活性炭的制备表征及应用

合集下载

功能化磁性活性炭的制备及其吸附性能的研究

功能化磁性活性炭的制备及其吸附性能的研究

功能化磁性活性炭的制备及其吸附性能的研究功能化磁性活性炭的制备及其吸附性能的研究引言:活性炭因其良好的吸附性能在环境治理和水处理等领域得到了广泛应用。

然而,传统的活性炭在吸附后难以从溶液中快速、有效地分离和回收,且存在容易堵塞过滤器的问题。

因此,将活性炭与磁性材料结合,制备功能化磁性活性炭,成为一种具有应用潜力的新型吸附材料。

本文将探讨功能化磁性活性炭的制备方法,并研究其吸附性能。

一、功能化磁性活性炭的制备方法1. 活性炭的制备活性炭是以天然或合成有机物为原料,通过一系列的炭化、活化等工艺制备而成的多孔有机高分子材料。

传统活性炭的制备方法有物理法、化学法和物理-化学法等。

在此基础上,通过将活性炭与磁性材料结合,制备功能化磁性活性炭。

2. 磁性材料的引入在活性炭的制备过程中,可以引入一定量的磁性材料,如铁磁性氧化物(如Fe3O4)、嵌段磁性复合材料等。

磁性材料的引入使得活性炭具备了磁响应性,从而实现了磁性分离和回收。

3. 表面功能化改性为了提高功能化磁性活性炭的吸附性能,可以对其表面进行功能化改性。

常用的改性方法包括化学修饰、负载功能材料等。

这些改性手段可以增加活性炭的吸附位点,提高吸附效果。

二、功能化磁性活性炭的吸附性能研究1. 吸附性能测试在实验室条件下,通过批量吸附实验来测试功能化磁性活性炭的吸附性能。

选择不同类型的污染物模拟溶液,测定吸附剂对其的吸附量和吸附速率等指标。

考察参数包括溶液初始浓度、吸附时间、pH值等。

2. 吸附机理研究通过对吸附剂表面的功能基团、孔结构和比表面积等进行表征,研究其与目标污染物的相互作用机理。

以及通过实验参数的变化确定吸附过程中的控制步骤。

例如,通过Langmuir和Freundlich等模型拟合实验数据,分析吸附过程的等温性质和吸附容量等特征。

3. 模型预测和应用展望通过对实验数据的分析,建立数学模型对吸附性能进行预测。

然后将该模型应用到实际水处理或废水处理中,优化吸附剂的操作参数以提高吸附效果。

活性炭制备工艺及其应用研究

活性炭制备工艺及其应用研究

活性炭制备工艺及其应用研究随着科技的发展和全球对环境问题的关注日益增加,人们对于净化水,空气等资源的需求也逐渐上升。

而活性炭作为一种可以去除有害物质的吸附材料,已经成为环境净化领域中的重要材料。

但是,想要制备高质量的活性炭并不是一件易事。

本文将围绕活性炭制备工艺及其应用展开研究。

一、活性炭制备工艺1. 碳化碳化作为活性炭制备的第一步,可以使用多种材料进行实现。

其中以木材、桦木、杏木、草本植物和花木等天然植物为碳化原料更为常见。

碳化的目的在于将原料中的无机物和有机物热解成基本单元碳,使活性炭的质量和吸附能力得到提升。

2. 活化活化是活性炭制备的关键步骤。

目前常见的活化方式有物理活化和化学活化两种。

物理活化通常需要高温条件和一定的氧化剂,作用是将碳中的孔隙扩大,增强其比表面积和吸附能力;化学活化则是利用化学药剂溶解碳中的无定形物质,加速孔洞的扩展,并增强表面亲和力和催化活性。

化学活化与物理活化相比,制备时间更短,吸附能力更强,但成本也更高。

3. 热处理热处理是活性炭制备过程中的最后一步,其作用是去除残留的有害物质和充分激活活性炭的性能。

热处理温度一般在400-900℃之间,时间也有所不同。

过高的热处理温度不仅会降低活性炭的孔隙度和比表面积,也会影响其物理化学特性和吸附能力。

二、活性炭的应用研究随着科学技术的发展,活性炭的应用范围也逐渐扩大。

从最初的净化水源到如今的化学催化、电化学催化、药物吸附等诸多领域都有广泛的运用。

1. 电化学催化在电化学领域,活性炭作为催化材料在电极表面广泛应用。

因其丰富的孔结构和高度的比表面积,可以提高电化学反应微观反应速率,增加电极表面的有效质量输运,提高催化效率。

同时,活性炭还具有良好的导电性和化学稳定性,使得其在电化学分析、电解水、电池等领域也得到了广泛应用。

2. 催化剂载体活性炭可以成为非常优良的催化剂载体,可以载入各种催化剂,如金属、氧化物等。

在催化反应中,活性炭可以提供丰富的活性中心和与反应物的相互作用,从而增强反应的选择性和反应效率,并且降低催化剂的使用量和成本。

活性炭制备及应用

活性炭制备及应用

活性炭的制备及应用1.活性炭的制备1.1化学活化法1.1.1氯化锌法氯化锌法制造工艺为在原料中加人重量是原料0.5~4倍、比重为1.8左右的浓氯化锌溶液并进行混合,让氯化锌浸渍,然后在回转炉中隔绝空气加热~600-700℃,由于氯化锌的脱水作用,原料里的氢和氧主要以水蒸气的形式放出,形成多孔性结构发达的炭。

1.1.2 磷酸法磷酸活化原则上是将精细粉碎的原料与磷酸溶液混合,接着混合物被烘干,并在转炉内加热到400~600℃,众所熟知的工艺过程是在较高的温度下(1 100℃)进行的。

1.2 气体活化法微波加热法制活性炭含碳原料在600℃以上的温度下进行预热处理,与水蒸气、二氧化碳、含氧气体或活化产生的气体接触,以微波直接加热,即可完成活化.但由通常活化方法能制得活性炭的煤类、石油类、木质类等原料,想用微波加热到完全活化温度是不可能的.例如煤、沥青、木材等原料,若照射微波,最初因水分发热,温度可达100℃左右,然后当水分蒸发完,发热极小,要升温到100℃以上,或不可能或需很长的时间。

1.3 药品活化和气体活化的配合使用气体活化和药品活化有时还配合起来使用.对受过药品活化处理的炭,进一步进行水蒸气活化,有时能制造出特殊细孔分布的产品,并使幅度很广的细孔数增加.用活性炭处理含有会堵塞炭的细孔的那样物质的气体时,例如,用粒状活性炭从城市煤气中吸附除去苯时,活性炭的细孔被城市煤气中的二烯烃堵塞而迅速老化.为制造这种情况下能使用的活性炭,曾应用过这种配合使用的活化方法.勒吉公司的苯佐尔邦牌活性炭就是有代表性的这类活性炭。

1.4 连续炭化活化法用比较简单的流动加热炉连续进行炭化和限制氧化活化的活性炭生产方法,并且操作省工、产品质量较好.该方法特点是:把含水率调整到l5%~30%的活性炭原料,连续地送入流动加热炉,同时由炉底鼓入适量的空气,使炉内进行炭化和限制氧化活化,在原料入炉前到载入炉时,仅向炉内送入少量火种,加上从炉的下部鼓入适量空气,促使原料部分燃烧,以便加热原料本身.炉内温度和炭化速度靠鼓入空气量和投料量进行调整.鼓风除用于原料部分燃烧和加热外,还用于使炭化过程中的粒子流态化和连续不断进行的活化反应中。

活性炭的制备和用途

活性炭的制备和用途

活性炭的制备和用途活性炭是一种具有高度孔隙度和吸附能力的化学吸附剂,由于其优异的过滤和吸附性能,在多个应用领域占有重要地位,例如治水、治污、制氧、净化大气、化学和医学等。

今天我们将探讨活性炭的制备和用途。

一、活性炭的制备活性炭的制备可分为物理法和化学法两种。

1. 物理法物理法制备活性炭是指将含碳物质(木质材料、煤炭、木炭等)在高温、空气匮乏的条件下热分解,得到活性碳。

物理法制备活性炭过程简单,能够制备出高孔隙度、高吸附性能的活性炭。

同时,制备过程对环境的影响很小。

2. 化学法化学法制备活性炭是指将含有碳的物质通过化学方法,例如浸泡、氧化、还原、部分氧化或活性化等,使其具有孔隙结构和活性表面。

化学法制备活性炭的优点在于可以通过控制制备过程的条件来获得理想的活性炭性能,例如孔径、表面化学性质和表面分布等。

二、活性炭的用途1. 水处理活性炭在水处理中具有很广泛的应用,可以去除水中不良气味、有毒有害物质、颜色和味道等。

活性炭的孔隙表面能够吸附污染物,例如重金属、有机物和氯化物等。

此外,活性炭还能够减少起泡现象并改善水的口感。

2. 空气净化活性炭在空气净化中也是一种重要的材料。

活性炭可以吸附空气中的污染物,例如挥发性有机物、苯和二氧化氮等。

将活性炭与空气过滤器结合使用,可以有效地净化室内空气。

3. 医疗用途活性炭也可用于医疗用途。

在医学上,活性炭常用于治疗急性中毒和药物过量。

活性炭可以吸附毒素,防止其被人体吸收并在排泄系统中排出。

在一些消化不良和腹泻的情况下,活性炭还能起到缓解症状的作用。

4. 食品加工在食品加工产业中,活性炭也有广泛的应用,例如去除油脂中的杂质、脱色和去除刺激性成分等。

这种方式越来越受到各种食品加工企业的青睐。

5. 其他应用领域活性炭还可以用于气体分离、催化剂载体、电容储能材料等多个应用领域。

总之,活性炭具有吸附性强、处理效果明显、日常使用方便等优点。

通过其制备工艺的改良,不断优化其性能和应用范围,活性炭在人们的日常生活和工业生产中将更加广泛地使用。

活性炭的制备与表征

活性炭的制备与表征

活性炭的制备与表征活性炭是一种广泛应用的多孔性材料,具有高度的吸附能力,能够吸附有害气体和颗粒物,也可以用于净水和净化土壤,是环保领域内的重要材料之一。

本文将介绍活性炭的制备与表征。

一、活性炭的制备方法活性炭的制备方法有多种,例如麻花烟煤、木质素等物质在高温下燃烧生成的活性炭、炭化后通过化学方法激活的活性炭、从天然矿物中提取活性炭等。

其中,炭化后通过化学方法激活的活性炭技术得到了广泛应用。

该技术的步骤主要包括:1.炭化原料;2.将炭化后的原料进行化学活化;3.对活化后的原料进行水洗、脱色等处理。

在活化过程中,使用的活化剂有多种,例如氢氧化钾、氢氧化钠、磷酸等。

这些物质都能够破坏原料的晶格结构,从而增加活性炭的孔隙度和表面积。

此外,也有专门的活性炭制备设备,例如流态化床制备活性炭的设备。

该设备能够使用无氧气体对炭材料进行热解,并同时通过流态化技术激活活性炭。

二、活性炭的表征方法对于一种材料来说,准确地表征其特性是非常重要的。

接下来,将介绍几种常用的活性炭表征方法。

1. 肌电图法肌电图法是一种比表面积测试方法,其原理是利用活性炭中孔道内的气体对电极表面电位的影响进行测定,从而推导出活性炭孔隙结构的信息。

该方法适用于测试孔径小于200Å的活性炭材料。

2. 红外光谱法红外光谱法是一种使用红外光谱仪进行物质分析的方法。

其原理是通过红外光的吸收来确定特定化学键的存在。

使用此方法可以测定活性炭中非晶态有机物的含量和分布。

3. 毛细管质谱法毛细管质谱法是一种能够得出活性炭中大分子物质化学组成的方法。

活性炭中含有各种复杂的有机化合物,包括芳香烃和多环脂肪族化合物等,这些物质都是可以被毛细管质谱法检测到的。

4. SEM及TEM扫描电子显微镜(SEM)和透射电子显微镜(TEM)是现代科技在表征活性炭方面最强大的工具。

通过SEM和TEM可以直观地看到活性炭的孔隙结构和形貌,从而获取一系列有关活性炭孔隙分布和孔径大小的信息。

活性炭的合成及其应用研究

活性炭的合成及其应用研究

活性炭的合成及其应用研究活性炭是一种广泛应用于环境治理和工业生产中的材料,它由于具有大比表面积、高吸附性能、化学稳定性好和再生能力强等优良特性,受到大量关注。

本文将从合成方法及其应用方面较为详细地探讨活性炭的研究现状。

一、活性炭的合成方法1. 化学方法通过化学反应,将含有活性炭前驱体的化合物送到高温环境中的反应法被称为化学法。

该方法的优点是可以进行简单而增量化的实验,以得到目标活性炭。

但同时,该方法容易出现非均相反应,导致产物的分布不均匀。

常见的化学方法包括:一氧化碳气相反应(CO2)基于燃烧的活性炭制备法2. 物理方法物理法是通过高温下将含有活性炭前驱体的物质热解成活性炭的方法。

常见的物理方法包括:气相活性碳的制备法干法活性炭制备法3. 生物法生物法主要是以一些天然有机物(如硝酸等)为原料,通过微生物作用发酵的一种制备活性炭方法。

这种方法节约能源,低污染但时间相对较长,且容易出现非均相反应。

常见的生物法包括:菇类材料发酵活性炭制备法活性呋喃制活性炭法二、活性炭的应用领域1. 水处理领域由于活性炭具有出色的吸附能力,使其在水处理过程中得到广泛应用。

例如,将生产中的废水经过一定处理后布置活性炭吸附器进行吸附处理,可有效去除废水中的污染物,达到绿色净化的目的。

2. 空气治理领域随着工业化,现代社会中污染物不断增加。

空气污染已成为全球公共卫生问题。

活性炭因其高效吸附特性,在空气治理领域得到了广泛应用。

例如,利用活性炭吸附装置,可以过滤气态有害物,并净化空气,确保城市空气质量。

3. 医药领域活性炭在医学领域的应用也非常广泛。

例如,活性炭作为一种具有吸附能力的材料,被用作制作止泻混悬液、解毒剂等药品。

此外,活性炭还常被用于治疗肝病、肠胃病等疾病。

4. 食品加工领域作为一种常用的加工材料,活性炭被广泛应用于食品加工过程中。

例如,在葡萄酒、啤酒等酒类产品的生产过程中,通过活性炭过滤,去除其中的色素、氨基酸等成分,提高成品的质量和口感。

活性炭的制备与应用

活性炭的制备与应用

活性炭的制备与应用宋阿娜1(北京林业大学,材料科学与技术学院林产化工系)摘要:近些年来,活性炭已经成为我们生活中以及工业中常见的吸附剂,它具有比表面积大,选择性吸附强等特点。

活性炭的制备方法分为物理活化法(即气体吸附法)和化学活化法。

气体活化中的气体活化剂有水蒸气、二氧化碳以及它们的混合气体,化学活化法中的化学药品活化剂有氯化锌、磷酸和碱。

活性炭在工业、农业、食品、医药等领域都有广泛应用。

根据吸附和运用对象的不同,可以分为气相吸附,液相吸附,作为催化剂和催化剂载体的应用以及在医疗方面的应用。

活性炭可以多次重复再生使用,对环保起到了重要作用,并且有很好的发展前景。

关键词:活性炭;制备;应用;活化;净化1.概述活性炭是具有孔隙结构发达、比表面积大、选择性吸附能力强的碳质吸附材料。

在一定的条件下,对液体或气体的某一或某些物质进行吸附脱除、净化、精制或回收,从而实现产品的精制和环境的净化(蒋剑春,2010)。

时至今日,活性炭已经被广泛应用于工业、农业、国防、交通、食品、医药、环境保护等各个领域,并且活性炭使用失效后可以用各种办法进行多次反复再生。

活性炭主要是以木炭、木屑、各种果壳、煤炭和石油焦等高含碳物质为原料,经碳化和活化而制得的多孔性吸附剂。

活性炭的吸附大多数是物理吸附,即范德华吸附,也有化学吸附。

活性炭基本上是非结晶性物质,它由微细的石墨状结晶和将它们联系在一起的碳氢化合物构成,固体部分之间的间隙形成孔隙,赋予活性炭特有的吸附功能。

一般认为活性炭的孔由大孔、中孔和微孔组成,大孔孔径为50~2000nm,中孔为2~50nm,微孔孔径小于2nm。

2.活性炭的制备2.1制备原理活性炭是通过把木材、煤、泥炭等许多来自植物的、成为碳前驱体的原材料,在几百摄氏度的温度下炭化以后,在进行活化而制成的。

炭化在惰性氛围气中进行,原材料经过热分解放出挥发分而变成炭化产物,此刻的炭化产物的比表面积只有每克几十平方米左右。

芦竹活性炭的制备、表征及吸附性能研究

芦竹活性炭的制备、表征及吸附性能研究

芦竹活性炭的制备、表征及吸附性能研究一、本文概述活性炭作为一种多孔性炭质材料,因其具有丰富的孔隙结构、巨大的比表面积和优良的吸附性能,被广泛应用于水处理、空气净化、脱色、催化剂载体等多个领域。

芦竹作为一种常见的生物质资源,其生物质炭化制备活性炭具有环保、可再生、成本低廉等优势,近年来受到了广泛关注。

本文旨在探讨芦竹活性炭的制备方法、表征手段以及吸附性能,以期为其在实际应用中的推广提供理论依据和技术支持。

本文将详细介绍芦竹活性炭的制备过程,包括原料选择、预处理、炭化、活化等关键步骤,并探讨不同制备条件对活性炭性能的影响。

通过一系列表征手段,如扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积及孔径分布分析、表面化学性质分析等,对芦竹活性炭的微观结构和表面性质进行深入研究。

通过吸附实验,研究芦竹活性炭对不同污染物的吸附性能,包括吸附动力学、吸附等温线、吸附热力学等方面,并探讨其吸附机理和实际应用潜力。

本文的研究将为芦竹活性炭的制备和应用提供有益参考,同时也有助于推动生物质活性炭的研究与发展,为实现资源的有效利用和环境的可持续发展做出贡献。

二、芦竹活性炭的制备选择生长良好、无病虫害的芦竹作为原料,经过清洗、干燥、切割等预处理后,将其破碎成一定粒度的芦竹粉末。

这个过程中,芦竹粉末的粒度对后续活性炭的孔结构和性能有重要影响,因此需要通过试验确定最佳粒度。

接下来是碳化处理。

将芦竹粉末置于碳化炉中,在惰性气氛(如氮气)保护下,以一定的升温速率升温至碳化温度,保持一定时间后,进行自然冷却。

碳化过程中,芦竹中的挥发分被去除,形成初步的炭化结构。

碳化温度和时间是影响活性炭性能的关键因素,需要通过试验进行优化。

最后是活化处理。

将碳化后的芦竹炭置于活化炉中,通入活化剂(如水蒸气、二氧化碳或空气),在一定温度下进行活化反应。

活化过程中,芦竹炭的表面结构和孔结构得到进一步发展,形成丰富的微孔和中孔。

活化剂的种类、浓度、活化温度和时间等因素对活性炭的孔结构和吸附性能有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学物理活化法
化学物理活化法是将物理活化法与化学活化法结合起来,发 挥各自的优势,生产出孔隙结构更合理,性能更优异的活 性炭。化学物理活化法是对物理活化法的进一步改进,经 过化学试剂浸渍能够有效提高反应速度,同时也会对孔隙 结构产生不同的影响。该法一般是先将含碳原料通过化学 试剂浸渍,然后在高温条件下进行物理活化。
欢迎批评指正
H3PO4活化
H3PO4的活化机理与ZnCl2类似,促进热解反应,降低活 化温度,H3PO4充斥在原料内部,占据一定的位置,在炭 化时H3PO4起骨架作用,能给新生炭提供一个骨架,让炭 沉积在骨架上;同时H3PO4阻碍了高温下物料的收缩,降 低了焦油的产生,经过洗涤去除反应后的得到的磷酸盐, 便得到具有丰富孔隙的活性炭。
活性炭的基本特征
2、表面化学性质 受到原料和制备工艺的影响,活性炭中除了石墨微晶平面层边缘的碳 原子外,在微晶平面层上还存在着许多不成对电子的缺陷位,这些缺 陷位和碳原子共同构成了活性炭表面的活性位,活性位吸附其他元素 (如:O、H、N和S等)生成稳定的表面络合物,形成局部表面化学官 能团结构。
羧基
ZnCl2活化剂
一般认为其活化机理是,在热解过程中ZnCl2起脱水作 用,并抑制焦油产生,促进热解,同时在碳化过程中进行 芳构化反应,从而形成丰富的孔隙结构。但因ZnCl2具有 毒性,在高温下易挥发,对环境以及人们的健康均会造成 严重的危害,并且ZnCl2价格较高,不易回收,该方法在 国外很多国家已经被禁止。
加热方式
加热方式
传统加热方式 从高温物体向 低温物体进行 传递能量
微波加热方式
极性分子随电 场作高频振动 , 分子间摩擦 使物料迅速发 热
加热原理
传统加热
微波加热
微波解热优点
耗时 耗能 收率低
缩短反应时间
微波加热
节能 提高收率
时间、频率
影响活性炭性能的因素
活化温度 B
活化剂
A
活性炭
C
活化时间
KOH活化
KOH活化机理较为复杂,目前还没有一个统一标准,一 般认为KOH活化时,一方面通过KOH与C反应生成K2CO3 从而侵蚀造孔;另一方面K2CO3、K2O和C反应生成金属 钾,当活化温度超过钾沸点(762℃)时,钾蒸气会扩散 进入碳层影响孔结构的发展产生影响;同时K2CO3分解产 生的K2O和CO2也对孔隙的发展提够帮助,在KOH 活化过 程中,主要发生以下反应: 4KOH + C—— K2CO3 + K2O + 3H2 K2O + C ——2K + CO K2CO3 + 2C—— 2K + 3CO
酸酐
内脂型羧基
酚羟基
羰基醚基酰ຫໍສະໝຸດ 基二酰胺基类吡啶基
类吡咯基
酰亚胺基
三、活性炭的制备
活性炭制备基本路线图
活性炭的制备
1、原料
活性炭是将一些含碳物质进行碳化活化处理而制得,一般来 说,制备活性炭的原料主要有石油焦、煤炭、生物质以及 塑料类等。使用的原料不同,活性炭的制备工艺、产品的 吸附性能、催化性能以及价格也不尽相同。
C + CO2 ——2CO
由于物理活化法没有引入化学活化剂,所以该法对环境的污染小,但 是这两个反应均是在高温条件下发生,具有反应时间较长,设备要求 较高,产品得率较低,均匀性不好,吸附性能较差等缺点。
化学活化法
化学活化法是活性炭制备普遍使用的一种方法,分为一 步法和两步法。一步法是将原料与活化剂按照一定的比例 均匀混合,在惰性气体的保护下进行加热,碳化与活化同 时进行的方法;两步法是在一定温度下将原料在惰性气体 中碳化,然后活化剂与炭化料共混,在一定条件下进行活 化处理。目前,采用的活化剂主要有H3PO4、ZnCl2、 KOH、NaOH等。
活性炭的制备
2、活化方法
(1)物理活化方法 (2)化学活化方法 (3)化学物理活化法
物理活化
物理活化法也称气体活化法,一般采用水蒸气、CO2、空气等含氧 气体或者混合气体作为活化剂,在高温条件下与炭化料接触或者两种 活化剂交替进行活化,从而生产出比表面积巨大,孔隙丰富的活性炭 产品。 气体活化的过程是用活化气体与碳发生氧化还原反应,侵蚀炭化物 的表面,与此同时除去焦油类物质以及未炭化的物质,使炭化料的微 细孔隙结构发达的过程。通过气体活化,会使炭化料原来的闭塞孔被 打开,原有的孔隙扩大并形成新的孔隙,一般会发生以下反应: C+H2O——H2+CO
活性炭的制备表征及应用
报告内容
1 2
3 4
活性炭的发展 活性炭的基本特征 活性炭的制备
活性炭的表征 活性炭的应用
活性炭的改性
5
6
活性炭的发展
古代
工业革命
20世纪末
20世纪初
活性炭的基本特征
1、物理特征:活性炭是由已石墨化的微晶和未石墨化的非晶炭质构成的 基本炭质,因此活性炭被认为属于微晶类的碳系,炭微晶与非晶炭质相 互连接构成了活性炭的孔隙结构。由于活性炭微晶的排列是无规则的、 紊乱的,各微晶之间形成大小、形状不同的孔隙,这些孔隙有狭缝型、 楔子型和笼子型等。因此微晶的形状、大小与聚集的程度与活性炭的比 表面积和孔隙结构密切相关。
原料本身
E
D
活化方式
四、活性炭表征
BET
FT-IR
XRD
SEM
五、活性炭的应用
1、吸附 气相吸附、液相吸附 2、载体 电子的缺陷位,这些缺陷位和碳原子共同构成了活性炭表 面的活性位 3、储能装置 活性炭因具有高比表面积、良好的导电性、稳定的化学性 能
六、活性炭改性技术
活性炭表面物理结构改性指的是活性炭在制备过程中通 过物理或者化学的方法来增加活性炭材料的比表面积、调 整活性炭的孔隙结构及分布,使其孔结构发生改变,从而 改变其吸附性能。 活性炭表面物理结构改性指的是活性炭在制备过程中通 过物理或者化学的方法来增加活性炭材料的比表面积、调 整活性炭的孔隙结构及分布,使其孔结构发生改变,从而 改变其吸附性能。 活性炭的改性方法有很多种,主要包括氧化改性、还原改性 、金属负载改性、微波改性和电化学改性等,从而达到更 好的改性效果。在使用过程中,需根据吸附质的性质有目 的性地选择较为合适的改性方法。
相关文档
最新文档