勾股定理在实际问题中的应用举例

合集下载

勾股定理的应用举例

勾股定理的应用举例

勾股定理的应用举例勾股定理,又称勾三股四弦五定理,是我国古代数学的瑰宝之一,也是世界数学史上的里程碑之一。

它被广泛应用于解决三角形相关问题,不仅在数学教学中发挥着重要作用,也在实际生活中找到了广泛的应用。

下面就为大家举几个勾股定理的应用实例。

首先,勾股定理在建筑设计中起到了重要作用。

在设计直角墙角时,使用勾股定理可以精确计算墙角的长度。

这对于建筑师和工程师来说是非常重要的,因为只有墙角长度准确无误,才能确保整个建筑结构的牢固性和稳定性。

其次,勾股定理在地理测量学中也有广泛应用。

地理测绘工程师经常需要测量地表上两地之间的距离,而这些地点往往不直接相连。

通过勾股定理可以计算出两点之间的直线距离,然后再结合其他测量数据进行整体测量,从而得出准确的地理距离。

另外,勾股定理也在航空航天领域有重要的应用。

在飞机飞行的过程中,导航系统需要准确计算飞机当前位置与目标点之间的距离。

而勾股定理可以帮助导航系统快速计算出飞行距离,并且将飞机导航到正确的目标点上,确保飞行安全和效率。

此外,勾股定理还在电子游戏设计中发挥了重要作用。

许多游戏中都需要准确计算出角色之间的距离,并且根据距离来确定角色之间的互动关系。

通过应用勾股定理,游戏开发者可以轻松计算出游戏场景中不同角色之间的距离,并根据距离来设计各自的行为和交互方式。

最后,勾股定理还在摄影测量学中得到了广泛的应用。

通过测量照片中的物体和相机之间的角度和距离,结合勾股定理,可以准确计算出物体的实际尺寸和距离。

这对于测绘、地形分析以及遥感影像处理等领域具有重要意义。

综上所述,勾股定理作为一项重要的数学定理,在实际生活和工程领域中发挥着重要作用。

无论是建筑设计、地理测量、航空航天、电子游戏开发还是摄影测量,勾股定理都有着广泛而深远的应用价值。

这正是勾股定理在数学史上和实际应用中的巨大贡献,也是我们应该深入学习和理解的数学原理之一。

初中数学 如何证明勾股定理在解决实际问题中的应用

初中数学 如何证明勾股定理在解决实际问题中的应用

初中数学如何证明勾股定理在解决实际问题中的应用。

勾股定理是初中数学中的重要定理之一,它描述了直角三角形中直角边的平方和等于斜边的平方。

虽然在学习数学的过程中,我们经常通过几何证明来理解勾股定理,但是它在解决实际问题中的应用也是非常广泛的。

在本文中,我们将探讨勾股定理在实际问题中的应用,并通过具体的例子来加深理解。

1. 建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。

例如,在设计房屋的时候,我们需要确定墙壁的角度和长度。

通过使用勾股定理,我们可以计算出两面墙壁之间的距离,从而确保房屋的结构和稳定性。

此外,在设计楼梯和斜坡的过程中,勾股定理也可以用来计算出坡度和高度,以确保安全性。

2. 导航系统中的应用勾股定理在导航系统中也有着重要的应用。

例如,在GPS系统中,我们经常需要确定两个位置之间的距离和方向。

通过使用勾股定理,我们可以计算出两个坐标之间的直线距离,从而确定最短路径和导航方向。

此外,勾股定理还可以用来计算出飞机、船只和汽车等交通工具的速度和位移。

3. 物理学中的应用勾股定理在物理学中也有着广泛的应用。

例如,在力学中,我们经常需要计算物体在斜面上的运动情况。

通过使用勾股定理,我们可以计算出物体在斜面上的加速度、速度和位移等参数。

此外,在光学中,勾股定理可以用来计算出光线的入射角和折射角,从而帮助我们理解光的传播和折射规律。

4. 金融领域中的应用勾股定理在金融领域中也有着一定的应用。

例如,在投资领域,我们经常需要计算投资组合的风险和回报。

通过使用勾股定理,我们可以构建一个有效的投资组合,以最大化回报并降低风险。

此外,在贷款和利率计算中,勾股定理可以用来计算出贷款的利率和还款期限等关键参数。

综上所述,勾股定理在解决实际问题中有着广泛的应用。

无论是在建筑工程、导航系统、物理学还是金融领域,勾股定理都发挥着重要的作用。

通过了解和应用勾股定理,我们可以更好地理解和解决实际问题,提高数学应用能力,并将数学知识与实际生活相结合。

勾股定理的应用举例解析

勾股定理的应用举例解析

勾股定理的应用举例解析勾股定理是数学中的重要理论之一,在几何学和三角学中被广泛应用。

它描述了直角三角形中三条边之间的关系,为解决实际问题提供了极大的便利。

本文将通过几个实际应用的举例,解析勾股定理的实际运用。

1. 建筑工程中的勾股定理应用在建筑工程中,勾股定理被广泛应用于测量和规划。

例如,在测量建筑物的高度时,可以利用勾股定理计算出斜线的长度。

假设一个建筑物的高度为H,倾斜角度为α,底边长度为B,利用勾股定理可以得到H = B*sin(α)。

这样,只需知道倾斜角度和底边长度,就可以准确计算出建筑物的高度。

2. 航海中的勾股定理应用勾股定理在航海中也有重要的应用。

船只在海上航行时,需要准确计算自身位置与目标位置之间的距离和角度。

利用勾股定理,可以计算出船只与目标位置之间的直线距离。

假设目标位置的经度差为ΔX,纬度差为ΔY,利用勾股定理得到直线距离D = sqrt(ΔX^2 + ΔY^2)。

这样,船只就能够通过测量经度和纬度差值,准确计算目标位置与自身位置之间的距离。

3. 三角测量中的勾股定理应用勾股定理在测绘和地质勘探中也被广泛应用。

利用勾股定理,测量人员可以测量出无法直接测量的距离或高度。

例如,在地质勘探中,地质学家需要计算地底下某一点的深度。

利用勾股定理,可以通过测量该点到地表的水平距离和相应的倾斜角度,推导出该点的深度。

这种方法在勘探油田或挖掘矿产时尤为重要。

4. 制作家具中的勾股定理应用在制作家具时,尤其是角柜、书架等有直角的家具中,勾股定理被用于角度的计算和木材的裁剪。

制作家具时,木材需按指定的尺寸剪切,而角度的计算是关键。

利用勾股定理,木匠可以准确计算出所需的角度,从而在裁剪木材时确保精确度和质量。

综上所述,勾股定理在实际应用中发挥了重要的作用。

无论是建筑工程、航海、测绘还是制作家具,勾股定理都为解决问题提供了可靠的数学基础。

通过理解和运用勾股定理,我们能够更好地解决生活和工作中的实际问题,提高我们的实践能力和数学素质。

勾股定理的实际运用

勾股定理的实际运用

勾股定理的实际运用一、勾股定理内容回顾勾股定理是指在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别为和,斜边长度为,那么。

二、勾股定理实际运用的常见类型1. 工程测量中的应用测量建筑物高度例如,想要知道一座垂直于地面的大楼的高度。

我们可以在大楼旁边的平地上选一点,从点向大楼底部点拉一条绳子,测量出的距离。

然后在点用测角仪测量出大楼顶部点与点连线和地面的夹角。

此时在直角三角形中,,如果我们知道和,可以求出。

然后再根据勾股定理求出大楼的高度。

测量两点间的距离(不可直接测量的情况)假设在一个池塘的两边有、两点,我们要测量、两点间的距离。

我们可以在池塘边找一点,使得。

测量出的长度和的长度,然后根据勾股定理,就可以得到、两点间的距离。

2. 航海问题中的应用一艘船从港口出发,向正东方向航行海里后到达点,然后改变航向,向正南方向航行海里到达点。

此时船从港口到点的距离就是直角三角形的斜边长度。

根据勾股定理,海里。

航海中利用勾股定理可以计算船只的航行轨迹和距离等信息。

3. 生活中的简单应用梯子问题有一个长度为的梯子靠在墙上,梯子底部与墙的距离为,梯子顶端与地面的垂直高度为。

如果梯子底部向外滑动了距离,那么顶端下滑的距离可以通过勾股定理来计算。

初始时,滑动后,通过这两个等式联立求解可以得到的值。

电视屏幕尺寸问题电视屏幕的尺寸是按照对角线长度来衡量的。

如果屏幕的长为单位,宽为单位,那么对角线长度就满足。

我们可以根据这个关系来判断不同尺寸屏幕的实际大小关系等。

三、勾股定理实际运用的解题步骤总结1. 分析问题,确定是否为直角三角形问题。

如果是,找出直角三角形的三条边(已知边和未知边)。

2. 根据勾股定理(为斜边)列方程。

3. 解方程求出未知边的值。

4. 检验答案的合理性,看是否符合实际问题的情境。

四、练习题1. 在一个直角三角形中,一条直角边的长度为米,斜边长度为米,求另一条直角边的长度。

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用

2证法 1】(课本的证明)做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 .从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即证法 2】(邹元治证明)∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o.∴ ∠HEF = 180 o ― 90o= 90 o.∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的面积等于 c 2.∵ Rt Δ GDH ≌ Rt ΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o.∴ ABCD 是一个边长为 a + b 的正方形,它的面积等于∠HEF = 90 o.EFGH 是一个边长为 b ―a 的正方形,它的面积等于1ab以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直线上, 把这四个直角三 C 、G 、D 三点在一条直线上b 2 4 12 abc 24 1 ab2整理得c 21 4 ab 2c 2a 2b 2c 2【证法 3】(赵爽证明)以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于把这四个直角三角形拼成如图所示形状∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o ,∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba1 2 24 ab b a c 2.2 2 2a b c .证法 4】(1876 年美国总统 Garfield 证明)1ab以 a 、 b 为直角边,以 c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上 . 把这两个直角三∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180 o ― 90o= 90 o. ∴ Δ DEC 是一个等腰直角三角形,12 c 它的面积等于 2 .又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD ∥ BC. ∴ ABCD 是一个直角梯形,它的面积等于 12 1 12a b 2 2 ab c 2 2 2 2 2 2a b c .【证法 5】(梅文鼎证明) 做四个全等的直角三角形, 设它们的两条直角边长分别为 使 D 、E 、F 在一条直线上 . 过 C 作 AC 的延长线交 DF 于点 P. ∵ D 、 E 、F 在一条直线上 , 且Rt Δ GEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90 °, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o ― 90o= 90 o. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为 c 的正方形 . ∴ ∠ABC + ∠CBE = 90o.∵ Rt ΔABC ≌ Rt ΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90o. 即 ∠CBD= 90o.又∵ ∠BDE = 90o ,∠ BCP = 90o ,BC = BD = a .∴ BDPC 是一个边长为 a 的正方形 . 同理, HPFG 是一个边长为 b 的正方形 .a 、b ,斜边长为 c. 把它们拼成如图那样的一个多边形,设多边形 GHCBE 的面积为 S ,则 2 21 ab 2 S2 ab,2 2S21 cab 2, ∴a2b 2c 2.【证法 6】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b ( b>a ) 形. 把它们拼成如图所示的多边形,使 E 、A 、 C 三点在一条直线上 .,斜边长为 c. 再做一个边长为 c 的正方过点 Q 作 QP ∥ BC ,交 AC 于点 P. 过点 B 作 BM ⊥ PQ ,垂足为 M ;再过点 F 作 FN ⊥ PQ ,垂足为 N. ∵ ∠BCA = 90 o ,QP ∥ BC , ∴ ∠MPC = 90o , ∵ BM ⊥ PQ , ∴ ∠BMP = 90o , ∴ BCPM 是一个矩形,即∠ MBC = 90o. ∵ ∠QBM + ∠MBA = ∠QBA = 90o , ∠ABC + ∠MBA = ∠MBC = 90o , ∴ ∠QBM = ∠ABC , 又∵ ∠BMP = 90o ,∠ BCA = 90 o ,BQ = BA = c , ∴ Rt Δ BMQ ≌ Rt ΔBCA. 同理可证 Rt Δ QNF ≌ Rt ΔAEF. 从而将问题转化为【证法 4】(梅文鼎证明) . 【证法 7】(欧几里得证明) 做三个边长分别为 a 、 b 、c 的正方形,把它们拼成如图所示形状,使 H 、 BF 、CD. 过 C 作 CL ⊥ DE , 交 AB 于点 M ,交 DE 于点 L.∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , 12a ∵ Δ FAB 的面积等于 2 , Δ GAD 的面积等于矩形 ADLM 的面积的一半, B 三点在一条直线上,连结GK F bB 2∴ 矩形 ADLM 的面积 = a . = b 2同理可证,矩形 MLEB 的面积 ∵ 正方形 ADEB 的面积 = 矩形 ADLM 的面积 +2 2 2 ∴ c a b ,即 【证法 8】(利用相似三角形性质证明) 矩形 MLEB 的面积 2 2 2 a b c . b MAL如图,在 Rt Δ ABC 中,设直角边 AC 、 在Δ ADC 和Δ ACB 中, ∵ ∠ADC = ∠ACB = 90o , ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB. AD ∶AC = AC ∶AB , 即 AC 2AD ?AB Δ CDB ∽ Δ ACB ,从而有 BC 2 AD(杨作玫证明) BC 的长度分别为 a 、b ,斜边 AB 的长为c ,过点 C 作 CD ⊥AB ,垂足是D.同理可证, ∴ AC 2 【证法 9】 做两个全等的直角三角形, 把它们拼成如图所示的多边形 与 CB 的延长线垂直,垂足为∵ ∠BAD = 90 o ,∠ PAC = 90o ,∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90o ,∠ BCA = 90o , AD = AB = c , ∴ Rt Δ DHA ≌ Rt ΔBCA. ∴ DH = BC = a ,AH = AC = b . DB ?AB BC 2 BD ?AB . AB 2 ,即 a 2 b 2c 2设它们的两条直角边长分别为 a 、 b ( b>a ),斜边长为 c. 再做一个边长为 c 的正方形 . . 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于 R. 过 B 作BP ⊥AF ,垂足为 P. 过 D 作DEE ,DE 交 AF 于 H. b 9 2 A由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA. 即 PB = CA = b ,AP= a ,从而 PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt Δ DHA ≌ Rt ΔBCA. ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠ GDT = ∠HDA . 又∵ ∠DGT = 90o ,∠ DHF = 90o ,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o , ∴ DGFH 是一个边长为 a 的正方形 .∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底 TF=b ―a ,下底 BP= b ,高 FP=a +(b ―a ) 用数字表示面积的编号(如图) ,则以 c 为边长的正方形的面积为c 2S 1S 2S 3 S 4 S 5①S 8S 3S 41b b a ? a b ab 2 1ab 2= 2S 5 S 8S 9,∴S 3S 421S8=b 2 S 1 S 8 .b 2ab 2②把②代入①,得c 2S 1S 2 2 b S 1S 8 S 8 S 9 =b 2S 2 S 9 = b 2 a 2.222a b c .【证法 10】(李锐证明)设直角三角形两直角边的长分别为 a 、 b (b>a ),斜边的长为 c. 做三个边长分别为 成如图所示形状,使 A 、E 、 G 三点在一条直线上 . 用数字表示面积的编号(如图) .∠TBE = ∠ABH = 90o ,∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90 o , BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE.∴ HT = AE = a .∴ GH = GT ―HT = b ―a. 又∵ ∠GHF + ∠BHT = 90o ,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90o , ∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90o ,∴ Rt ΔHGF ≌ Rt ΔBDC. 即 S7 S2 .过Q 作 QM ⊥AG ,垂足是 M. 由∠BAQ = ∠BEA = 90 o ,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以 Rt ΔABE ≌ Rt ΔQAM. 又 Rt ΔHBT ≌ Rt ΔABE. 所以 Rt Δ HBT ≌ RtΔQAM. 即 S8 S5.由 Rt Δ ABE ≌ Rt ΔQAM ,又得 QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90o ,∠ BAE + ∠CAR = 90 o ,∠ AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90o , QM = AR = a ,∴ Rt Δ QMF ≌ Rt ΔARC. 即 S4 S6 .S 1 S 2 S 3 S 4 S 5 S 1S 6 b 2S 3 S 7 S 8a 、b 、c 的正方形,把它们拼 b8 D61 3ME 45c7 F2C【证法 11】(利用切割线定理证明)在 Rt Δ ABC 中,设直角边 BC = a ,AC = b ,斜边 AB = c . 如图,以 B 为圆心 a 为半径作圆,交 AB 及 AB 的延长线 分别于 D 、E ,则 BD = BE = BC = a . 因为∠ BCA = 90o ,点 C 在⊙B 上,所以 AC 是⊙B 的切线 . 由切割线定理,得AC 2 AE? AD= AB BE AB BD = c a c a22= c a , 即 b 2 c 2 a 2 ,2 2 2∴ a b c .【证法 12】(利用多列米定理证明) 在 Rt Δ ABC 中,设直角边 BC = a ,为矩形,矩形 ACBD 内接于一个圆 . 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有AB?DC AD?BC AC?BD ,∵ AB = DC = c , AD = BC = a ,AC = BD = b ,∴AB 2 BC 2 AC 2 ,即 c 2 a 2 b 2 , ∴ a 2 b 2 c 2 .设⊙ O 的半径为 r.又∵ S 72aS 2 b 2S 8S 5 ,S 4S6,S 1S 6 S 3 S 7 S 8=S 1S 4 S 3 S 2 S 52=cb 2c 212r c c r 2= 2= r24 r rc4S ABCrcB 作 BD ∥ CA ,则 ACBD【证法 13】(作直角三角形的内切圆证明) 在 Rt Δ ABC 中,设直角边 BC = a ,AC = b ,斜边 AB = AbC c. 作 Rt ΔABC 的内切圆⊙ O ,切点分别为 D 、 E 、F (如图),AC BC AB AE CE BD CD=C ECD = r + r = 2r,即 ab c 2r ,ab 2rc .ab22r 2 c,即2a b22ab4r2rc2 c,S ABC12ab,2ab4S ABC ,又∵ S ABC S AOB S BOC1 111 S AOC =cr ar br a b c r2 2 2 =2AC = b ,斜边 AB = c (如图) . 过点 A 作 AD ∥CB ,过点 ∵ AE = AF ,BF = BD ,CD = CE ,【证法 16】(陈杰证明) 设直角三角形两直角边的长分别为 拼成如图所示形状,使 E 、 H 、M 三点在一条直线上 . 用数字表示面积的编号(如图) 在 EH = b 上截取 ED = a ,连结 DA 、 DC , 则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = b a ―a = b . 又∵ ∠CMD = 90o , CM = a , ∠AED =90o , AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC.∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180o ,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o ,∴4 r 2 rc 2ab ,∴,∴a 2b 2 2ab 2abc 2 , 【证法 14】(利用反证法证明) 如图,在 Rt ΔABC 中,设直角边 AC 、 2 2 2 2假设 a b c ,即假设 ACAB 2 AB?AB = AB AD 可知AC AB ? AD ,或者 BC 在Δ ADC 和Δ ACB 中,∵ ∠A = ∠ A ,∴ 若 AD : AC ≠ AC :AB ,则 ∠ ADC ≠∠ ACB. 在Δ CDB 和Δ ACB 中, ∵ ∠B = ∠B ,∴ 若 BD :BC ≠ BC :AB ,则 ∠ CDB ≠∠ ACB. 又∵ ∠ACB = 90o ,∴ ∠ ADC ≠ 90o ,∠ CDB ≠ 90o.2这与作法 CD ⊥ AB 矛盾. 所以, AC2 b 2a 2b 2c 2a 、b ,斜边 AB 的长为c ,过点 C 作 CD ⊥AB ,垂足是D. BC 2 AB 2,则由 BD = AB ?AD BC 的长度分别为 AB ?BD . 即 AD : BC 2证法 AB ?BDAC ≠AC :AB ,或者 BD : BC ≠BC :AB.2 AB 2的假设不能成立 .2c.设直角三角形两直角边的长分别为 方左图所示的几个部分,则正方形 ABCD 的面积为b ,斜边的长为 abc. 2 作边长是 a 2 b 2 a+b 的正方形 ABCD. 把正方形 ABCD 划分成上2ab ;把正方形 ABCD 划分成上方右图所示的 b 2几个部分,则正方形 ABCD 的面积为a 2b 2 2ab 2abc 2b 2 1ab 22c . c 2=2ab c 2a 、b b>a ),斜边的长为 c. 做两个边长分别为 a 、 b 的正方形( b>a ),把它们辛卜松证明)15】 a 、 C∴ ∠ ADC = 90o.∴ 作 AB ∥DC ,CB ∥DA ,则 ABCD 是一个边长为 c 的正方形 . ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90 o , ∴ ∠BAF=∠ DAE.连结 FB ,在Δ ABF 和Δ ADE 中,∵ AB =AD = c ,AE = AF = b ,∠ BAF=∠ DAE ,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90 o , BF = DE = a . ∴ 点 B 、F 、G 、 H 在一条直线上 . 在 Rt Δ ABF 和 Rt ΔBCG 中,AB = BC = c , BF = CG = a , Rt ΔABF ≌ Rt ΔBCG.2cS 2 S 3 S 4S5,bS 1 S 2 S 6 ,a S 3 S 7S 1S 5S 4S 6 S 72ab 2S 3S 7S 1S 2S 6=S 2 S 3 S 1 S 6 S 7=S 2S 3 S 4S 5=c 22ab 2c 2勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我 们实际生活中应用也很广泛。

勾股定理与生活

勾股定理与生活

勾股定理与生活
勾股定理是数学中一个基本的定理,主要描述了在直角三角形中,两条直角边的平方和等于斜边的平方。

这个定理在生活中有非常广泛的应用:
1. 建筑和工程:在建筑和工程领域,勾股定理被用来确保结构的准确性和稳定性。

例如,工人会用它来检查墙壁、地板是否垂直或水平,或者在测量电线杆、塔等的高度时。

2. 装修设计:在室内设计中,比如确定家具的位置,计算最佳视角等,都会用到勾股定理。

3. 体育运动:在篮球、足球、田径等运动中,运动员利用勾股定理来判断投篮角度、传球距离等。

4. 导航和地理:在地图制作和导航系统中,勾股定理用于计算两点之间的最短距离。

5. 电子设备:手机、电脑等电子设备的屏幕尺寸,往往通过勾股定理来计算对角线长度。

6. 日常生活:比如测量窗户、门的尺寸,计算梯子的安全角度等,都会用到勾股定理。

7. 交通:驾驶员在倒车入库时,可以通过勾股定理判断车尾与障碍物的距离。

这些都是勾股定理在我们日常生活中的实际应用,体现了数学的实用性和普遍性。

勾股定理实际应用

勾股定理实际应用

一、勾股定理在生活中的应用1、理解问题实质,能够从生活问题中转化为几何图形关系。

如图4,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距点C 5cm ,一只蚂蚁如果要沿着长方体表面从点A 爬到点B ,需要爬行的最短路程是多少?2、弄清方位角知识,在航海、测绘等问题中使用。

如图,一艘船以6海里/小时的速度从港口A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距3、利用勾股定理,测量物体高度。

如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为4、利用勾股定理,选择最优方案。

在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m . 二. 特殊几何图形中勾股定理计算规律:等腰直角三角形。

(1)斜边中线等于斜边一半并且是特殊的三线合一。

(2)斜边是直角边的2倍。

例题1如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6 B .8 C .10 D .12图4 图5 BA 图6 AB例题2如图所示,铁路上有A 、B 两点(看做直线上两点)相距40千米,C 、D 为两村庄(看做两个点),AD ⊥AB ,BC垂直AB ,垂足分别为A 、B ,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈,使得C 、D 两村到煤栈的距离相等,问煤栈应建在距A 点多少千米处?联系生活的应用实例:如图,公路AB 和公路CD 在点P 处交会,且∠APC=45°,点Q 处有一所小学,PQ=1202 m ,假设拖拉机行驶时,周围130m 以内会受到噪声的影响,那么拖拉机在公路AB 上沿PA 方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为36km/h ,那么学校受影响的时间为多少秒?根据实际情况分类讨论 实例:为美化小区环境,某小区有一块面积为30平方米的等腰三角形草地,测得其一边长为10米.现要给这块三角形草地围上白色的低矮栅栏,现在准备这种低矮栅栏的长度分别有以下三种:①10+261米;②20+210米;③20+610米,则符合要求的是( )A .只有①②B .只有①③C .只有②③D .①②③一、选择题1、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A .18海里/小时B .183海里/小时C .36海里/小时D .36海里/小时 2 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a≤13 B .12≤a≤15 C .5≤a≤12 D .5≤a≤13*3如图,在△ABC 中,已知∠C=90°,AC=60cm ,AB=100cm ,a ,b ,c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC平行,另一组对边分别在BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72cm ,则这样的矩形a 、b 、c…的个数是( )A .6 B .7 C .8 D .9*4下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为10;②直角三角形的最大边长为3,最短边长为1,则另一边长为2;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是( )A .只有①②③B .只有①②④C .只有③④D .只有②③④**5、如图,在等腰Rt △ABC 中,∠ACB=90°,CA=CB ,点M 、N 是AB 上任意两点,且∠MCN=45°,点T 为AB 的中点.以下结论:①AB=2 AC ;②CM 2+TN 2=NC 2+MT 2;③AM 2+BN 2=MN 2;④S △CAM +S △CBN =S△CMN .其中正确结论的序号是( )A .①②③④B .只有①②③C .只有①③④D .只有②④二、填空题:*6第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=…=A 8A 9=1,请你计算OA 9的长 .*7如图,在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了180m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C ,那么,由此可知,B 、C 两地相距m .**8如图,四边形ABCD 、EFGH 、NHMC 都是正方形,A 、B 、N 、E 、F 五点在同一直线上,且正方形ABCD 、EFGH 面积分别是4和9,则正方形NHMC 的面积是 .**9我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABC 是奇异三角形,在Rt △ABC 中,∠C=90°,AB=c ,AC=b ,BC=a ,且b >a ,其中,a=1,那么b= .三、解答题:*10如图,A 、B 两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB ).经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?*11在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向.在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处.这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图).假设距恐怖分子100米以外为安全位置.(1)乙队员是否处于安全位置?为什么?(2)因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置.为此,乙队员至少应用多快的速度撤离?(结果精确到个位.参考数据:13≈3.6,14≈3.74.)**12如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?13如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=√5,则BC 的长为14如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是15如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于16正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE 是等腰三角形,则腰长为在△ABC中,AB=2√2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为17已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD18如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长。

勾股定理的实际应用【十二大题型】(解析版)

勾股定理的实际应用【十二大题型】(解析版)

勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)【答案】消防车从原处向着火的楼房靠近的距离AC为3m【分析】在Rt△ABO中,根据勾股定理得到AO和OC,于是得到结论.【详解】解:在Rt△ABO中, ∵∠AOB=90°,AB=15m,OB=12-3=9(m),∴AO=AB2-OB2=152-92=12(m),在Rt△ABO中,∵∠COD=90°,CD=15m,OD=15-3=12(m),∴OC=CD2-OD2=152-122=9(m),∴AC=OA-OC=3(m),答:消防车从原处向着火的楼房靠近的距离AC为3m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.【答案】(1)墙高3米(2)竹竿的长2.5米【分析】(1)设墙高x米,在RtΔBCO,RtΔEFO根据勾股定理即可表示出竹竿长度的平方,联立即可得到答案;(2)把(1)中的x代入勾股定理即可得到答案.【详解】(1)解:设墙高x米,∵AC⊥CF,DF⊥CF,∴∠BCO=∠EFO=90°,在RtΔBCO,RtΔEFO根据勾股定理可得,BO2=(x-0.6)2+0.72,OE2=(x-1)2+1.52,∵BO=OE,∴(x-1)2+1.52=(x-0.6)2+0.72,解得:x=3,答:墙高3米;(2)由(1得),BO2=(x-0.6)2+0.72,x=3,∴BO=(3-0.6)2+0.72=2.5答:竹竿的长2.5米.【点睛】本题考查勾股定理实际应用题,解题的关键时根据两种不同状态竹竿长不变列等式及正确计算.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.【答案】(1)①69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由见解析(2)不可能相等,顶端A下滑的距离大于底端B外移的距离.【分析】(1)先根据勾股定理可得AC=6米,①根据题意得:AA =1m,可得到A C=AC-AA =5米,由勾股定理可得B C的长,即可求解;②设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据勾股定理,列出方程,即可求解;(2)设AC=BC=a,从A处沿墙AC下滑的距离为m米,点B向外移动的距离为n米,则AB=A B =2a,根据勾股定理,列出方程,可得m-n=m2+n22a,即可求解.【详解】(1)解:∠C=90°,AB=A B =6.5米,∴AC=AB2-BC2=6米,①根据题意得:AA =1m,∴A C=AC-AA =5米,∴B C=A B 2-A C2=692米,∴BB =B C-BC=692-2.5=69-52米,即点B将向外移动69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由如下:设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据题意得:6-x2+2.5+x2=6.52,解得:x1=3.5,x2=0(舍去),∴从A处沿墙AC下滑的距离为3.5米时,点B也向外移动的距离为3.5米,即竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等;(2)解:不可能相等,理由如下:设AC =BC =a ,从A 处沿墙AC 下滑的距离为m 米,点B 向外移动的距离为n 米,则AB =A B =2a ,根据题意得:a -m 2+a +n 2=2a 2,整理得:2a m -n =m 2+n 2,即m -n =m 2+n 22a,∵a 、m 、n 都为正数,∴m -n =m 2+n 22a>0,即m >n .∴顶端A 下滑的距离大于底端B 外移的距离.【点睛】本题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题的关键.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB =65cm ,拉杆最大伸长距离BC =35cm ,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A 处,点A 到地面的距离AD =3cm ,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm 到A ′处,求拉杆把手C 离地面的距离(假设C 点的位置保持不变).【答案】拉杆把手C 离地面的距离为63cm【分析】过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,根据勾股定理即可得到方程652-x 2=1002-(55+x )2,求得A 'F 的长,即可利用勾股定理得到CF 的长,进而得出CE 的长.【详解】如图所示,过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,则∠AFC =90°,设A 'F =x ,则AF =55+x ,由题可得,AC =65+35=100,A 'C =65,∵Rt △A 'CF 中,CF 2=652-x 2,Rt △ACF 中,CF 2=1002-(55+x )2,∴652-x 2=1002-(55+x )2,解得x =25,∴A 'F =25,∴CF =A C 2-A F 2=60(cm ),又∵EF =AD =3(cm ),∴CE =60+3=63(cm ),∴拉杆把手C 离地面的距离为63cm .【点睛】本题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2=AF2+EF2,根据AC=AE,得出AB2+12=(AB-1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB-1)2+52,又∵AC=AE,∴AB2+12=(AB-1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12=(AB-1)2+52.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.【答案】90cm【分析】首先观察题目,作辅助线构造一个直角三角形,如图,连接DE;已知彩旗为长方形,由题意可知,无风的天气里,彩旗自然下垂时,彩旗最低处到旗杆顶部的长度正好是长方形彩旗完全展开时的对角线的长度,根据勾股定理可求出它的长度;然后用旗杆顶部到地面高度减去这个数值,即可求得答案.【详解】彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=240-150=90(cm).∴彩旗下垂时的最低处离地面的最小高度h为90cm.【点睛】本题考查了勾股定理的实际应用,此类题的难点在于正确理解题意,结合实际运用勾股定理.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.【答案】(1)风筝的高度CE为21.7米(2)BH的长度为9米【分析】(1)在Rt△CDB中由勾股定理求得CD的长,再加上DE即可;(2)利用等积法求出DH的长,再在Rt△BHD中由勾股定理即可求得BH的长.【详解】(1)在Rt△CDB中,由勾股定理,得:CD=C2-BD2=252-152=20(米),所以CE=CD+DE=20+1.7=21.7(米),答:风筝的高度CE为21.7米.(2)由等积法知:12BD×DC=12BC×DH,解得:DH=15×2025=12(米).在Rt△BHD中,BH=BD2-DH2=9(米),答:BH的长度为9米.【点睛】本题考查了勾股定理的实际应用,正确运用勾股定理是关键,注意计算准确.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】6【分析】先根据勾股定理求得AC,进而求得AD,根据勾股定理即可求得范围.【详解】由题意可知AC+BC=8,AB=4,则AC2+AB2=BC2,即AC2+42=(8-AC)2,解得AC=3,若下次大风将旗杆从D处吹断,如图,∴AD=AC-1.25=3-1.25=1.75,∴BD=AB-AD=8-1.75=6.25,AB=BD2-AD2= 6.252-1.752=6.∴则距离旗杆底部周围6米范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.【答案】17米【分析】已知AB和AC的长度,根据勾股定理即可求出BC的长度,小鸟下降12米,则BD=AB-12,根据勾股定理即可求出CD的长度.【详解】解:由勾股定理得;BC2=AC2-AB2=252-202=225,∴BC=15(米),∵BD=AB-AD=20-12=8(米),∴在Rt△BCD中,由勾股定理得CD=DB2+BC2=82+152=17,∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.【点睛】本题主要考查了勾股定理得实际应用,熟练地掌握勾股定理的内容是解题的关键.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.6【答案】C【分析】此题可以过低树的一端向高树引垂线.则构造了一个直角三角形:其斜边是小鸟飞的路程,一条直角边是4,另一条直角边是两树相差的高度3.根据勾股定理得:小鸟飞了5米.【详解】解:如图所示,AB=6m,CD=3m,BC=4m,过D作DE⊥AB于E,则DE=BC=4m,BE=CD=3m,AE=AB-BE=6-3=3m,在Rt△ADE中,AD=5m.故选:C.【点睛】能够正确理解题意,准确画出图形,熟练运用勾股定理即可.2(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24.过A作AE⊥CD于E.则CE=13-3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能赶回巢中.【点睛】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【答案】10千米【分析】通过行走的方向和距离得出对应的线段的长度.根据题意构造直角三角形,利用勾股定理求解.【详解】解:过点B作BD⊥AC于点D.根据题意可知,AD=8-3+1=6,BD=2+6=8,在Rt△ABD中,∴AB=AD2+BD2=62+82=10.答:登陆点A到宝藏处B的距离为10千米.【点睛】本题考查勾股定理的实际应用.读懂题意,根据题意找到需要的等量关系,与勾股定理结合求线段的长度是解题的关键.【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.【答案】(1)3m(2)6m【分析】(1)根据平行的性质,证得AF=CF,根据勾股定理即可求得.(2)在Rt△CEF中,根据勾股定理即可解得.【详解】(1)由题可知MP∥CF,∠F=90°∴∠ACF=∠NMP=45°,∴AF=CF在Rt△ACF中,CF2+AF2=AC2,∴2CF2=18,∴AF=CF=3(m).即这两棵树的水平距离为3m.(2)在Rt△CEF中,CE2=CF2+EF2∴CE=32+42=5,∴AB=AE+CE=5+1=6(m).即树AB的高度为6m.【点睛】此题考查了勾股定理,解题的关键是熟悉勾股定理的实际应用.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m【答案】C【分析】如图,勾股定理求出AC的长,利用AC+BC求解即可.【详解】解:如图,由题意,得:BC=5,AB=12,BC⊥AB,∴AC=AB2+BC2=13,∴这棵大树在折断前的高度为13+5=18m;故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.【答案】(x+1-5)2+102=x2.【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OP'=x,OC=x+1-5,P'C=10,在Rt△OCP'中,由勾股定理得:(x+1-5)2+102=x2.故答案为:(x+1-5)2+102=x2.【点睛】本题主要考查了勾股定理的应用和列方程,读懂题意是解题的关键.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】(1)旗杆距地面3m处折断;(2)距离杆脚周围6米大范围内有被砸伤的危险.【分析】(1)由题意可知:AC+BC=8米,根据勾股定理可得:AB2+AC2=BC2,又因为AB=4米,即可求得AC的长;(2)易求D点距地面3-1.25=1.75米,BD=8-1.75=6.25米,再根据勾股定理可以求得AB=6米,所以6米内有危险.【详解】(1)由题意可知:AC+BC=8米,∵∠A=90°,∴AB2+AC2=BC2,又∵AB=4米,∴AC=3米,BC=5米,∴旗杆距地面3m处折断;(2)如图,∵D点距地面AD=3-1.25=1.75米,∴BD=8-1.75=6.25米,∴AB=BD2-AD2=6米,∴距离杆脚周围6米大范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.【答案】9【分析】过点A作AC⊥MN,求出最短距离AC的长度,然后在MN上取点B,D,使得AB=AD=150米,根据勾股定理得出BC,CD的长度,即可求出BD的长度,然后计算出时间即可.【详解】解:过点A作AC⊥MN,∵∠QON=30°,OA=240米,OA=120米,∴AC=12在MN上取点B,D,使得AB=AD=150米,当火车到B点时对A处产生噪音影响,∵AB=150米,AC=120米,∴由勾股定理得:BC=AB2-AC2=1502-1202=90米,CD=AD2-AC2=1502-1202=90米,即BD=180米,∵72千米/小时=20米/秒,∴影响时间应是:180÷20=9秒.故答案为:9.【点睛】本题主要考查了勾股定理,解题的关键在于准确找出受影响的路段,从而利用勾股定理求出其长度.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?【答案】(1)能,理由见解析(2)16【分析】(1)根据村庄A到公路MN的距离为300米<500米,即可得出村庄能听到广播宣传.(2)根据勾股定理得到BP=BQ=5002-3002=400(米),求得PQ=800米,即可得出结果.【详解】(1)村庄能听到广播宣传,理由如下:∵村庄A到公路MN的距离为300米<500米,∴村庄能听到广播宣传.(2)如图:假设当宣传车行驶到P点开始能听到广播,行驶到Q点不能听到广播,则AP=AQ=500米,AB=300米,由勾股定理得:BP=BQ=5002-3002=400(米),∴PQ=800米,∴能听到广播的时间为:800÷50=16(分钟),∴村庄总共能听到16分钟的宣传.【点睛】本题考查了勾股定理的应用,结合生活实际,便于更好地理解题意是解题的关键.2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【答案】公路AB有危险需要封锁,需要封锁的路段长度为140米【分析】过C作CD⊥AB于D,利用勾股定理算出AB的长度,然后利用三角形的面积公式可求出CD的长,用CD的长和250比较大小即可判断是否需要封锁,最后根据勾股定理求出封锁的长度.【详解】解:公路AB需要暂时封锁,理由如下:如图,过C作CD⊥AB于D,因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米,因为S△ABC=12AB⋅CD=12BC⋅AC,所以CD=BC⋅ACAB=400×300500=240(米),由于240米<250米,故有危险,封锁长度为:2×2502-2402=140米,因此AB段公路需要暂时封锁,封锁长度为140米.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题的关键.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【答案】(1)要,理由见解析(2)6h【分析】(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200km比较即可得结论;(2)BF上分别取D、G,则△ADG是等腰三角形,由AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在GD长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【详解】(1)解:由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200km,则还有一点G,有AG=200km.∵DA=AG,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200km,AC=160km,由勾股定理得,CD=DA2-AC2=2002-1602=120km,则DG=2DC=240km,遭受台风影响的时间是:t=240÷40=6(h).【点睛】此题主要考查了勾股定理的应用以及点到直线的距离,构造出直角三角形是解题关键.【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤2【答案】B【分析】如图,当吸管底部在D点时吸管在罐内部分最短,当吸管底部在B点时吸管在罐内部分最长,此时利用勾股定理在Rt△ADB中求出AB即可.【详解】解:如图,当吸管底部在底面圆心时吸管在罐内部分最短,此时吸管的的长度就是圆柱形的高,即12,∴a=16-12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分最长,吸管长度=AD2+BD2=122+52=13,∴此时a=16-13=3,所以3≤a≤4.故选:B.【点睛】本题考查勾股定理的应用,善于观察题目的信息,正确理解题意是解题的关键.1(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m【答案】A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB-BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?【答案】水池水深12米,芦苇长13米【分析】根据题意,构造直角三角形,根据勾股定理列出方程求解即可.【详解】解:如图:设芦苇BC长为x米,则水深AB为(x-1)米.∵芦苇长在水池中央,×10=5(米)∴AC=12根据勾股定理得:AC2+AB2=BC2,则:52+(x-1)2=x2,解得:x=13,∴x-1=13-1=12,答:水池水深12米,芦苇长13米.【点睛】本题主要考查勾股定理的实际应用,熟练掌握勾股定理的内容,勾股题意构造直角三角形,,根据勾股定理列出方程求解是解题的关键.3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【答案】45【分析】设水深h厘米,则AB=h,AC=h+30,BC=60,利用勾股定理计算即可.【详解】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h厘米,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即h+302=h2+602,解得h=45.故答案为:45.【点睛】本题考查了勾股定理的应用,正确审题,明确直角三角形各边的长是解题的关键.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;∴∠ACB=90°;∵AC=800,BC=600;∴AB=AC2+BC2=1000海里;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里.∵CH⊥AB;∴∠CHB =90°;∵S △ABC =12AC ⋅BC =12AB ⋅CH ;∴CH =480;∵CN =CM =500;∴NH =MH =CM 2-CH 2=140;则信号次数为140×2÷20=14(次).答:最多能收到14次信号.【点睛】本题考查了勾股定理的应用,直角三角形的判定等知识,涉及路程、速度、时间的关系,熟练掌握勾股定理是关键.1(2023春·河南信阳·八年级统考期末)如图,已知港口A 东偏南10°方向有一处小岛B ,一艘货轮从港口A 沿南偏东40°航线出发,行驶80海里到达C 处,此时观测小岛B 在北偏东60°方向.(1)求此时货轮到小岛B 的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【答案】(1)此时货轮到小岛B 的距离为80海里;(2)轮船向正东方向航行没有触礁危险.【分析】(1)先根据题意求出∠BAC =40°、∠ACB =100°,据此得∠ABC =∠ACB =40°,从而得出AC =BC =40海里;(2)作BD ⊥CD 于点D ,由∠BCD =30°、BC =70知BD =12BC =35,从而做出判断.【详解】解:(1)由题意知∠BAC =90°-10°-40°=40°,∠ACB =40°+60°=100°,∴∠ABC =180°-∠BAC -∠ACB =40°,∴∠ABC =∠BAC ,∴BC =AC =80海里,即此时货轮到小岛B 的距离为80海里;(2)如图,作BD ⊥CD 于点D ,在Rt △BCD 中,∵∠BCD =30°、BC =80,∴BD =12BC =40,∵40>36,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理在实际问题中的应用举例一、利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A 、41cmB 、34cmC 、50cmD 、75cm分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。

解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,得BC=22AC AB +=41,在Rt △BCD 中,CD=3,BC=41,BD=22CD BC +=50。

所以选C 。

说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18―1―1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。

说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想----转化思想。

二、利用勾股定理确定最短问题我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题.例1(恩施自治州)如图1,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A.521B.25C.105+5D.35图2 5 20 15 10 C B 图1③ ② ④ ①分析根据“两点之间,线段最短”和“勾股定理”,蚂蚁如果要沿着长方体的表面从点A爬到点B,较短爬行路线有如图2所示的4条粗线段表示的距离.可以通过计算得知最短的是第2条.解依题意蚂蚁要沿着长方体的表面从点A爬到点B,有如图2所示的4种粗线情形,其中图①中粗线的长度为的22+=537,图②中粗线的长度为530的221020++5=105+5,图④中粗线+=25,图③中粗线的长度为的221520的长度为的5+20+10=35,显然35>537>105+5>25.故应选B.说明在立体图形上找最短距离,通常要把立体图形转化为平面图形,即转化为表面展开图来解答,但是不同的展开图会有不同的答案,所以要分情况讨论.例2(青岛市)如图1,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要___cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要___cm.分析要求最短细线的长,得先能确定最短线路,于是,可画出长方体的侧面展开图,利用两点之间线段最短,结合勾股定理求得.若从点A开始经过4个侧面缠绕n圈到达点B,即相当于长方体的侧面展开图的一边长由3+1+3+1变成n(3+1+3+1),同样可以用勾股定理求解.解如图2,依题意,得从点A开始经过4个侧面缠绕一圈到达点B时,最短距离为AB,此时,由勾股定理,得AB=2268+=10,即所用细线最短为10cm.若从点A开始经过4个侧面缠绕n圈到达点B,则长方体的侧面展开图的一边长由3+1+3+1变成n (3+1+3+1),即8n ,由勾股定理,得()2268n +=23664n +,即所用细线最短为23664n +cm ,或22916n +cm.说明 对于从点A 开始经过4个侧面缠绕n 圈到达点B 的最短细线不能理解为就是n 个底面周长.例3(泸州市)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即350米/秒),并在离该公路100米处设置了一个监测点A .在如图所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:3≈1.7)(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?分析(1)要求点B 和点C 的坐标,只要分别求出OB 和OC 即得.(2)由(1)可知BC 的长度,进而利用速度公式求得并与350比较即可.(3)为了求解,可设大货车行驶到某一时刻行驶了x 米,则此时小汽车行驶 了2x 米,于是利用勾股定理可求出x 的表达式进而求得.解(1)在Rt △AOB 中,因为∠BAO =60°,所以∠ABO =30°,所以OA =12AB , 而OA =100,所以AB =200,由勾股定理,得OB =22AB OA -=22200100-=1003.Rt △AOC 中,∠CAO =45°,所以OC =OA =100,所以B (-1003,0),C (100,0).(2)因为BC =BO +CO =,所以10015≈18>503, 所以这辆车超速了. (3)设大货车行驶到某一时刻行驶了x 米,则此时小汽车行驶 了2x 米,且两车的距离为y =,显然,当x =60时,y.说明 本题在求最近距离时,一定要注意正确理解代数式的意义,注意到(x -60)2的最小值是0.例4(恩施自治州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km ,A 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=P A +PB ,图2是方案二的示意图(点A 关于直线X 的对称点是A ′,连接BA ′交直线X 于点P ),P 到A 、B 的距离之和S 2=P A +PB .(1)求S 1、S 2,并比较它们的大小;(2)请你说明S 2=P A +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图3所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.分析 为了便于运用勾股定理求解有关线段的长,可适当引垂线,并结合对图1 图3 B 图2称等几何知识即可求解.解(1)如图1中,过B作BC⊥AP,垂足为C,则由勾股定理,得PC==40.在Rt△PBC中,由勾股定理,得BP===.所以S1=+10(km).如图2中,过B作BC⊥AA′垂足为C,由轴对称知P A=P A′,则A′C=50,又BC=40,所以由勾股定理,得BA′所以S2=BA′=(km).显然,S1>S2.(2)如图2,在公路上任找一点M,连接MA,MB,MA′,由轴对称知MA =MA′,所以MB+MA=MB+MA′>A′B,所以S2=BA′为最小.(3)过A作关于X轴的对称点A′,过B作关于Y轴的对称点B′,连接A′B′,交X轴于点P,交Y轴于点Q,则P,Q即为所求.过A′、B′分别作X轴、Y轴的平行线交于点G.由勾股定理,得A′B′==50,所以所求四边形的周长为(50+50)km.说明本题既是一道对图形的操作题,又是一道利用勾股定理进行方案设计的试题,求解时一定要注意动手动脑,发挥想象,避免错误的出现.三、与勾股定理有关的探索性问题例析新课程要求通过学习培养同学们的自主探究能力。

探索性问题,正是新课程理念下培养同学们的观察、实验、操作、归纳、猜想,发展直觉思维能力和合情推理能力的好材料,是近几年中考的一个热点。

围绕着勾股定理,出现了许多形式新颖,视点独特,内容丰富的新型试题,本文以直角三角形勾股定理为背景中考试题为例,加以评析,供同学们学习时参考。

例1.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________.解析:本题是以一系列等腰直角三角形组成的图案为背景的规律探索型试题。

要探求第n 个等腰直角三角形的面积,根据图形提供的数据和等腰直角三角形的变化规律,我们可以看到:下一个等腰直角三角形的直角边是前一个等腰直角三角形的斜边,因此在解题时,先考虑特殊情形,根据勾股定理得一系列等腰直角三角形面积和下一个直角三角形的斜边长为:S 1=111122⨯⨯= AB =2211122+== S 2=11222122⨯⨯=⨯= A 1B =()()2222242+== S 3=22211222222⨯⨯=⨯= A 1B 1=()()2234482+== S 4=333211222222⨯⨯=⨯= B 1B 2=()()22488162+== S 5=444311222222⨯⨯=⨯= ……所以:第n 个等腰直角三角形的面积为22n -。

相关文档
最新文档