直线x=2,∴点N的横坐标为2,即:N'(2,0)①当以点A,E,M,N组成的平行四边形为四边形AENM时,∵E(﹣1,0),点N的横坐标为2,(N'(2,0)∴点E到点N向右平移2﹣(﹣1)=3个单位,∵四边形AENM是平行四边形,∴点A向右也平移3个单位,∵A(0,5),∴M点的横坐标为3,即:M'(3,5),∵点M在抛物线上,∴点M的纵坐标为﹣(3﹣2)2+9=8,∴M(3,8),即:点A再向上平移(8﹣5=3)个单位,∴点N'再向上平移3个单位,得到点N(2,3),即:当M点的坐标为(3,8)时,N点坐标为(2,3).②当以点A,E,M,N组成的平行四边形为四边形AEMN时,同①的方法得出,当M点的坐标为(1,8)时,N点坐标为(2,13).............。

相关文档
最新文档