变频器对电动机调速控制

变频器对电动机调速控制
变频器对电动机调速控制

变频器对电动机调速控制

变频器对电动机调速控制

摘要:变频调速可以使用标准电机如不需维护的笼型电动机,可以连续调速,改变转速方向可通过电子回路改变相序实现。其优点是启动电流小,加减速度可调节,电机可以高速化和小型化,防爆容易,保护功能齐全等,随着控制技术和电力电子技术的发展,变频调速技术的应用越来越广泛。由于PLC的功能强大、使用容易、可靠性高,常常被用来作为现场数据的采集和设备的控制。组态软件技术作为用户可定制功能的软件平台工具,在工控机上可开发出友好的人机界面,通过PLC可以对自动化设备进行“智能化”控制。电动机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境,推动技术进步的一种主要手段。变频调速以其优异的调速性能和起制动平稳性能、高性能、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。利用组态软件实现变频器的参数设置,在现场进行电机的启动、停止及增减速等的操作。

关键字:PLC;变频器;变频调速;组态软件

目录

第一章、概述 (1)

1.1 交流调速的发展概况 (1)

1.2 变频器技术的发展趋势 (2)

1.3 PLC技术的发展概况 (3)

第二章电动机变频调速系统 (3)

2.1 变频器简介 (3)

2.1.1 变频器的工作原理 (3)

2.1.2 变频器的构成与功能 (4)

2.2变频器的控制方式 (5)

2.3 变压变频调速的基本控制方式 (7)

第三章交流异步电动机变频调速原理及方法 (9)

3.1 三相异步电动机的基本原理 (9)

3.2 异步电动机变频调速原理 (9)

第四章硬件与软件的选择 (11)

4.1 硬件设计 (11)

4.1.1 变频器的选择 (11)

4.1.2 变频器参数的设置 (14)

4.1.3 3.1.2FR-S500基本功能参数一览表 (16)

4.1.4 PLC的选择 (17)

4.2 软件设计 (19)

4.2.1 工程设备配置 (19)

4.2.2 创建监控画面 (19)

4.2.3 数据库 (21)

4.2.4 画面命令语言 (22)

总结 (24)

致谢 (25)

参考文献 (25)

第一章、概述

1.1 交流调速的发展概况

交流变频调速的优越性早在20世纪20年代就己被人们所认识,但受到器件的限制,未能推广。50年代初,中小型感应电动机多采用晶闸管调压调速;大中型绕线式感应电动机采用晶闸管静止型电气串级调速系统。70年代发展起来的变频调速,比上述两种调速方式效率更高,性能更好。交流变频调速的方法是异步电机最有发展前途的调速方法。随着电力电子技术的不断发展,性能可靠、匹配完善、价格便宜的变频器会不断出现,这一技术会得到更为广泛、普遍的应用。对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器--整流子。

交流调速系统大致经历过以下几个阶段:

1)异步电动机调压调速系统:调压调速过去常用的方法是在定子回路中串入饱和电抗器,或在定子侧加自耗铜材料,体积小,控制方便。用晶闸管功率变换器来完成馈送任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的调压器,通过控制触发脉冲的相位角,便可控制加在负载上的电压大小,很快成为交流调压器的主要形式,但由于相位控制时,晶闸管导通后负载上获得的电压形不是电网提供的完整的工频电压波形,因此产生了成分复杂的谐波。

2) 串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法,改变转差率的传统方法是在转子回路中串入不同的电阻以获得不同斜率的机械特性,从而实现速度的调节。这种方法简单方便,但是调速是有级的、不平滑,并且转差功率消耗在电阻发热上,效率低,自大功率器件问世后,人们采用在转子回路中串联晶闸管功率变换器来完成馈送任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统。由于晶闸管的逆变角的可以平滑连续的改变,使得电动机转速也能平滑连续的调节。另外转差功率又可以通过逆变器回馈到交流电网,提高了效率。串级调速的缺点是功率因数较低,采用强迫换流、改进型三相四线逆变器、逆变器的不对称控制以

及转子直流回路加斩波器控制等,可以提高功率因数。其中采用强迫换流方式可使用门极可关断晶闸管(GTO)构成,这样可以省去关断晶闸管用的储能电路,使逆变电路简单、体积小。

1.2 变频器技术的发展趋势

在进入21世纪的今天,电力电子器件的基片已从Si(硅)变换为SiC(碳化硅),使电力电子新元件具有耐高压、低功耗、耐高温的优点;并制造出体积小、容量大的驱动装置;永久磁铁电动机也正在开发研制之中。随着IT技术的迅速普及,以及人类思维理念的改变,变频器相关技术的发展迅速,未来主要朝以下几个方面发展:

1.网络智能化

智能化的变频器买来就可以用,不必进行那么多的设定,而且可以进行故障自诊断、遥控诊断以及部件自动置换,从而保证变频器的长寿命。利用互联网可以实现多台变频器联动,甚至是以工厂为单位的变频器综合管理控制系统。

2.专门化和一体化

变频器的制造专门化,可以使变频器在某一领域的性能更强,如风机、水泵用变频器、电梯专用变频器、起重机械专用变频器、张力控制专用变频器等。除此以外,变频器有与电动机一体化的趋势,使变频器成为电动机的一部分,可以使体积更小,控制更方便。

3.环保无公害

保护环境,制造“绿色”产品是人类的新理念。21世纪的电力拖动装置应着重考虑:节能,变频器能量转换过程的低公害,使变频器在使用过程中的噪声、电源谐波对电网的污染等问题减少到最小程度。

4.适应新能源

现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有后来居上之势。这些发电设备的最大特点是容量小而分散,将来的变频器就要适应这样的新能源,既要高效,又要低耗。现在电力电子技术、微电子技术和现代控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的进步。这种进步集中体现在交流调速装置的大容量化,变频器的高性能化和多功能化,结

构的小型化一些方面。

1.3 PLC技术的发展概况

可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

第二章电动机变频调速系统

2.1 变频器简介

2.1.1 变频器的工作原理

变频器的工作原理是把市电(380V、50Hz)通过整流器变成平滑直流,然后利用GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。

2.1.2 变频器的构成与功能

结构:变频器实际上就是一个逆变器.它首先是将交流电变为直流电.然后用电子元件对直流电进行开关.变为交流电.一般功率较大的变频器用可控硅.并设一个可调频率的装置.使频率在一定范围内可调.用来控制电机的转数.使转数在一定的范围内可调.变频器广泛用于交流电机的调速中.变频调速技术是现代电力传动技术重要发展的方向,随着电力电子技术的发展,交流变频技术从理论到实际逐渐走向成熟。变频器不仅调速平滑,范围大,效率高,启动电流小,运行平稳,而且节能效果明显。因此,交流变频调速已逐渐取代了过去的传统滑差调速、变极调速、直流调速等调速系统,越来越广泛的应用于冶金、纺织、印染、烟机生产线及楼宇、供水等领域。一般分为整流电路、平波电路、控制电路、逆变电路等几大部分。

1. 整流电路

整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块.

2. 平波电路

平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源的直流部分对主电路而言有余量,故省去电感而采用简单电容滤波平波电路。

3. 控制电路

现在变频调速器基本系用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。

变频器是输出电压和频率可调的调速装置。提供控制信号的回路称为主控制电路,控制电路由以下电路构成:频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”。运算电路的控制信号送至“驱动电路”以及逆变器和电动机的“保护电路

变频器采取的控制方式,即速度控制、转拒控制、PID或其它方式

4 逆变电路

逆变电路同整流电路相反,逆变电路是将直流电压变换为所要频率的交流电

压,以所确定的时间使上桥、下桥的功率开关器件导通和关断。从而可以在输出端U、V、W三相上得到相位互差120°电角度的三相交流电压。

功能:1、变频节能

变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。

2、功率因数补偿节能

无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。

3、软启动节能

电机硬启动对电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。

2.2变频器的控制方式

转差频率控制

转差频率控制就是通过控制转差频率来控制转矩和电流。转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。与U/f控制相比,其加减速特性和限制过电流的能力得到提高。另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。然而要达到自动控制系统稳态控制,还达不到良好的

动态性能。

矢量控制

矢量控制,也称磁场定向控制。它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。由此开创了交流电动机和等效直流电动机的先河。矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流, It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。矢量控制方法的出现,使异步电动机变频调速在电动机的调速领域里全方位的处于优势地位。但是,矢量控制技术需要对电动机参数进行正确估算,如何提高参数的准确性是一直研究的话题。

直接转矩控制

转矩控制的优越性在于,转矩控制是控制定子磁链,在本质上并不需要转速信息,控制上对除定子电阻外的所有电机参数变化鲁棒性良好,所引入的定子磁链观测器能很容易估算出同步速度信息,因而能方便的实现无速度传感器,这种控制被称为无速度传感器直接转矩控制。

恒转矩负载

多数负载具有恒转矩特性,但在转速精度及动态性能等方面要求一般不高,例如挤压机,搅拌机,传送带,厂内运输电车,吊车的平移机构,吊车的提升机构和提升机等。选型时可选V/f控制方式的变频器,但是最好采用具有恒转矩控制功能的变频器。要求控制系统具有良好的动态,静态性能

由于被控对象的千差万别,性能指标要求的各不相同,变频器的选择及配置远不如上述所列几种。要做到熟练应用还应在工程实践中认真探索。变频器的控制方式代表着变频器的性能和水平,在工程应用中根据不同的负载及不同控制要求,合理选择变频器以达到资源的最佳配置,具有重要的意义。

2.3 变压变频调速的基本控制方式

在进行电机调速时,常须考虑的一个重要因素是:希望保持电机中每极磁通量Φm 为额定值不变。如果磁通太弱,没有充分利用电机的铁心,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。

对于直流电机:励磁系统是独立的,只要对电枢反应有恰当的补偿,Φm 保持不变是很容易做到的。对于交流异步电机:磁通Φm 由定子和转子磁势合成产生,要保持磁通恒定就需要费一些周折了。

定子每相电动势

式中Eg—气隙磁通在定子每相中感应电动势的有效值(V);

f1—定子频率(Hz);

Ns—定子每相绕组串联匝数;

kNs—基波绕组系数;

Φm—每极气隙磁通量(Wb)。

由式可知,只要控制好 Eg 和 f1 ,便可达到控制磁通Φm 的目的,对此,需要考虑基频(额定频率)以下和基频以上两种情况。

2.3.1 基频以下调速

由上式可知,要保持Φm 不变,当频率 f1 从额定值 f1N 向下调节时,必须同时降低 Eg ,使

即采用恒电动势频率比的控制方式。

然而,绕组中的感应电动势是难以直接控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压 Us ≈ Eg,则得

这是恒压频比的控制方式。

但是,在低频时 Us 和 Eg 都较小,定子阻抗压降所占的份量就比较显著,不再能忽略。这

时,需要人为地把电压 Us 抬高一些,以便近似地补偿定子压降。带定子压降补偿的恒压频比控制特性示于下图中的 b 线,无补偿的控制特性则为a 线。如图1所示。

图1 恒压频比控制特性曲线

2.3.2 基频以上调速

在基频以上调速时,频率应该从f1N向上升高,但定子电压Us 却不可能超过额定电压UsN ,最多只能保持Us = UsN ,这将迫使磁通与频率成反比地降低,相当于直流电机弱磁升速的情况。把基频以下和基频以上两种情况的控制特性画在一起,如下图所示。如果电机在不同转速时所带的负载都能使电流达到额定值,即都能在允许温升下长期运行,则转矩基本上随磁通变化,按照电力拖动原理,在基频以下,磁通恒定时转矩也恒定,属于“恒转矩调速”性质,而在基频以上,转速升高时转矩降低,基本上属于“恒功率调速”。如图2所示。

图2 异步电机变压频调速的控制特性曲线

第三章交流异步电动机变频调速原理及方法

3.1 三相异步电动机的基本原理

三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场,转速的大小由电动机极数和电源频率而定。转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。转子铜条是短路的,有感应电流产生。转子铜条有电流,在磁场中受到力的作用。转子就会旋转起来。第一:要有旋转磁场,第二:转子转动方向与旋转磁场方向相同,第三:转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,无转矩,电机就要停下来,停下后,速度减慢,由于有转速差,转子又开始转动,所以只要旋转磁场存在,转子总是落后同步转速在转动。

3.2 异步电动机变频调速原理

交流异步电动机是电气传动中使用最为广泛的电动机类型。根据统计,我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。

交流异步电动机是电气传动中使用最为广泛的电动机类型。根据统计,我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。

交流调速是通过改变电定子绕组的供电的频率来达到调速的目的的,但定子绕组上接入三相交流电时,定子与转子之间的空气隙内产生一个旋转的磁场,它与转子绕组产生感应电动势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩。使电动机转起来。电机磁场转速称为同步转速,用表示:

(3-1)

式中:为三相交流电源频率,一般是50Hz;为磁极对数。当 =1是, =3000r /min; =2时, =1500r/min。

由上式可知磁极对数越多,转速就越慢,转子的实际转速比磁场的同步转速要慢一点,所以称为异步电动机,这个差别用转差率表示:

(3-2)

三相异步电动机的变频开环调速实验面板如图3:

图3 三相异步电动机的变频开环调速实验面板

第四章硬件与软件的选择

4.1 硬件设计

4.1.1 变频器的选择

FR-S500系列如图4:

图4 FR-S500系列实物图

简单介绍:

功率范围:

0.2-1.5KW(单相200V FR-S520S系列)。

0.4-3.7KW(三相400V FR-S540系列)。

自动转矩提升,实现6Hz时150%转矩输出。

·数字式拨盘,设定简单快捷。

柔性PWM,实现更低噪音运行。

15段速,PID,4-20mA输入和漏源型转换等多功能。

·可提供RS-485通信功能的机型FR-S5K-R,此机型更可通过电缆接FR-PU04面板。FR-S500系列三菱变频器功能参数:

控制特性控制方式可选样V/F控制或自动转矩提升控制(柔性—PWM控制/高载波频率PwM控制)输出频率范围0.5至120Hz(启动频率0至60Hz可变)

频率设定分

辨率

模拟输入最大设定频率的l/500(DC5V输入时),1/1000(DCl0V,DC4至20mA输入时)

数字输入0.1Hz(未满100Hz),1Hz(100Hz以上)

频率精度模拟输入最大输出频率的±1%以内(25℃±10℃)

数字输入设定输出频率的±0.5%以内(使用设定拨盘)

启动转矩150%(6Hz时),在使用自动转矩提升的情况下

加/减速时间设定

0,0.1至999秒(可分别设定加速和减速时间) ,可选择直线型或S-型加/

减速模式

制动转矩

再生(注1)0.2K-150%,0.4K,0.75K-100%,1.5K-50%

直流制动运行频率(0-120Hz),运行时间(0—10秒),运行电压(0-15%)

输入信号频率设定信号(0-5(10)VDC);4-20mA,用拨盘进行数字设定,启动信号,出错复位,多段速选择,第二功能

选择,输出停止,电流输入选择,外部热继电器输入,Pu运行/外部运行切换

运行功能上下限频率设定,频率凋变运行,外部热继电器选择,瞬时掉电后重起,正反转运行保护,滑差补偿,运行

模式选择,PID控制,计算机连接运行(RS-485)(注5)

输出信号运行功

可以从以下几种信号中选择一种集电极开路的输出:频率到达,频率检测,过载

报警,零电流检测,输出电

流检测,PID上限,PID下限,PID正反作用,准备完毕,最小误差,以上信号可选择一个触点输出(1C触

点,230VAC 0.3A,30VDC 0.3A)

指示仪

可从输出频率和电机电流中选择一种,模拟输出(DC0-5V,lmA)

保护报警功能过电流断路(正在加速,减速,恒速),再生过电压断路(正在加速,减速,恒速),电压不足(注2),

过负荷断路(电子过电流保护),失速防止,散热片过热,风扇故障(注4),PU脱落(注5),启动时接

地出错保护(注7),外部热继电器输入(注6),再试次数溢出,通信出错(注5),

CPU出错。

环境周围温度与湿度-10℃十50℃(不结冰),(-10℃+40℃企封闭结构规格),90%RH以下(不结露)保存温度(注3)-20℃至+65℃

周围环境屋内(应没有腐蚀气体,易燃气体,油雾,尘埃等)

海拔高度,振动最高海拔,1000m以下,5.9m/S2(0.6C)以下(JIS C 0911标准)

1.表中所示的制动转矩是电机本身从60Hz起减速时的平均转矩(随电机的损

耗而变) ,不是连续再生转矩,如果从高于基频的情况下减速,制动转矩会低于这个平均值

2.当电压不足,瞬时停电时,异叙显示和输出不动作,变频器自保护。根据运行状态{负荷的大小等} ,再次通电时,过电流保护,再生过电压保护等有可能动作

3.在运输时等等短时间内可以使用的温度。

4.此功能仅适用有内置制冷风扇的型号。

5.此功能仅适用带RS485功能的型号。

6.此功能仅在Pr.60到Pr.63设定选择了外部热继电器后有效。

7.此功能仅在Pr.40(启动时间接地出错检测选择)设定为1。

4.1.2 变频器参数的设置

表1 变频器参数设定表

显示/按钮功能备注

RUN显示状态运行时点亮/闪灭

点亮:正在运行中

慢闪灭(1.4S/次):反运行

快闪灭(0.2S/次):非运行

PU显示PU操作模式时点亮

计算机连续运行模式时,为慢

闪亮

监视用3位LED 表示频率,参数序号等

EXT显示外部操作模式时点亮

计算机连续运行模式时,为慢

闪亮

设定用按钮变更频率设定、参数的设定值不能取下

PU/EXT键切换PU/外部操作模式

PU:PU操作模式

EXT:外部操作模式

使用外部操作模式(用另外连接的频率设定按钮和启动信号运行)时,请按下此键,使EXT显示为点亮状态

RUN键运行指令正转反作用(pr.17)设定STOP/RESET 进行运行的停止,报警的

SET键确定各设定

MODE键切换各设定

4.1.3 3.1.2FR-S500基本功能参数一览表

参数名称表示设定范围单位出厂设定值

0 转矩提升P00~15%0.1% 6% 5% 4%

1 上限频率P1 0~120HZ 0.1HZ 50HZ

2 下限频率P2 0~120HZ 0.1HZ 0HZ

3 基波频率P3 0~120HZ 0.1HZ 50HZ

P4 0~120HZ 0.1HZ 50HZ

4 3速设定(高

速)

P5 0~120HZ 0.1HZ 30HZ

5 3速设定(中

速)

6 3速设定(低

P6 0~120HZ 0.1HZ 10HZ

速)

7 加速时间P7 0~120HZ 0.1S 5S

8 减速时间P8 0~999S 0.1S 5S

4.1.4 PLC 的选择

在实现异步电动机的变频调速的过程中,常常采用计算机或单片机,这就要求用户有较高的计算机技术水平。可编程控制器(PLC)是一种常用工业数控手段。PLC 采用与继电器控制线路图非常接近的梯形图作为编程语言,它有继电器电路清晰直观的特点,容易开发,程序改变也十分容易,对用户的计算机水平几乎没有什么要求。在使用环境要求不太高的情况下,用PLC 实现异步电动机的变频调速,不但技术上可行,而且成本低廉,也易于推广。

FX2n 系列是FX 系列PLC 家族中最先进的系列。如图3.2.1所示。由于FX2n 系列具备如下特点:最大范围的包容了标准特点、程式执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,它可以为你的工厂自动化应用提供最大的灵活性和控制能力。

三菱FX2n 系列实物如图5: 9 电子过电流

保护 P9 0~999S 0.1A 额定输出电流

30 扩展功能显

示选择 P30 0~50A 1 0

79 操作模式选

择 P79 0~4,7,8 1 0

变频器的控制异步电动机的基本原理

一、变频器的控制异步电动机的基本原理: 1、异步电动机的结构: 定子 转子:绕线式鼠笼式 2、异步电动机旋转 (1)旋转磁场 在异步电动机的三相对称绕组通入三相对称电流后,它们共同的作用产生合成旋转磁场。 旋转磁场的转速(同步转速) 60f1(I频) n= (转/分) p- 相对数 (2)异步电动机的转速 三个电磁现象: 1、带电体周围产生磁场 2、导体在磁场中运动产生感应年电动势 3、带电导体在磁场中产生电磁力 no-n = s 转差率 no 60f1 异步电动机转速n = ( r/s) p 如no=n则转子不切割磁力线也就丢失了旋转运动。 4、异步电动机的调试方法 (1)变极调速 (2)改变转差率(s)——如滑差电机 (3)变频调速 变频器本质: 是一种输出电压和频率可以改变的电源。 二、变频器的基础知识 1、发展史与展望 电压与频率成正比的实现方法:PWM 但存在高次谐波:电机发热 干扰 电机振动 2、变频器的结构与原理

U V 等效电流 1、整流电路:整流成直流脉动电压 2、限流电路:由限流电阻及短路触点组成限止充电电流,保护整流器件。 3、滤波电路:平滑电压 4、制动电路:60f1 30秒n0= P 5秒 00 n>n0 发电机 作用:吸收原生电压,保护功率模块,增大制动转矩,使电动机快速停止。 5、逆变电路: 等效交流电:效果上是正弦波 实质上是PWM波 住回路容易坏(大多是驱动电路坏造成的) 3、变频器控制方式: U/f(国产)转差频率(在国内无)矢量(最先进、最好的) ①u/f 控制方式 忽略定子漏电阻 E=U=4.4f1w1k1¢m 设U不变

变频器驱动的电机和普通电机的区别

一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM 型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

PID调节控制做电机速度控制

PID调节控制做电机速度控制 V1.1 – Jan 23, 2006 中文版 19, Innovation First Road ? Science Park ? Hsin-Chu ? Taiwan 300 ? R.O.C. Tel: 886-3-578-6005 Fax: 886-3-578-4418 E-mail: mcu@https://www.360docs.net/doc/a17926032.html,

版权声明 凌阳科技股份有限公司保留对此文件修改之权利且不另行通知。凌阳科技股份有限公司所提供之信息相信为正确且可靠之信息,但并不保证本文件中绝无错误。请于向凌阳科技股份有限公司提出订单前,自行确定所使用之相关技术文件及规格为最新之版本。若因贵公司使用本公司之文件或产品,而涉及第三人之专利或著作权等智能财产权之应用及配合时,则应由贵公司负责取得同意及授权,本公司仅单纯贩售产品,上述关于同意及授权,非属本公司应为保证之责任。又未经凌阳科技股份有限公司之正式书面许可,本公司之所有产品不得使用于医疗器材,维持生命系统及飞航等相关设备。

目录 页 1模拟PID控制 (1) 1.1 模拟PID控制原理 (1) 2数字PID控制 (3) 2.1 位置式PID算法 (3) 2.2 增量式PID算法 (4) 2.3 控制器参数整定 (4) 2.3.1 凑试法 (5) 2.3.2 临界比例法 (5) 2.3.3 经验法 (5) 2.3.4 采样周期的选择 (6) 2.4 参数调整规则的探索 (6) 2.5 自校正PID控制器 (7) 3软件说明 (8) 3.1 软件说明 (8) 3.2 档案构成 (8) 3.3 DMC界面 (8) 3.4 子程序说明 (9) 4程序范例 (16) 4.1 DEMO程序 (16) 4.2 程序流程与说明 (19) 4.3 中断子流程与说明 (20) 5MCU使用资源 (21) 5.1 MCU硬件使用资源说明 (21) 6实验测试 (22) 6.1 响应曲线 (22) 7参考文献 (26)

变频器控制电机转速

变频器是怎样控制电机转速 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 [r/min] 4极电机 50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?

*1: 工频电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。 因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 4. 变频器50Hz以上的应用情况 大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的。 如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上。 当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60H z, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 这时的转矩情况怎样呢?

三菱变频器对异步电动机调速控制-三相异步电动机调速控制系统毕业设计

摘要 随着变频调速异步电动机在国内外市场上日益扩大应用,自90年代中期以来,我国有众多电动机生产企业设计、研制和生产适用于不同应用的各种系列变频调速三相异步电动机,例如:通用变频调速电动机系列、起重冶金变频调速电动机系列、隔爆变频调速电动机系列、电梯变频调速电动机系列、辊道变频调速电动机系列、牵引变频调速电动机系列等。从目前情况看,这些系列电动机能基本满足国内市场的需求原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动,重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛。本论文的主要就是利用三菱变频器,对三相异步电动机进行变频的调速。 关键词:三相异步电动机;三菱变频器;变频调速

Abstract With the increasing application of VVVF asynchronous motors in the domestic and foreign markets, since the middle of 90's, China's motor manufacturers design, development and production is suitable for various series of Variable-Frequency Adjustable-Speed Three-Phase Asynchronous Motor, different applications such as: General VVVF motor series, crane and metallurgical VVVF motor series, flameproof inverter motor series, VVVF elevator motor series, roller VVVF motor series, inverter-fed motor series. Judging from the current situation, these series motors can basically meet the needs of the domestic market is the principle when the stator winding through three symmetrical three-phase current, stator and rotor rotating magnetic field is generated, according to the right-hand rule, the rotor winding induced electromotive force, the winding is closed, so generate induction current, according to the left, the rotor winding is equivalent to space winding, and electromagnetic torque, starting motor magnetic torque is greater than the resistance of synthesis of torque,, the focus is variable frequency speed control of three-phase asynchronous motor, hand when F1 < fN, for constant torque speed, torque is not changed, the rated speed is reduced, increase the starting torque of Tst, on the other hand, when F1 > fN, for constant power speed, speed regulation and constant power, rated speed increased, reduce the starting torque Tst. VVVF can achieve smooth speed wide range, frequency conversion motor with simple structure, good performance of speed regulation, high speed adjustment, more and more extensive application. The main of this paper is to utilize Mitsubishi inverter frequency, speed control of three-phase asynchronous motor. Key words: threephase asynchronous motor ;Mitsubishi inverter ;frequency control

三菱伺服电机对应控制软件

目前市场上三菱伺服电机主要有MR-E、MR-J2S、MR-J3三种,这三种伺服相对应有专门的调试软件,可通过电脑实施监控、一次性参数输入与保存、图表显示、以及测试等操作。每种伺服放大器和电脑连接也有对应的电缆。 令狐采学 另三菱还有一个容量选择软件capacity selection,用于选择伺服电机型号。 三菱伺服软件调试一、软件基本设置 1、双击SETUP154C图标——设置——系统设定——机种选择“MR——E——A”;——波特率选择“9600”——串口选择“COM3这是看你自己的计算机口了”——有站号——确定。 2、点站号设定:选00站。 3、点击参数——进行“参数设定、调整、变更清单显示、详细信息显示”里——点击“参数设定”——参数一览表“批量读取、核对、批量写入、变更清单、详细信息、初期设定、终止”。 4、参数写入操作步骤:修改表里相应参数值后——回车——点“写入”。注意:有*好的参数伺服要停电后5S再启。三)、软件调试运行功能(点动运行、定位运行、无电机运行、程序运行)

1、试运行 1)、点动运行操作试运行——点动运行——电机转速3000r/min 注意设定时不要超过3000转——加减速时间常数1000ms——点正转停止或反转停止即可。 2)、定位运行操作试运行——定位运行——电机转速200r/min 注意设定时不要超过3000转——加减速时间常数1000ms——移动量9310720pules——点正转停止或反转停止即可。 3)、程序运行操作试运行——程序运行——点“编辑”——在“程序运行”里点“编辑”——出现“程序运行—编辑”栏,在右边大空白栏里输入以下程序如下: TIMS(3):运行程序3次; SPN(1000):进给转速1000r/min; STC(500):伺服到达额定转速时间500ms; MOV(100000):正转给移动脉冲距离100000PULES; TIM(3) :等待下一步操作时间3秒; SPN(1000):进给转速1000r/min; STC(500) :伺服到达额定转速时间500ms; MOV(-100000) :正转给移动脉冲距离100000PULES;STOP:停止;按“确定”——反悔程序运行界面——点“启动”这时电机按你编制的程序要求运行。 B系列不需要通过软件设置,定位模块会把参数写入到伺服控制器中。

双速异步电机的调速控制线路

双速异步电机的调速控制线路 根据异步电动机转速公式:,当电源频率f 一定时,若改变电动机定子绕组的磁极对数P,就可使电动机转速改变。采用双速电机可改善机床的调速性能,简化变速机构,因此在车、铣、镗床中都有应用。常见的双速电动机的绕组有两种接线方式:Δ/YY 及Y/YY。 1.Δ/YY接法 图a)为双速电动机Δ/YY接法电路图。当绕组的1、2、3号出线端接电源,而使4、5、6号出线端悬空时,电机绕组接成三角形,每相绕组中有两个线圈串联,成四个极,电动机低速运转;当把1、2、3号端子短接,4、5、6号端子接电源时,则绕组为双星形,每相绕组中两个线圈并联,成两个极,电机作高速运转。 在三角形与双星形转换时,电动机输出功率分别为: 由于,所以。 由此可知,电机从Δ接法的低速运转变成YY接法的高速运转时,转速升高一倍,而功率只增加15%,所以这种调速方法可近似地看成恒功率调速。它很适合一般金届切削机床对调速的要求。 2.Y/YY接法 图b)为Y/YY接法,当电机转速增加一倍(YY接法)时,输出功率也增加一倍,属于恒转矩调速。它适用于电梯、起重饥、皮带运输机等要求恒转矩调速的场合。 3. 控制电路 图2.25为常用的双速电动机Δ/YY调速控制电路图,其中:KM1得电为低速,KM2得电为高速,KM3为短接接触器。

图a)用两个复合按钮SB2及SB3分别控制KM1及KM2、KM3,实现低速与高速的直接转换而无需经过停止状态。 图b)是用转换开关SA来选择低速或高速方式后,由按钮SB2发令启动电动机的控制电路。 图c)转换开关SA选择高、停、低速。当选择高速时,采用时间继电器KT,按时间原则自动控制电动机低速起动、经延时后转换到高速运行。 上述三个控制电路中,低速与高速之间都用接触器动断触头互锁,以防短路故障。 功率较小的双速电动机可采用图a)和图b)的控制方式;容量较大的双速电动机,宜可采用图c)的控制方式。

变频器是怎样控制电机转速的

变频器是怎样控制电机转速的 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? 电机旋转速度单位:r/min 每分钟旋转次数,也可表示为rpm. 例如:2极电机50Hz 3000 [r/min] 4极电机50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/a17926032.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

电动车无刷电机控制器软件设计详解

电动车无刷电机控制器软件设计详解作者:谢渊斌原作发表在《电子报2007年合订本》下册版权保留,转帖请注明出处本文以MICROCHIP公司所生产的PIC16F72为基础说明软件编程方面所涉及的要点,此文所涉及的源程序均以PIC的汇编语言为例。由于软件不可避免需与硬件相结合,所以此文可能出现硬件电路图或示意图。本文适合在单片机编程方面有一定经验的读者,有些基础知识恕不一一介绍。我们先列一下电动车无刷马达控制器的基本要求:功能性要求:1.电子换相2.无级调速3.刹车断电4.附加功能a.限速b.1+1助力c.EBS柔性电磁刹车d.定速巡航e.其它功能(消除换相噪

音,倒车等)安全性要求:1.限流驱动2.过流保护3.堵转保护3.电池欠压保护4.节能和降低温升5.附加功能(防盗锁死,温升限制等)6.附加故障检测功能从上面的要求来看,功能性要求和安全性要求的前三项用专用的无刷马达驱动芯片加上适当的外围电路均不难解决,代表芯片是摩托罗拉的MC33035,早期的控制器方案均用该集成块解决。但后来随着竞争加剧,很多厂商都增加了不少附加功能,一些附加功能用硬件来实现就比较困难,所以使用单片机来做控制的控制器迅速取代了硬件电路芯片。但是硬件控制和软件控制有很大的区别,硬件控制的反应速度仅仅受限于逻辑门的开关速度,而软件的运

行则需要时间。要使软件跟得上电机控制的需求,就必须要求软件在最短的时间内能够正确处理换相,电流限制等各种复杂动作,这就涉及到一个对外部信号的采样频率,采样时机,信号的内部处理判断及处理结果的输出,还有一些抗干扰措施等,这些都是软件设计中需要再三仔细考虑的东西。PIC16F72是一款哈佛结构,精简指令集的MCU,由于其数据总线和指令总线分开,总共35条单字指令,0-20M的时钟速度,所以其运算速度和抗干扰性能都非常出色,2K 字长的FLASH程序空间,22个可用的IO 口,同时又附加了3个定时/计数器,5个8位AD口,1个比较/捕捉/脉宽调制器,8个

变频器控制电机的参数设置

变频器控制电机的参数设置 变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT 或整流桥等器件。变频器的品种不同,参数量亦不同。 一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流保护、载波频率、失速保护和过压保护等是必须要调正的。当运转不合适时,再调整其他参数。 现场调试常见的几个问题处理 起动时间设定原则是宜短不宜长,具体值见下述。 过电流整定值OC过小,适当增大,可加至最大150%。经验值1.5~2s/kW,小功率取大些;大于30kW,取>2s/kW。按下起动键*RUN,电动机堵转。说明负载转矩过大,起动力矩太小(设法提高)。这时要立即按STOP停车,否则时间一长,电动机要烧毁的。 因电机不转是堵转状态,反电热E=0,这时,交流阻抗值Z=0,只有直流电阻很小,那么,电流很大是很危险的,就要跳闸OC动作。制动时间设定原则是宜长不宜短,易产生过压跳闸OE。 对水泵风机以自由制动为宜,实行快速强力制动易产生严重“水锤”效应。起动频率设定对加速起动有利,尤以轻载时更适用,对重载负荷起动频率值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动频率从0开始合适。起动转矩设定对加速起动有利,尤以轻载时更适用,对重载负荷起动转矩值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动转矩从0开始合适。 基底频率设定基底频率标准是50Hz时380V,即V/F=380/50=7.6。但因重载负荷(如挤出

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

智能小车的直流电机控制

智能小车的直流电机控制 作者:本站来源:转载发布时间:2009-3-6 20:21:41 [收藏] [评论] 智能小车的直流电机控制 【实验目的】 了解以单片机为核心的直流电机控制系统 掌握此系统中直流电机驱动与调速原理 熟悉ICCAVR 软件编译环境,会编写控制程序 【实验器材】 智能小车一部,下载线一根 【实验原理】 直流电机驱动控制系统示意图: 在本实验中所分析的是以单片机ATMEGA8515L 为核心的直流电机控制系统。 ATMEGA8515L 芯片的引脚图如下: 功放驱动电路采用基于双极性H-桥型脉宽调整方式PWM 的集成电路L293D。L293D是单块集成电路,高电压,高电流,四通道驱动,设计用来接受DTL 或者TTL 逻辑电平,驱动感性负载(比如继电器,直流和步近马达),和开关电源晶体管。其引脚图如下:

ATMEGA8515L 利用I/O 口(PD5,PE2,PD4,PD6)向驱动电路输出控制电平,这些I/O 口作为单片机控制指令的输出,连接到驱动电路中L293D 的相应管脚上。 其真值表如下: 对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电 压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端PE2 和

PD5 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。 此实验中用微处理机来实现脉宽调制,通常的方法有两种: (1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。 (2)硬件电路自动产生PWM 信号,不占用CPU 处理的时间。 这就要用到ATMEGA8515L 的在PWM 模式下的计数器1,具体内容可参考相关书籍。 【实验步骤】 (1)连接好电路,把数据线,下载线连接好,打开电源 (2)进入ICCAVR 编译环境,调试程序直至没有错误,编译环境简介请参见附录一 (3)下载,烧录进单片机,观察实验结果 (4)反复修改调试程序,逐渐增强其功能 (5)写好实验报告,实验心得体会 【程序示例】 1、小车前进一段——>左转一圈——>右转一圈——>前进一段——>后退一段——>停下 //ICC-AVR application builder : 2005-5-19 19:12:13 // Target : M8515 // Crystal: 4.0000Mhz #include #include unsigned int time; unsigned int yan; void port_init(void) { PORTA = 0x00; DDRA = 0xFF; PORTB = 0x00; DDRB = 0x00; PORTC = 0x00; DDRC = 0x00; PORTD = 0x00; DDRD = 0xFF; PORTE = 0x00; DDRE = 0xFF; } //call this routine to initialize all peripherals void init_devices(void)

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

PLC与变频器控制电机(DOC)

渤海船舶职业学院毕业设计(论文) 题目:变频器与PLC控制电机运行 年级专业:电气工程(船舶电气)系 姓名:刘俊亮学号:11G31502 论文完成时间:2014/5/21

摘要 随着生活水平逐渐提高,节能环保的观念越来越深入人心。回望过去30年在变频器上的研发,总结我们投入变频器运用于各行业的实际运用中,随着高性能微解决器的运用以及河南变频器维修掌握技巧的开展,变频器的性能价钱比越来越高,体积越来越小,很多技术先进的公司一直以进步牢靠性为追求完成变频器,为使其更小型轻量化、高性能化和多功用化以及无公害化而做着新的挑战。变频器性能的优劣,一要看其输出交换电压的谐波对电机的影响,二要看对电网的谐波净化和输出功率因数,三要看自身的能量损耗(即效力)如何。变频器还在一直的进步,各厂家都在寻求卓着,这也才是推进行业开展的前提,只有企业永远向前看,行业自但是然会更好。变频器是静止掌握体系中的功率变换器。当今的静止掌握体系是蕴含多种学科的技巧范畴,总的开展趋向是:驱动的交换化,功率变换器的高频化,掌握的数字化、智能化和网络化。因而,变频器作为体系的主要功率变换部件,供给可控的高性能变压变频的交换电源而得到迅猛开展。 于此同时PLC的发展也是非常令人惊讶的,20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的PLC为微机技术和继电器常规控制概念相结合的产物20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的PLC为微机技术和继电器常规控制概念相结合的产物。个人计算机发展起来后,为了方便和反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。 20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。这个时期发展了大型机和超小型机、诞生了各种各样的特殊功能单元、生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。 关键词:工作原理,运行方式,基本操作

通用变频器控制异步电动机正反转

通用变频器控制异步电动机正反转 一、实训的目的: 1、掌握通用变频器控制异步电动机的主回路接线; 2、掌握通用变频器控制异步电动机变频器内的参数的设定; 3、掌握通用变频器控制异步电动机变频器面板启动方法; 4、掌握通用变频器控制异步电动机变频器外部端子控制变方式的电 动机启动方法; 5、掌握通用变频器控制异步电动机的正反转运行方法; 二、实训所需元件 本实训使用ATV31变频器和普通异步电动机,为保证安全,ATV71变频器组件不能上电。 三、实训电路及原理 本实训采用的电路图如图1所示,LI1、LI2、LI3为三相380V电源进线,Q为小型断路器,M为三相异步电动机,S1、S2为转换按钮,用于变频器的外部端子启动,其中S1为正转启动,S2为反转启动(通过设定变频器内部参数来设定),PE为保护接地。

\ 图1 实训二电路图 四、实训的内容及步骤 1、按图1所示进行外部连线(ATV31变频器的动力引出线和控制线已经引出到实验板的端子上,在连线时不需打开变频器的面板,电动机线直接引到相应的端子上,并确认相应的线号)。 2、确定接线正确无误,连接可靠后,将ATV31变频器上电。 3、在I/O 菜单组中确认以下参数; 参数 工厂设定值 本实验设定值 TCC 2C LOC TCT TRN TRN LI1 LI2 LI3 5 1 3 5 6 4 2 Q 3 3 4 4 S2 S1 L1 L2 L3 LI1 LI2 24V PE U V W W U V PE M 3~

RRS LI2 LI2 4、在CTL菜单组中确认以下参数: 参数工厂设定值本实验设定值 FR1 AI1 AIP RFC FR1 FR1 CHCF SIN SEP CD1 TER LOC 5、在FUN菜单中设定停车方式为斜坡停车(STT为RNP)。 6、将菜单显示转换为SUP菜单组,显示当前菜单FRH,按ENT、上和下键,分别设定30.5Hz和40.5Hz,按RUN键,使电动机启动。改变SET菜单中ACC和DEC(加速时间和减速时间)参数,观察电动机的转换变化情况。当电动机稳定运行后,利用闪光测速仪记录频率与电动机实际转速的数值。 7、在I/O、CTL菜单组中改变以下参数; 参数工厂设定值本实验设定值TCC 2C 2C TCT TRN TRN RRS LI2 LI2 8、在合上S1按钮,电动机正转;断开S1按钮,电动机停止运行。

相关文档
最新文档