有理数的加减法PPT(1)
合集下载
《有理数的加减法》课件

详细描述
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。
有理数的加减法(共44张PPT)

总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。
1.8 有理数的加减混合运算 课件(共20张PPT)华东师大版(2024)数学七年级上册

解题秘方:本题要采用转化法,首先运用减法法则把加减混合运算转化成加法运算,然后写成省略加号的和的形式.
知1-练
感悟新知
2-1.写成省略加号的和的形式后为-8-4-5+6 的式子是( )A. (-8) -( +4) -(-5) +(+6)B. -( +8) -(-4) -(+5) -( +6)C. (-8) + (-4) -(+5) +( -6)D. ( -8) -(+4) +( -5) -(-6)
凑整法
(2) - 0.6 - 0.08+ - 2 - 0.92+2 .
相反数结合法
知2-练
感悟新知
3-1.计算: (1) 4 -1.5+(-5 )- (-2.75)
知2-练
感悟新知
(2) (-2 )- (-15.5) + (-7 )+(-5 )
有理数的加减混合运算
第一步
统一成加法
运用加法运算律计算
知1-练
感悟新知
将下列各式改写成只有加法运算的和的形式 .(1) -30- (+8) -(+6) -(-17);(2) -0.6+1.8-5.4+4.2.
例1
解题秘方:紧扣减法的运算法则,减去一个数等于加上这个数的相反数 .
知1-练
感悟新知
解: -30- (+8) -(+6) -(-17) = - 30+(- 8) +(- 6) +(+17) .
1.8 有理数的加减混合运算
第一章 有理数
知1-讲
感悟新知
知识点
加减法统一成加法
知1-练
感悟新知
2-1.写成省略加号的和的形式后为-8-4-5+6 的式子是( )A. (-8) -( +4) -(-5) +(+6)B. -( +8) -(-4) -(+5) -( +6)C. (-8) + (-4) -(+5) +( -6)D. ( -8) -(+4) +( -5) -(-6)
凑整法
(2) - 0.6 - 0.08+ - 2 - 0.92+2 .
相反数结合法
知2-练
感悟新知
3-1.计算: (1) 4 -1.5+(-5 )- (-2.75)
知2-练
感悟新知
(2) (-2 )- (-15.5) + (-7 )+(-5 )
有理数的加减混合运算
第一步
统一成加法
运用加法运算律计算
知1-练
感悟新知
将下列各式改写成只有加法运算的和的形式 .(1) -30- (+8) -(+6) -(-17);(2) -0.6+1.8-5.4+4.2.
例1
解题秘方:紧扣减法的运算法则,减去一个数等于加上这个数的相反数 .
知1-练
感悟新知
解: -30- (+8) -(+6) -(-17) = - 30+(- 8) +(- 6) +(+17) .
1.8 有理数的加减混合运算
第一章 有理数
知1-讲
感悟新知
知识点
加减法统一成加法
有理数的加减混合运算(第1课时)(课件)-七年级数学上册同步精品课件(北师大版)

_负__2_0_加__3__加__5__减__7__
新课讲解
(20) (3) (5) (7).
运算过程也可简单写为: 原式=(-20)+(+3)+(+5)+(-7)
= 20 3 5 7 减法转化为加法(可省略)
= 20 7 3 5 写成省略加号的和的形式
= 27 8
有理数加法的交换律
减法转化成加法 =[(-2)+(-27)]+[(+30)+(+15)]
=(-29)+(+45) =16.
新课讲解
方法二:(去括号法)
解:原式=-2+30+15-27 省略括号
=-2-27+30+15
=-2+(-27)+45 =-29+45 =-(29-45) =16
运用加法交换律使同号两 数分别相加
= 19.
有理数加法的结合律
新课讲解
典例分析
例1.计算:
(1)-53 +15 -45 ;
解:原式= 2 4 55
=
2 5
4 5
= 6. 5
(2)(-5)--21 +7-73 .
解:原式=( 5) 1 7 7 23
=57 பைடு நூலகம் 7 23
=2 11 6
=1. 6
新课讲解
典例分析
例2.计算:(-2)+(+30)-(-15)-(+27); 方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27)
小彬抽到的4张卡片依次为:
3
1
22
4
-5
他抽到的卡片的计算结果是多少? 他抽到的卡片的计算结果是多少?
获胜的是谁?
新课讲解
(20) (3) (5) (7).
运算过程也可简单写为: 原式=(-20)+(+3)+(+5)+(-7)
= 20 3 5 7 减法转化为加法(可省略)
= 20 7 3 5 写成省略加号的和的形式
= 27 8
有理数加法的交换律
减法转化成加法 =[(-2)+(-27)]+[(+30)+(+15)]
=(-29)+(+45) =16.
新课讲解
方法二:(去括号法)
解:原式=-2+30+15-27 省略括号
=-2-27+30+15
=-2+(-27)+45 =-29+45 =-(29-45) =16
运用加法交换律使同号两 数分别相加
= 19.
有理数加法的结合律
新课讲解
典例分析
例1.计算:
(1)-53 +15 -45 ;
解:原式= 2 4 55
=
2 5
4 5
= 6. 5
(2)(-5)--21 +7-73 .
解:原式=( 5) 1 7 7 23
=57 பைடு நூலகம் 7 23
=2 11 6
=1. 6
新课讲解
典例分析
例2.计算:(-2)+(+30)-(-15)-(+27); 方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27)
小彬抽到的4张卡片依次为:
3
1
22
4
-5
他抽到的卡片的计算结果是多少? 他抽到的卡片的计算结果是多少?
获胜的是谁?
北师大版七年级数学上册2.11有理数的加减混合运算[1](共33张PPT)
](https://img.taocdn.com/s3/m/fe234f249e31433238689321.png)
解答
• (1)(a+b)-(a-c) = a+b-a+c = b+c
当a=7,b=-5,c=-1时 333
原 式 = - 5 +(- 1 )= -2 33
(2)2(a-b)+(b+c)-IcI
=2a-2b+b+c- IcI=2a-b+c-IcI
当 a=7,b=-5,c=-1时
333
原式=
2×73 -- 53+-
(减法转为加法,再运用交换律结合律)
4
(
-4
7 9
)-(-
3
1 6
)-(+
2
2 9
)+(
-6
3 4
)
=
-
43 9
+
+
19 6
+
-
20 9
+
-
27 4
= - 43 + 19 - 20 - 27 = - 43 - 20 + 19 - 27 9694 9964
= -7 - 43 = - 127 12 12
•(2)有理数的减法法则是怎样的?
有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
• 一架飞机做特技表演,起飞后的高度变化 如下表:
此时飞机比起飞点高了多少千米?
方法一: 4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4) =2.4+(-1.4) =1(千米)
12,8,6,5的和 〃;
二是按运算的意义,读作 负12,减8,减6,加5
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第一课时有理数加法)

(7) (-23)+0; (8) (-45)+15.
-11
+ 110 0
-8
-32
+8
-23
-30
第十一页,共二十页。
概念理解
计算下列各题:
(1) (-11) + (-9);
(2) (-3.5) + (+7);
( +9) + (-10.2);
(+2.7 ) + (+3.5); (-1.08) + 0;
(+3.2) + (-3.2).
-20
+3.5 -1.2 +6.2 -1.08 0
第十二页,共二十页。
知识点拓展
1、若|a|=3|b|=2,且a、b异号,则a+b=( )
A、5 B、1 C、1或者-1 D、 5或者-5
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异 号,因此当a=3时b-2,当a=-3时 b=2,则a+b=1或-1。
若a>0,b<0, |a|>|b|, 则a+b= + (|a|-|b|);
异号两数
相加
若a>0,b<0, |a|<|b|, 则a+b= -(|b| -|a|);
若a>0,b<0, |a|=|b|,
则a+b= 0.
第十页,共二十页。
概念理解
计算下列各题:
(1) (-10)+(-1); (2) 125+(-15); (3) 29+(-29); (4) 0+(-8); (5) (-25)+(-7); (6) (-5)+13;
第一页,共二十页。前言源自学习目标1.经历探索有理数加法法则的过程,理解有理数的加法法则; 2.能熟练进行整数加法运算; 3.培养学生的数学交流和归纳猜想的能力; 4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
-11
+ 110 0
-8
-32
+8
-23
-30
第十一页,共二十页。
概念理解
计算下列各题:
(1) (-11) + (-9);
(2) (-3.5) + (+7);
( +9) + (-10.2);
(+2.7 ) + (+3.5); (-1.08) + 0;
(+3.2) + (-3.2).
-20
+3.5 -1.2 +6.2 -1.08 0
第十二页,共二十页。
知识点拓展
1、若|a|=3|b|=2,且a、b异号,则a+b=( )
A、5 B、1 C、1或者-1 D、 5或者-5
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异 号,因此当a=3时b-2,当a=-3时 b=2,则a+b=1或-1。
若a>0,b<0, |a|>|b|, 则a+b= + (|a|-|b|);
异号两数
相加
若a>0,b<0, |a|<|b|, 则a+b= -(|b| -|a|);
若a>0,b<0, |a|=|b|,
则a+b= 0.
第十页,共二十页。
概念理解
计算下列各题:
(1) (-10)+(-1); (2) 125+(-15); (3) 29+(-29); (4) 0+(-8); (5) (-25)+(-7); (6) (-5)+13;
第一页,共二十页。前言源自学习目标1.经历探索有理数加法法则的过程,理解有理数的加法法则; 2.能熟练进行整数加法运算; 3.培养学生的数学交流和归纳猜想的能力; 4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
有理数的加减法课件PPT

( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓↓
同号两数相加
取相同符号 再把绝对值相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7
↓
异号两数相加
↓↓
取绝对值较大 再把绝对值相减 的加数的符号
同号相加是一个累加过程; 异号相加是一个抵消过程。
运算步骤:
如4.5+(-3.2)+1.1+(-1.4)可以写成省略括号的 形式:
4.5 - 3.2 + 1.1 - 1.4(仍可看作和式) 读作 “正4.5、负3.2、正1.1、负1.4的和” 也可读作 “4.5减3.2加1.1减1.4”
去括号法则
括号前是“+”号,去掉括号和它前 面的“+”号,括号里面各项都不变;
(3)(7) (5) (4) (10);
解: (7) (5) (4) (10);
= 7 5 4 10 =11 15 =4.
教科书第24页练习
计算:(4) 3 7 ( 1) ( 2) 1. 42 6 3
解: 3 7 ( 1) ( 2) 1 42 6 3
=3 7 1 2 1 4263
使问题转化为几个 有理数的加法.
例 计算: (-20)+(+3)-(-5)-(+7).
解: (-20)+(+3)-(-5)-(+7) =(20) (3) (5) (7)
=[(-20)+(-7)]+[(+5)+(+3)]
=(-27)+(+8)
=-19.
这里使用了哪 些运算律?
引入相反数后,加减混合运算可以统一为加法运算.
a b c a b (c).
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件

5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法2:每袋小麦超过标准重量的千克数记作正数, 不足的千克数记作负数。10袋小麦对应的数为: +1,+1,+1.5,-1,+1.2,-1.3,-1.3,-1.2, +1.8,+1.1.
这10个数的和为: 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2) +1.8+1.1. =[1+(-1)]+[1.2+(-1.2)] +[1.3+(-1.3)] + (1+1.5++1.8+1.1) =5.4 905.4一90×10=5.4(千克) 答:10袋小麦总计超过标准重量5.4千克,总重量 是905.4千克。
小组活动1:
1.计算:30十(一20),(一20)十 30.两次所得和相同吗?换几个数再试一试。 2.计算:[8十(一2)]十(十2),8
十[(一2)十(十2)].两次所得和相同吗?
换几个数再试一试。 发现:无论数字如何改变,加法交换律、 结合律都适用于有理数的加法。
加法交换律——两个有理数相加,交换加 数的位置,和不变. 用代数式表示: a+b=b+a. 加法结合律——三个数相加,先把前两 个数相加,或者先把后两个数相加,和不 变.
3.小学学过的加法的运算律都有哪些? 在有理数的加法中能否适用呢? 4.计算下列每组各题并比较结果。 (1)[8+(-5)]+(-4); 8+[(-5)+(-4)]; (2)[(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]; (3)[(-22)+(-27)]+(+27); (-22)+[(-27)+(+27)].
2.计算
1 1 1 ( ) ( ) 2 3 6
1 3 3 2 3 (2 ) 5 (8 ) 4 5 4 5
3.计算 (1)31+(-28)+28+69 (2)(-25)+34+156+(-65) 4.某村共有6块小麦试验田,每块试验田今年的 收成与去年相比情况如下(增产为正,减产为
负,单位:千克):
55,-40,10,-16 , 27,-5
今年的小麦总产量与去年相比情况如何?
5.分别列出一个满足下列条件的算式:
(1)所有加数为负整数,和为-5;
(2)一个加数是0,和是-5;
(3)至少有一个加数是正整数,和是-5.
6.将-8,-6,-4,-2,0,2,4,6,8这9个数分别
常用运算律的三个规律:
1、 一般地,总是先把正数或负数分
别结合在一起相加。
2、有相反数的可先把相反数相加,
能凑整的可先凑整。
3、有分母相同的,可先把分母相同
的数结合相加。
1.计算
(1)23+(-17)+6+(-22);
(2)(-2)+3+1+(-3)+2+(-4);
(3)(-7)+(-6.5)+(-3)+6.5.
填入下图的9个空格中,使得每行的3个数,
每列的3个数,斜对角的3个数相加均为0.
这节课我们学习了哪些知识,
你能说一说吗?
例4 每袋小麦的标准重量为90千克, 10袋小麦称重记录如下:(单位:千克) 91,91,91.5,89,91.2,91.3, 88.7,88.8,91.8,91.1. 与标准重量相比较,10袋小麦总计超 过多少千克或不足多少千克?10袋小麦的 总重量是多少?
解法1:先计算10袋小麦的总重量: 91十91十91.5十89十91.2十91.3十88.7 十88.8十91.8十91.1=905.4(千克) 再计算总计超过905.4一90×10=5.4(千 克)
1.3.1有理数的加法
人教版初中数学七年级上册第一章《有理数》 第三节《有理数的加减法》第2课时
1.叙述有理数的加法法则. 2.计算下列各题,并说明是根据哪一 条运算法则? (1)(-8.18)+6.18;
(2) 6.18+(-8.18);
(3)(-2.37)+(-4.63);
(4)(-4.63)+(-2.37)
一个式子)+c=a+(b+c). 这里a、b、c表示任意三个有理数.但是在同
例3 计算:16+(-25)+24+(-35).
解: 16+(-25)+24+(-35)
=16+24+(-25)+(-35) (加法交换律)
=(16+24)+[(-25)+(-35)](加法结合律 =40+(-60) =-20 (异号相加法则)