某高层建筑桩复合地基设计探讨

某高层建筑桩复合地基设计探讨
某高层建筑桩复合地基设计探讨

某高层建筑桩复合地基设计探讨

摘要:本文以工程实例阐述刚性桩复合地基的设计,包括复合地基的计算、设计思路、理论计算与实际结果的比较和分析。为桩土共同作用的工程设计提供参考。

关键词:复合地基;夯扩桩;设计计算;

中图分类号:tu47文献标识码: a 文章编号:

1、刚性桩复合地基的设计思想

由于刚性桩复合地基和复合桩基础作用机理比较类同,笔者认为现行《建筑桩基技术规范》的有关设计原则可供刚性桩复合地基设计时参考。比如以极限状态为原则,按“设计值”进行设计。在准确分析工程特征、工程地质资料及选择好桩型的前提下,须选定一个相对硬层,作为刚性桩的端层。并且必须进入一定深度,以保证端承力的发挥和必要的侧向约束。须避免将桩端置于软土层上。此外还必须计算桩长、桩间距,单桩承载力极限值、设计值,验算桩身结构强度,验算群桩整体破坏的可能性。

对于刚性桩复合地基来说,由于桩土应力比较大,须在桩顶以上铺设100mm-300mm厚的砂石褥垫层,以调整桩土应力比,增大基底摩擦。褥垫层的厚度可以根据建筑物的结构特征、基础形式、桩间土性质及其对地基变形的要求等因素综合选定。

2、刚性桩复合地基特点

刚性桩复合地基即是采用刚性桩增强天然地基的部分土体,通过设置于基础和桩之间的褥垫层来使增强体和地基土共同承担荷载

碎石桩及其复合地基承载力的分析

碎石桩及其复合地基承载力的分析 王志亮 (河海大学岩土工程研究所,南京 210098) 摘 要:介绍单碎石桩及其复合地基的承载力机理及计算方法,并对碎石桩复合地基的工程设计等方面提出了一些建议。 关键词:碎石桩;复合地基;模型试验;滑动圆弧法 中图分类号:T U4 文献标识码:B 文章编号:1005-8524(2000)04-04 B earing C apacity Analysis for G ravel Pile and Composite Foundation WANG Zhi2liang (Institute o f G eotechnical Engineering,Hehai Univer sity,Nanjing 210098) Abstract:This paper introduces the bearing capacity mechanism and calculation methods of single gravel pile and related composite foundation,and presents s ome suggestion to the design of gravel pile composite founda2 tion. K ey w ords:gravel pile;composite foundation;m odel test;sliding arc method 碎石桩因具独特的优点应用日益广泛,大量工程实践表明,软土地基用碎石桩加固后,承载力明显提高,沉降量也减少。选择碎石桩处理地基,最关键的是碎石桩的承载力确定,桩的承载力越高,复合地基达到某一设计的承载力所需要的置换率就越低,地基处理费用在一定程度上就愈少。因此能正确的理解和计算碎石桩及复合地基的承载力意义重大。 1 单碎石桩的承载力模型试验和分析 地基中有一根碎石桩,桩径为r,碎石间的内摩擦角为φp,桩顶上施加荷载P p。假设地基是由各向同性的匀质粘性土组成,其不排水强度为C u。Brauns[1]认为不断增大P p,当P p达到极限荷载时,碎石桩及上部土体将发生被动破坏,破坏区域为倒梯形体abcd(图1),其中ab,cd分别为滑动面。他在作了一些假设,如桩的破坏长度h= 2rtgφ,φ=45°+φp/2;不计地基土和桩体的自重以及τM=0等的前提下,得出了碎石桩的极限承载力与粘性土的不排水强度成正比的结论。 为了研究单碎石桩承载力性状,作者设计了图2的试验装置,试验箱由钢板制成,筒直径350mm,高900mm。桩长分为两组,一组桩长300mm,桩直径为60mm;另一组

长短桩复合地基设计

长短桩复合地基设计 一、前言 当地基承载力或变形不能满足设计要求时,需做地基处理,复合地基方案在地基处理中用的非常普遍。复合地基的桩型很多,不同的桩型加固机理和加固效果是不同的,实际工程中如何针对设计要求合理选择桩型是方案选择的核心。本文仅就这一问题做一讨论。 采用复合地基有时主要为了提高地基承载力,有时主要是为了减少沉降量,有时两者兼而有之,在确定使用复合地基前,应予以分析。当软弱土层较厚时,采用复合地基往往是为了控制沉降,在这种情况下采用复合地基具有较大的优点。若软弱土层很薄,而基岩又很浅,采用桩基础可能优于采用复合地基。另外,复合地基需要通过一定的沉降量来协调发挥桩土共同承担荷载,对沉降量控制要求很高的情况下不宜采用复合地基技术。对一具体工程是否采用复合地基技术应根据荷载大小、地基土层工程地质情况、建筑物对工后沉降量的要求等方面综合分析而定。 随着对复合地基理论认识的提高以及实践经验的积累,学术界提出了不同桩型、桩长的多元组合型复合地基——刚柔结合长短桩复合地基。 长桩:提高地基承载力,将荷载通过桩身向地基深处传递,减少压缩层变形,控制整体的沉降。桩体强度要求较高,多采用

CFG桩、钢筋混凝土桩、预制桩等。 短桩:主要对土体进行处理,减小浅层的应力集中,提高承载力,消除软弱土层引起的不均匀沉降,桩体采用散体桩和柔性桩如搅拌桩、碎石桩、石灰桩等。 褥垫层:促使桩—土协调变形,合理分配应力,保证桩土共同作用。复合地基的实质是桩、土共同作用。桩土应力分配的过程伴随着桩顶上刺或桩端下刺,因此需设置合适厚度和刚度的褥垫层保证桩、土能共同承担荷载。 长短桩的优点(以螺杆桩复合地基为例): (1)、螺杆桩复合地基在地基中形成平面及空间合适的刚度梯度,从而获得了高强度的复合地基。 (2)、螺杆桩复合地基中形成了土的三维应力状态,使土的强度高于其自身承载力的基本值,从而使土的参与工作系数大于1,这是任何其它类型复合地基无法实现的。 (3)、螺杆桩复合地基中优化的竖向刚度,使之形成了三层地基,从而减小了复合地基的沉降。特别是它有效地解决了建筑物或构筑物的不均匀沉降问题。 (4)、螺杆桩复合地基的设计可以有效降低地震力对结构的影响,同时,即使在建筑物过大水平位移情况下,仍可以有效的传递垂直荷载,并由于加固后消除了可液化土层,从而可以广泛地应用于地震区。

多桩型复合地基处理

多桩型复合地基处理 山区沟谷软基的技术探讨 许洪亮1,2,熊震宙1 (1、江西省交通设计院,江西南昌 330002) (2、华东交通大学土木土木建筑学院,江西南昌 330013) 摘要:由于山岭沟谷软基的特殊性,传统单一桩型的复合地基方案难以满足技术、经济、环保等方面要求,而多桩型的复合地基则消除了以上弊端,发挥了各桩型的优势,是桩型复合地基一种新的技术手段。该文基于水泥土夯实桩和CFG桩各自的工程特性,结合具体工程提出了多桩型复合地基的设计方法,并经过试验检测验证了多桩型复合地基设计方案的合理性和工作机理的正确性。 关键词:道路工程;沟谷软基;复合地基;单一桩型;多桩型;设计;检测 0 前言 对于超软地基的处理,传统手段经常采用CFG或水泥土复合桩等技术手段处理,山岭沟谷地区的特殊性,在选择软弱地基处理方案时,需从技术、经济、环境保护等几个方面综合考虑。而采取传统上单一桩型的水泥土夯实桩或CFG桩复合地基方案,如果桩的布置较疏,则在承载力和变形上难以满足要求;如果布置过密,由于挤土效应很容易使刚性较大的桩型断裂,同时也不经济。因此,采取两种甚至两种以上的桩型组成的多桩型复合地基来联合处理山区沟谷软基,消除一种桩型造成的各种弊端,同时发挥各者的优势,就成为一种比较理想和科学的选择,也为桩型复合地基增加了一个新的技术手段。 复合地基作为一种比较成熟的地基处理形式,在工程实践上已经积累了相当的经验。但是,复合地基技术的一个鲜明特色就是理论研究远远落后于工程实践,在工程实践和理论研究的基础上,一些工程师已经意识到了采取一种桩型的复合地基处理软土地基的弊端,开始尝试采取两种或两种以上的桩型联合加固的方法。在工业和民用建筑中,已经有了采用多桩型复合地基的先例,陈强等首先采用数值分析手段初步分析了某一民用工程中CFG桩和GC桩联合加固软弱地基的机理,认为多桩型复合地基具有单一桩型无可比拟的优越性[2]。闫明礼,王明山等提出了多桩型复合地基设计计算方法[3]。从工程实践中碰到的具体问题和从经济方面考虑,发展多桩型复合地基来处理公路沟谷软基是一种趋势,开展多桩型复合地基的研究具有前瞻性和经济性。 赣定高速公路沿线路段大部分位于低山丘陵地 貌区,有些高路堤及拱涵重要结构都处于软基之上,下卧软土层最厚处达到10m左右,属于典型的山区沟谷软基,因此必须对这些软土地基进行有效的处理,以保证公路路基的稳定性及变形要求。 在2003年1月~2004年5月,由赣定高速公路总指挥部牵头,联合天津大学及工程参建等单位,依托赣定高速公路,开展了“山区高速公路沟谷软基处理技术研究”的课题研究并获得成功,取得了良好的经济及社会效益。其中“多桩型复合地基处理山区沟谷软基技术研究”为其中的一个子课题,获得了较多的应用成果,值得同行业所借鉴和推广应用。 实践证明,该技术很好地解决了单一CFG桩间距不能过密,夯实桩水泥土桩深度受限等问题。多桩型复合地基有效地消除了单一桩型应力集中现象,可以更好地发挥其中任一桩型的荷载传递能力。 1 多桩型复合地基技术工程背景 如何选择不同桩型组成多桩型复合地基,是一个重要的研究内容。一般来说,桩身强度应刚柔并济,长度应长短结合。同时,桩的工程特性应存在较大的互补性,这样才能很好地发挥各自的长处,消除某种桩型单一布置带来的弊端。 1.1 水泥土夯实桩的工程特性 水泥土夯实桩是水泥或水泥系固化材料与土混 合形成的桩,由于土质的不同,其固化机理也有区别。用于砂性土时,水泥土的固化原理类同于建筑上常用的水泥砂浆,具有很高的强度,固化的时间也较短。用于粘性土时,由于水泥土惨量有限(7%~20%),且粘粒具有很大的比表面积并含有一定的活性物质,所

碎石桩复合地基算例(参考)

碎石桩加固地基设计计算示例 一、设计资料 1、工程概况 某高速公路有一段长度360 m 的软土地基。设计路堤高度4.00 m ,顶面宽度28 m ,路堤边坡坡比为1:1.5。为保证地基承载力以及路堤稳定性和沉降满足工程要求,试对该路段软土地基进行加固设计。 2、工程地质概况 1)地形地貌概况 该路段位于冲积平原区,地势低平开阔,地下水位高,埋深0.6~1.0m ,地表洼淀、苇塘密布,排灌渠道纵横交织。 2)工程地质条件 (1) 成因类型与土质特点:本区属河、海、湖相交替沉积区。地基可压缩性高,承载力低,抗剪能力差,排水固结慢,有机质含量高,属典型软土地基。旱季勘察水位约为2m ,秋季水位约为1m (部分区段仅为0.6 m )。 (2) 土层及试验指标:如表1。 表1 土层及其土工试验指标值 二、一般设计 (1)加固方法:采用振动沉管碎石桩....... 复合地基加固。 (2)加固范围:在路堤两边外缘扩大2~3排桩。 (3)桩位布置:采用等边三角形布桩形式。 (4)加固深度:根据土层的分布特征(如表1),第5层土相对于前两层土性质较好,因此,初步选定加固深度穿过土层④到土层⑤顶面,即取H =17.0 m 。 (5)桩径:根据地基土质情况和成桩设备等因素确定,桩径为0.5 m 。 (6)面积置换率m 和桩距l :碎石桩复合地基一般m =0.15~0.4,本例路堤高度不是很高,荷载相对较小,可先取m =0.20进行计算。 ∵ , 1.05 e d l =(等边三角形布桩) 已知桩的直径d p 和面积置换率m ,则可反算出桩的间距l =1.06m 。可初步设计l = 1.10m ,此时的m = 0.19,整个加固区所需桩数为13193根。

07筏板基础之桩筏课件

桩筏基础

桩顶的嵌固系数(铰接0-1刚接) 该参数在0~1之间变化反映嵌固状况,无桩时此项系数不出现在对话框上。其隐含值为0。对于铰接的理解比较容易,而对于桩顶和筏板现浇在一起也不能一概按刚接计算,要区分不同的情况,对于混凝土受弯构件(或节点),需要混凝土、纵向钢筋、箍筋一起受力才能完成弯矩的传递。由于一般工程施工时桩顶钢筋只将主筋伸入筏板,很难完成弯矩的传递,出现类似塑性铰的状态,只传递竖向力不传递弯矩。如果是钢桩或预应力管桩伸入筏板一倍桩径以上的深度,就可以认为是刚接。 桩筏,地梁桩2

桩刚度计算A 如果用户输入地质资料,程序根据 《桩基规范》表C.0.3-2第四款自动 计算出桩的刚度。如果用户已通过 试验等方式得到桩的刚度,可以通 过“刚度调整”功能直接输入桩的 刚度。桩的竖向刚度可以根据试桩报告中Q-s曲线的斜率求取。 桩竖向刚度=桩承载力特征值(KN)/对应的桩顶沉降(m)

群桩沉降放大系数 该系数程序自动计算,用户可以进行修改,1表示不考虑 群桩的相互作用对沉降的影响。计算群桩作用时,可考虑 桩数,桩长径比,桩距径比,桩土刚度比四项因素,从而较全面反映桩筏的沉降的影响因素。 无桩时,:隐含值是1 有桩时:板元法进行计算时,沉降试算时程序会给出群桩沉降放大系数 4

后浇带 新《地基规范》8.4.20-2条规定:当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙房一侧设计用于控制沉降差的后浇带,当高层建筑基础底面积满足承载力和变形要求时,后浇带宜设在与高层建筑相邻裙房一跨内(原规范为第二跨)。后浇带是解决基础差异沉降的主要方法。 当需要满足高层建筑地基承载力、降低高层建筑沉降量,减小高层建筑与裙房的沉降差而增大高层建筑基础面积时,后浇带可设在距主楼边柱的第二跨内,此时应满足以下条件: 1.基础地质较均匀 2.裙房结构刚度较好且基础以上的地下室和裙房结构层数不少于两层。 3.后浇带一侧与主楼连接的裙房基础底板厚度与高层建筑的基础底板厚度相同

多桩复合地基

7.9 多桩型复合地基 7.9.1多桩型复合地基适用于处理不同深度具有持力层的正常固结土,或浅层存在欠固结土、湿陷性黄土、可液化土等特殊土,以及地基承载力和变形要求较高的地基处理。 7.9.2 多桩型复合地基的设计应符合下列原则: 1桩型及施工工艺的确定应考虑土层情况、承载力与变形控制要求、经济性、环境要求等综合因素; 2对复合地基承载力贡献较大或用于控制复合土层变形的长桩,应选择相对较好的持力层并应穿过软弱下卧层;对处理欠固结土的增强体,其长度应穿越欠固结土层;对消除湿陷性土的增强体,其长度宜穿过湿陷性土层;对处理液化土的增强体,其长度宜穿过可液化土层; 3 如浅部存有较好持力层的正常固结土,可采用刚性长桩与刚性短桩、刚性长桩与柔性短桩的组合方案; 4 对浅部存在软土或欠固结土,宜先采用预压、压实、夯实、挤密方法或柔性桩复合地基等处理浅层地基,而后采用刚性或柔性长桩进行处理的方案; 5 对湿陷性黄土应根据现行国家标准《湿陷性黄土地区建筑规范》GB50025的规定,选择压实、夯实或土桩、灰土桩等处理湿陷性,再采用刚性长桩进行处理的方案; 6 对可液化地基,可采用碎石桩等方法处理液化土层,再采用有黏结强度桩进行处理的方案; 7 对膨胀土地基采用多桩型复合地基方案时,宜采用灰土桩等处理其膨胀性,长桩宜穿越膨胀土层到达大气影响急剧层以下稳定土层,且不应采用桩身透水性较强的桩。 7.9.3 多桩型复合地基单桩承载力应由静载荷试验确定,初步设计可按第7.1.6条规定估算;对施工扰动敏感的土层,应考虑后施工桩对已施工桩的单桩承载力的折减。 7.9.4多桩型复合地基的布桩宜采用正方形或三角形间隔布置,刚性桩可仅在基础范围内布置,其他增强体桩位布置应满足液化土地基、湿陷性黄土地基、膨胀土地基对不同性质土处理范围的要求。 7.9.5多桩型复合地基垫层设置,对刚性长短桩复合地基宜选择砂石垫层,垫层厚度宜取对复合地基承载力贡献较大增强体直径的1/2;对刚性桩与其他材料增强体桩组合的复合地基,宜取刚性桩直径的1/2;对未要求全部消除湿陷性的黄土或膨胀土地基,宜采用灰土垫层,其厚度宜为300mm 。 7.9.6 多桩型复合地基承载力特征值应采用多桩复合地基静载荷试验确定,初步设计时可采用以下方式估算: 1 由具有黏结强度的A 桩、B 桩组合形成的多桩型复合地基(含长短桩复合地基、等长桩复合地基)承载力特征值: sk p a p a spk f m m A R m A R m f )1(2122221111--++=βλλ (7.9.6-1)

碎石桩地基处理方案

四川峰泰石油设备有限公司 石化设备制造项目振冲复合地基加固 施 工 方 案 四川省广汉市地基基础建筑工程有限公司 二○一一年三月

工程名称:四川峰泰石油设备有限公司石化设备制造项目振冲复合地基加固 施工单位:四川省广汉市地基基础建筑工程有限公司 经理:刘少成 技术负责:巫雪 项目负责:刘成甫 方案编写:巫雪 编写日期:二0一一年三月

1前言 1.1工程概况 四川峰泰石油设备有限公司的委托,由四川正基岩土工程有限公司承担了该公司石化设备制造项目的详勘阶段的岩土工程勘察工作。拟建厂房拟采用轻钢钢架结构、独立柱基础,拟建办公楼拟采用框架结构、独立基础,根据设计要求结合地勘资料需进行振冲复合桩加固(简称振冲法)加固处理,设计要求处理后的复合地基承载力特征值≥220kpa。 1. 2工程地质条件 1.2.1地形地貌 场地位于德阳市庐山路西侧,地貌属成都平原绵远河流域一级阶地,地形平坦。拟建场地原为耕地、民用建筑,地形平坦。据了解拟建场地9号剖面西侧范围于2007~2008年间,因挖砂形成一范围较广的坑,深度3.5~7m,具体开挖范围不详,后于2010年6月用粉质粘土、卵砾石进行回填,局部区域夹少许建筑垃圾。 1.2.2 地基土的构成、分布及性质 场地地层结构较为简单,钻探揭露地层表层为第四系全新统人工堆积层(Q4ml)素填土,其下为第四系全新统冲积层(Q4al)粉土、细砂、中砂、砾砂、松散卵石及稍密卵石组成。现将地层自上而下进行分述。 2.2.1 第四系全新统人工堆积层(Q4ml)

素填土:以粉质粘土夹少许卵石为主,顶部卵石含量较少,底部富集,夹少量植物根茎;局部区域偶见少许建筑垃圾,以碎砖、砼块为主。 2.2.3 第四系全新统冲积层(Q4al) 粉土:呈透镜状分布,灰黄色,稍湿,中密,具轻微摇震反应,厚度 细砂:仅见于ZK20、ZK30号孔,浅灰黄色,松散,潮湿,含5~10%粘性土,厚3.9m、1.5m。 中砂:层状或透镜状分布,灰黄~灰色,松散,潮湿~饱和,含5~10%粘土,厚0.4~3.9m。 砾砂:层状或透镜状,灰~灰黄色,松散,潮湿~饱和,含砾石20~40%,充填中粗砂及少量粘土,砾石粒径1~4cm,亚圆形,岩性成分以花岗岩、砾岩为主,厚0.3~5.6m。 圆砾:似层状及透镜状分布,松散~稍密,潮湿~饱和,卵石含量20~40%,充填物以中粗砂及少量粘性土,砾石粒径2~5cm,亚圆形,岩性成分以花岗岩、砂岩、灰岩为主,厚0.3~3.9m。 卵石:层状及透镜状分布,稍密,潮湿~饱和,岩性成分以花岗岩、砾岩为主,亚圆形,卵石粒径2~8cm,卵石含量50~70%,充填物以粗砂、砾石为主,少量泥质,钻孔最大揭示厚度3.2m。 各土层厚度及分布特征详见工程地质剖面图。 2.4水文地质条件 场地地下水为赋存于第四系砂砾卵石层中的孔隙潜水,主要接受

一个多桩型复合地基设计计算实例

一个多桩型复合地基设计计算实例 A Example of the Calculation of Multi-type-pile Composite Subgrade 摘要:本文讨论了多桩型复合地基及其复合模量的基本概念。介绍了一个多桩型复合地基承载力和变形的计算实例。 关键词:多桩型复合地基,复合模量,承载力,变形 1 前言 复合地基中的纵向增强体习惯上称作桩,由两种或两种以上桩型组成的复合地基称为多桩型复合地基。比如,对可液化地基,为消除地基液化,可采用振动沉管碎石桩或振冲碎石桩方案。但当建筑物荷载较大而要求加固后的复合地基承载力较高,单一碎石桩复合地基方案不能满足设计要求的承载力时,可采用碎石桩和刚性桩(如CFG 桩)组合的多桩型复合地基方案。这种多桩型复合地基既能消除地基液化,又可以得到很高的复合地基承载力。如太原市华宇·绿洲项目12~22层住宅楼均采用该方案,经济效益较高。 又如,当地基土有两个好的桩端持力层,分别位于基底以下深度为Z 1(Ⅰ层)和Z 2(Ⅱ层)的土层,且Z 1<Z 2。在复合地基合理桩距范围内,若桩端落在Ⅰ层时,复合地基不能满足设计要求。若桩端落在Ⅱ层时,复合地基承载力又过高,偏于保守。此时,可考虑将部分桩的桩端落在Ⅰ层上,另一部分桩的桩端落在Ⅱ层上,形成长短桩复合地基,需说明的是,多桩型复合地基和长短桩复合地基意义一致,设计计算方法完全相同。 工程中单一桩型复合地基的设计计算方法相对比较成熟,工程经验积累非常多。但对于两种或两种以上桩型的多桩型复合地基、长短桩复合地基承载力和变形如何计算,虽有很多文献专门论述过,但工程经验不多,本文介绍一个工程实例,以积累多桩型复合地基设计算经验。 2 多桩型复合地基承载力计算 一般地,将复合地基中荷载分担比高的桩型定义为主控桩(桩的模量相对较高,桩相对较长)。其余桩型为辅桩,并按荷载分担比由大到小排序。工程中常用的是两种桩型组成的复合地基(或长短桩复合地基)。 下面先就两种桩型组成的复合地基承载力计算公式进行推导,并可推广到两种以上桩型的复合地基。基本思路为: (1)由天然地基和主控桩复合形成复合地基,视为一种新的等效天然地基,其承载力特征值为f spk1。 (2)将等效天然地基和辅桩复合形成复合地基,求得复合地基承载力即两种桩型复合地基承载力。 具体推导如下: 基础下天然地基土的承载力特征值为f ak 。主控桩的断面面积为A p1,平均面积置换率为m 1,单桩承载力特征值为R a1。则主控桩和天然地基形成的复合地基承载力特征值为 ()ak p a spk f m A R m f 1111 11 11-+=βα (1) 式中 α1—桩间土承载力提高系数,与土性和主控桩成桩工艺以及主控桩的桩径、桩距等有关。 对非挤土成桩工艺,α1=1; β1—桩间土承载力发挥系数,一般β1≤1。 基础下辅桩的断面面积为A p2,平均面积置换率为m 2,单桩承载力特征值为R a2。辅桩与承载力

第二章 桩与地基基础工程说明

说明 一、本定额适用于一般工业与民用建筑工程的桩基础,不适用水工建筑、公路桥梁工程。 二、本定额已综合了土壤的级别,执行中不予换算。 三、钻(冲)孔桩不分土壤类别。岩石风化程度划分为强风化岩、中风化岩、微风化岩三类。强风化岩不作入岩计算。中风化岩和微风化岩作入岩计算。岩石风化程度见下表。 岩石风化程度划分表 四、每个单位工程的打(灌)桩工程量小于下表规定数量时,其人工、机械量按相应定额项目乘以系数1.25计算。

五、本定额除静力压桩外,均未包括接桩。如需接桩,除按相应打桩项目计算外,按设计要求另计算接桩项目。其焊接桩接头钢材用量,设计与定额用量不同时,应按设计用量进行调整。 六、打试验桩按相应定额项目的人工、机械乘以系数2计算。 七、打桩、沉管,桩间净距小于4倍桩径(桩边长)的,均按相应定额项目中的人工、机械乘以系数1.13计算。 八、定额以打直桩为准,如打斜桩,斜度在1:6以内者,按相应定额项目人工、机械乘以系数1.25,如斜度大于1:6者,按相应定额项目人工、机械乘以系数1.43。 九、定额以平地(坡度小于15°)打桩为准,如在坡堤上(坡度大于15°)打桩时,按相应定额项目人工、机械乘以系数1.15。如在基坑内(基坑深度大于1.5m)打桩或在地坪上打坑槽内(坑槽深度大于1m)桩时,按相应定额项目人工、机械乘以系数1.11。 十、定额各种灌注桩的材料用量中,均已包括下表规定的充盈系数和材料损耗。充盈系数与定额规定不同时可以调整。

其中灌注砂石桩除上述充盈系数和损耗率外,还包括级配密实系数1.334。 十一、因设计修改在桩间补桩或强夯后的地基上打桩时,按相应定额项目人工、机械乘以系数1.15。 十二、打送桩时,可按相应打桩定额项目综合工日及机械台班乘下表规定系数计算。 十三、金属周转材料中包括桩帽、送桩器、桩帽盖、活瓣桩尖、钢管、料斗等属于周转性使用的材料。 十四、钢板桩尖按加工铁件计价。 十五、定额中各种桩的混凝土强度如与设计要求不同,可以进行换算。 十六、深层搅拌法加固地基的水泥用量,定额中按水泥掺入量为12%计算,如设计水泥掺入比例不同时,可按水泥掺入量每增减1%进行换算。 十七、强夯法加固地基是在天然地基上或填土地基上进行作业的,如在某一遍夯击能夯击后,设计要求需要用外来土(石)填坑时,其土(石)回填,另按有关规定执行。本定额不包括强夯前的试夯工作和费用,如设计要求试夯,可按设计要求另行计算。 如有侵权请联系告知删除,感谢你们的配合!

工程碎石桩复合地基实施方案

XXXXXXX市政工程 碎石桩复合地基检测实施方案

XXXXXX工程试验检测中心2014年7月05日

XXXXXX市政工程 碎石桩复合地基检测实施方案 一、检测依据 1、深圳市坪山新区坪联路市政工程相关勘察设计资料; 2、《建筑地基基础检测规范》15-60-2008; 3、城市道路工程施工与质量验收规范》CJJ 1-2008: 4、《XXXXXX市政工程施工图设计》,设计号:NLT1011-SZ1-017; 5、《XXXX市公路工程监督抽检制度》,XXX市交通工程质量监督站; 二、相关设计技术要求 注:表中工程量根据目前现有施工提供的图纸进行统计,具体工程量以最后实际施工数量为准。 2、设计桩长及其他参数详见设计图纸; 三、检测内容及方法 1、检测内容

该区域采用碎石桩挤密处理地基,按设计要求应在施工期间及施工结束后,检查碎石桩的施工记录。施工后应间隔一定时间方可进行质量检验。对饱和粘性土地基应待孔隙水压力消散后进行,间隔时间不宜少于28天,对砂土和杂填土地基,不宜少于7天。

2、试验原理 在处理后的地基上进行平板载荷试验,根据试验所得的p~s关系曲线确定承压板下应力主要受影响的范围内的土层地基承载力和变形参数。 3、检测板尺寸及最大试验荷载 检测板尺寸参照复合地基载荷试验要求确定,根据《建筑地基基础检测规范》DBJ15-60-2008中8.2.1条规定:复合地基载荷试验的承压板面积为(1根或1根以上桩)所承担的处理面积,承压板形状宜根据受检桩的分布确定。 (1)机动车道范围内碎石桩桩间距为1.2m,桩径500mm,正三角形布置,复合地基承载力特征值不小于120kPa,碎石体单桩承载力特征值不小于100kN,单桩承担地基处理面积为1.247㎡,三桩承担地基处理面积为3.741㎡,宜做三桩复合地基平板载荷试验,计算压板边长b=2.0m,压板边长取2.0m。 根据规范8.3.1条规定,最大试验荷载取设计承载力特征值的2倍,即120kPa ×2.0×2.0×2=960kN。 (2)非机动车道范围内碎石桩桩间距为1.4m,桩径500mm,正三角形布置,复合地基承载力不小于100kPa,碎石体单桩承载力特征值不小于100kN,单桩承担地基处理面积为1.697㎡,三桩承担地基处理面积为5.091㎡,宜做三桩复合地基平板载荷试验,计算压板边长b=2.3m,压板边长取2.3m。 根据规范8.3.1条规定,最大试验荷载取设计承载力特征值的2倍,即100kPa ×2.3×2.3×2=1058kN。 4、仪器设备及安装 (1)平板载荷试验利用砼块、钢梁组成压重平台反力装置,试验时由置于压板和反力系统之间的油压千斤顶进行加荷。压重平台的设置安装应满足《建筑地基基础检测规范》DBJ15-60-2008中8.2.3条规定。 (2)荷载测量由并联于千斤顶油路的压力传感器测定,根据千斤顶校准结果换算荷载。 (3)承压板沉降测量由压板四角竖向安装的四个百分表观测获得,各位移

水泥粉煤灰碎石桩复合地基施工技术标准

水泥粉煤灰碎石桩复合地基施工技术标准 4.13.1 特点和适用范围 1 水泥粉煤灰碎石桩简称CFG桩,是近年发展起来的处理软弱地基的一种新方法。它是在碎石桩的基础上掺人适量石屑、粉煤灰和少量水泥,加水拌和后制成具有一定强度的桩体。其骨料仍为碎石,用掺人石屑来改善颗粒级配;掺入粉煤灰来改善混合料的和易性,并利用其活性减少水泥用量;掺人少量水泥使其具有一定的粘结强度。CFG桩实际上是一种低强度的混凝土桩,可充分利用桩间土的承载力,共同作用,并可传递荷载到深层地基中去,具有较好的技术和经济性能。其特点是:可使承载力在较大范围内调整;有较高的承载力,承载力提高的幅度在250%~300%,对软土地基承载力提高更大;沉降量小,变形稳定快,如将桩落在较硬的土层上,可较严格地控制地基沉降量(在10 mm以内);工艺性好,由于大量使用粉煤灰,桩体材料具有良好的流动性与和易性,灌筑方便,易于控制施工质量;可节约大量水泥、钢材,利用工业废料,消耗大量粉煤灰,降低工程费用,可节省投资。 2 CFG桩适用于多层和高层建筑地基,如砂土、粉土、松散填土、粉质豁土、私土、淤泥质戮土等的处理。 4.13.2 施工准备 4.13.2.1 技术准备 1 根据设计要求,经试验确定混合料配合比。 一般可参考以下数据进行试配:水泥、粉煤灰、碎石混合料的配合比相当于抗压强度为C1.2~C7的低强度等级的混凝土,密度大于2000kg/m3。最佳石屑掺

量(石屑量与碎石 和石屑总重之比)约为25%左右;水灰比(水与水泥用量之比)C W 为1.01~1.47;粉 煤灰与水泥重量之比 C F 为1.02~1.65。 2 试成孔应不小于2个,以复核地质资料以及设备、工艺是否适宜,核定选用的技术参数。 3 编制施工方案和技术交底。 4.13.2.2 材料准备 1 碎石:粒径20~50mm ,松散密度1390kg/m 3,杂质含量小于5%。 2 石屑:粒径2.5~l0mm ,松散密度1470kg/m 3,杂质含量小于5%。 3 粉煤灰:用符合111级及以上标准的粉煤灰。 4 水泥:用强度等级32.5级的普通硅酸盐水泥,新鲜无结块。 5 褥垫层材料宜用中砂、粗砂、碎石或级配砂石等,最大粒径不宜大于30mma 不宜选用卵石,卵石咬合力差,施工扰动容易使褥垫层厚度不均匀;亦可采用灰土垫层作褥垫层。 4.13.2.3 主要机具 1 CFG 桩成孔、灌筑可采用振动沉管打桩机架,配振动沉拔桩锤,长螺旋钻机或泥浆护壁钻机。 (1) 振动沉拔桩锤规格与技术性能见表4.13.2.3-1。 表4.13.2.3-1 振动沉拔桩锤规格与技术性能

工程量计算规则桩与地基基础

工程量计算规则 1、计算打桩(灌注桩)工程量前应确定下列事项。 (1)确定土质级别:根据工程地质资料中的土层构造、土壤物理力学性能及每米沉桩时间鉴别适用定额土质级别。 (2)确定施工方法、工艺流程,采用机型,桩、土壤泥浆运距。 2、打预制钢筋混凝土桩(含管桩)的工程量,按设计桩长(包括桩尖,即不扣除桩尖虚体积)乘以桩截面面积以立方米计算。管桩的空心体积应扣除。 3、静力压桩机压桩。 (1)静压方桩工程量按设计桩长(包括桩尖,即不扣除桩尖虚体积)乘以桩截面面积以立方米计算。 (2)静压管桩工程量按设计长度以米计算;管桩的空心部分灌注混凝土,工程量按设计灌注长度乘以桩芯截面面积以立方米计算;预制钢筋混凝土管桩如需设置钢桩尖时,钢桩尖制作、安装按实际重量套用一般铁件定额计算。 4、螺旋钻机钻孔取土按钻孔入土深度以米计算。 5、接桩:电焊接桩按设计接头,以个计算;硫磺胶泥按桩断面以平方米计算。 6、送桩:按桩截面面积乘以送桩长度(即打桩架底至桩顶高度或自桩顶面至自然地平面另加0、5m)以立方米计算。 7、打孔灌注桩。 (1)混凝土桩、砂桩、碎石桩的体积,按[设计桩长(包括桩尖,即不扣除桩尖虚体积)+设计超灌长度]×设计桩截面面积计算。 (2)扩大(复打)桩的体积按单桩体积乘以次数计算。 (3)打孔时,先埋入预制混凝土桩尖,再灌注混凝土者,桩尖的制作与运输按本定额 A、4混凝土及钢筋混凝土工程相应子目以立方米计算,灌注桩体积按[设计长度(自桩尖顶面至桩顶面高度)+设计超灌长度]×设计桩截面积计算。 8、钻(冲)孔灌注桩与旋挖桩分成孔、灌芯、入岩工程量计算。 (1)钻(冲)孔灌注桩、旋挖桩成孔工程量按成孔长度乘以设计桩截面积以立方米计算。成孔长度为打桩前的自然地坪标高至设计桩底的长度。

浅议长短桩复合地基

在土木工程建设中,目前,对于大型建筑结构,在沉降和承载力控制方面,桩基础无疑是目前工程应用中首选的地基形式,然而在多层和小高层建筑中桩基础成本造价相对过高。为了在满足工程需要的同时又能够减小地基处理成本,复合地基应运而生,其中尤以长短桩复合地基最为突出,其充分发挥了天然土体承载能力,同时减少了沉降,即满足了上层建筑结构要求,又减小了打桩对于周围环境的影响,同时大大地降低了地基成本,是近年来在多层和小高层工程中得到广泛采用的一种地基形式。 一、复合地基的定义和桩基的区分 经过处理形成的地基多数可归属为两类:一类是天然地基土体的承载性质得到普遍的改良形成均质地基,如通过预压法、强夯法以及换填法等形成的土体改良地基,这类地基的承载力与沉降计算类似于浅基础。另一类是在地基处理过程中,部分土体得到增强,或置换,或在天然地基中设置加筋材料,加固区是基体(天然地基土体)和增强体两部分组成的人工地基,在荷载作用下,基体和增强体共同承担荷载的作用,其通常被称为复合地基。 复合地基和桩基础尚存在一定的差异,复合地基理论的产生实际上是基于桩基理论。从地基工程成本上考虑,在满足上层建筑结构对变形控制要求的条件下,充分发挥桩间土的承载力,使桩分担的上部荷载部分转向桩间土,由桩间土承担进而减小桩数,降低地基成本。从环境的方面考虑,这种新型地基可以减小由于大面积和大量的打桩施工所造成的原有天然地基内超孔隙水压力增加所引发的土体有效重度降低和地基内出现渗流现象,包括:流沙、管涌、上浮、局部不均匀沉降等对地基承载力和上部结构整体稳定造成的不利影响。桩基理论中主要考虑桩体和基础底部相互作用对整体地基性状的影响,充分发挥桩的承载力而忽略桩间土直接和基础之间的相互作用,将桩间土作为地基承载力的安全储备。从经济和适用方面上,这种设计理念在减小上层建筑差异沉降和提高地基承载力方面效果显著,在大型高层建筑和超高层建筑中得到充分推广,但对于多层和小高层建筑,相对于整个工程的成本来说,桩基础成本较高,性价比较低。 二、长短桩复合地基的作用机理和研究现状 随着对复合地基理论认识的提高以及实践经验的积累,提出了由两种不同类型(或同种类型而长度差别较大)的桩与土组成的三元组合型复合地基。这种新型复合地基形式从目前研究与应用情况来看,基本形式大多为长短桩复合地基。目前,在承载力和沉降变形设计理论方面存在两种设计理念:一种是长桩协力形式的长短桩复合地基,当基底以下存在较厚的软弱土层时,采用短桩对该区域土层进行加固,减小地基上层的沉降变形,同时也可提高基底土层的承载力。而长桩的主要作用是弥补经短桩加固后的地基承载力的不足,同时长桩的设置也减小了复合地基的沉降。另一种是长桩控沉形式的长短桩复合地基。当基底以下存在上下两层较为理想的桩端持力层时,如采用短桩方案将桩端放在上层持力层,即使复合地基承载力能够满足设计要求,由于加固较浅,沉降变形将有可能偏大。采用长桩和短桩相结合的方案,将长桩、短桩桩端分别落在上、下两层桩端持力层上,充分发挥上、下两层桩端持力层的特性,长桩与短桩间隔设置,利用短桩提高复合地基的承载力,通过长桩不仅能够提高地基承载力,而且可将荷载通过桩身向地基深处传递,减少压缩层变形。

超高层建筑的桩筏基础设计理论 赵锡宏

your name your caption here 超高层建筑的桩筏基础设计理论——工程实践是检验设计理论的标准 同济大学赵锡宏 同济大学建筑设计研究院巢斯

your name your caption here 提要 ?根据上海60层的长峰商场,66层的 恒隆广场,88层的金茂大厦和101层的上 海环球金融中心等的实测桩箱和桩筏基础 变形以及正在建造121层的上海中心大厦 的计算变形分析的宝贵数据,论证超高层 建筑的桩筏基础不是刚性,不宜继续采用 刚性偏心受压的公式计算桩顶的反力; 阻 尼器或深埋桩筏基础对风载影响桩顶反力 进行宏观探讨. 此外,对桩筏基础设计提出 一些建议,试图构成桩筏基础设计理论与 方法的蓝图。 提要

your name your caption here 前言在上海,近十几年来,高层建筑飞跃发展,见图1。 图1 上海高层建筑的今昔比 前言

前言 your name your caption here ?在中国土地上,拥有508m高的台北-101层 (Taipei-101)高楼和492m高101层的上海环球金融中心(Shanghai World Financial Center, SWFC)的高楼,这是中国人的骄傲。 ?现在,565.6m高121层的上海中心大厦 (Shanghai Tower)正在建造中,这样,与旁边88层的金茂大厦(Jinmao Building)和101层的上海环球金融中心(SWFC)将构成三足鼎力逞天下的 英姿,又是中国人的骄傲,见图2。

your name your caption here 左为上海环 球金融中心 中为金茂大 厦 右为上海中 心大厦 图 2 上海的三幢超高层大楼 前言

桩与地基基础工程

7桩与地基基础工程 一、选择题 1、现场灌注砼桩单桩体积,按设计规定桩长(包括桩尖,不扣虚体积)增加( )米乘以设计外径截面积计算。 A 0.20 B. 0.25 C. 0.3 D. 0.5 2、地面垫层,按主墙间净空面积计算乘设计厚度以体积计算,应扣除( )等所占的体积。 A.设备基础 B.室内地道 C.凸出地面的构筑物 D.间壁墙 E.附墙烟囱 3、计算砖基础工程量时,不扣除( )等所占的体积。 A.圈梁 B.管道 C.嵌入基础内的钢筋、铁件 D.基础砂浆防潮层 E.构造柱 4.当以《全国统一建筑工程量计算规则》为依据时,人工挖孔桩土方工程量计算公式为( ) A.挖孔桩土方体积=孔桩断面面积×桩孔中心线深度 B.挖孔桩土方体积=孔桩断面面积×桩孔中心线深度×2 C.挖孔桩土方体积=孔桩断面面积×桩孔中心线深度×0.8 D.挖孔桩土方体积=孔桩断面面积×桩孔中心线深度+5m3 5、关于地基与桩基础工程的工程量计算规则,正确的说法是()。 A.预制钢筋混凝土桩按设计图示桩长度(包括桩尖)以m为单位计算 B.钢板桩按设计图示尺寸以面积计算 C.混凝土灌注桩扩大头体积折算成长度并入桩长计算 D.地下连续墙按设计图示墙中心线长度乘槽深的面积计算 二、简答题 1、何谓送桩? 2、地面垫层工程量应怎样计算? 3、施工排水与降水(施工技术措施项目)工程量应怎样计算? 4、地基强夯工程量应怎样计算?

5、预制钢筋混凝土桩工程量应怎样计算? 6、打孔、钻孔灌注混凝土桩工程量应怎样计算? 7、砂浆土钉防护、锚杆机钻孔防护工程量怎样计算? 8、打试验桩项目是否包括测桩?仍、机械是否调整? 三论述题: 桩基工程量清单编制要注意一些什么问题? 四、计算题 1、如图2-7所示,实线范围为地基强夯范围。①设计要求:不间隔夯击,设计击数8击,夯击能量为500t·m,一遍夯击。求其工程量。 ②设计要求:间隔夯击,间隔夯击点不大于8m,设计击数为10击,

关于高层住宅楼桩筏复合基础设计的研究段建萍

第1期(总第131期)机械管理开发 2013年2月No.1(SUM No.131)MECHANICAL MANAGEMENT AND DEVELOPMENT Feb.2013 0引言 随着经济的快速发展,为了提高土地资源的有效利用率,各地都在建20~35层的住宅楼,尤其是省会城市和沿海城市。在高层住宅楼的设计中,为控制沉降和满足承载力之要求,一般常采用桩筏复合基础设计,对确保高层住宅楼的整体质量起着至关重要的作用。 1桩筏复合基础设计的思路 在高层住宅楼的设计中,桩筏复合基础是目前国内应用最广的。在进行桩筏基础设计时,应按照国家标准《建筑地基基础设计规范》,根据所建高层住宅楼的地基情况来优化桩筏复合基础设计方案,即可达到控制沉降和满足承载力之要求,又可减少不必要的浪费。 就地基而言,一般可分为土质好的地基和土质松软的地基。在设计施工中,如果高层住宅楼的地基属于松软土质(如流塑性和软塑性土质),浅地基土质的天然承载力较低,由于其松散及流塑、软塑性,地基上任一点所受的压力强度与该点的地基沉降量成正比,此类土基床系数较小,一般只考虑由基桩将所有上部负载传递到桩端和桩侧地基中,而承台筏板只起到连接桩顶和传递荷载的作用,对桩端微小沉降所产生的承载力可以忽略不计。在遇到这种情况时,建议采用由基桩将所有上部荷载传递到桩端和桩侧地基中的方法进行优化设计,既准确又安全可靠;如果高层住宅楼的地基土质良好[1],具有良好的天然承载力和塑性时,若只考虑由基桩来传递所有上部荷载的话,设计方案将与实际受力情况不相吻合,虽然安全系数增大,但忽略了对浅地基和桩筏的共同作用,将会造成桩数或者桩长的增加,即增加了不必要建筑成本,又拖延了施工进度的。在场地浅地基土质良好时,因基床系数较大,建议采用桩筏和浅地共同作用的设计方法,即可减少桩长和桩数,节省压桩时间还可以节约建筑成本和加快施工进度。从上述两种地基来看,在考虑桩筏浅地基共同作用的基础上,通过优化桩筏复合基础可实现双赢的效果[1]。 2桩筏复合基础设计 在上部土层具有一定的承载能力的条件下,桩筏复合基础将如何承担上部结构的荷载?实践证明:桩筏复合基础的支撑力要比桩和筏基各自的支撑力的总和还要大。在进行设计时,根据上部荷载的不同将其分为二种设计。 2.1松软土质的设计 桩筏复合基础结构如图1所示。由于沉降由筏板控制,可以考虑排水固结条件及利用或加厚软土上部持力层的做法来提高地基的强度,减少沉降量。 在基础施工时,先打桩再挖去表层土,用轻级压路机碾压持力层,浇捣弹性地基梁的板下部分,筏板梁一次浇筑,梁底与桩之间应留有3~5cm 的沉降缝。 3050 ~300600 ~200300 ~图1桩筏复合基础结构 当上部土层略低于实际单位压力、桩端以下土又是软弱土时,筏基可按承受上部结构荷载的70%以上考虑,桩按摩擦桩所承受总荷载的30%以内考虑,并决定桩长和桩数。 片筏基础可通过刚性板计算方法求出∑Q 筏(片筏基础所能承受的最大荷载)。 Q max min =∑Q 筏/A±∑Q 筏e x l y · x±∑Q 筏e x l y ·y =∑Q 筏/A ±∑Q 筏e x l y ·x ±∑Q 筏e x l y ·y 式中:A 为片筏基础的平面面积;ey ,ex 为合力∑的作 用点在X 方向和Y 方向距基础形心的距离;Ix 、Iy 为基础板对x 、y 坐标轴的惯性矩;Wx 、Wy 为基础板对x 、y 坐标轴的抵抗矩。 收稿日期:2012-10-25 作者简介:段建萍(1965-),女,山西文水人,工程师,大专,研究方向为工民建设计。 关于高层住宅楼桩筏复合基础设计的研究 段建萍,王嘉平,武静 (晋西集团公司,山西 太原 030027) 摘要:在高层住宅设计中,桩基对建筑物的整体质量起着至关重要的作用。为此对高层住宅采用桩筏复合基础的思路、设计、应用等方面进行了阐述,将对工民建同行起到一定的借鉴作用。关键词:桩基;桩筏复合基础;松软土质中图分类号:TU972+.11 文献标识码:A 文章编号:1003-773X (2013)01-0117-02 · ·117

长短桩复合地基的应用与发展趋势

文章编号:1009-6825(2012)31-0079-02 长短桩复合地基的应用研究与发展趋势 收稿日期:2012-09-10作者简介:徐玉芬(1977-),女,讲师 徐玉芬 (三江大学土木工程学院,江苏南京210012) 摘要:简要介绍了长短桩复合地基的技术特点,着重阐述了此种新型复合地基的应用研究现状,并指出了其设计方法中存在的 问题,最后对今后的研究方向提出了几点看法,以促进该复合地基的推广应用。关键词:长短桩,复合地基,研究现状中图分类号:TU473 文献标识码:A 0引言 近年来,随着我国经济的飞速发展、地基处理技术的不断深 化,长短桩复合地基在工程中得到了越来越广泛的关注。长短桩复合地基主要是利用刚性长桩与刚性、半刚性或柔性短桩相结合对地基进行综合处理。长短桩复合地基不仅能充分发挥桩体的承载力,而且能积极调动桩间土体参与工作,一般来讲,短桩可减少浅层的应力集中,提高其承载力;而长桩在增加地基承载力的同时更重要的是通过桩身将荷载传递到深层地基以达到减少压缩层变形、控制沉降量的目的。通常情况下,为协调地基变形,在桩顶还会铺设褥垫层。在一些地区,以刚性长桩柔性短桩组合的长短桩复合地基已开始应用并取得了显著的成效。 作为一种新型的地基处理形式,长短桩复合地基具有承载力高、工期短、造价低的特点,它将在岩土工程界得到推广和应用,但由于该理论还有很多不完善的地方,因此还需做进一步的探索和研究。 1长短桩复合地基的应用研究现状 虽然长短桩复合地基已成功地应用于高层甚至超高层建筑, 但其理论研究远落后于实践,至今为止,仍未形成比较完善的设计理论和计算方法。下面对近八年来已见诸报道的长短桩复合地基的研究现状大致综述如下。 梁发云通过建立三维弹塑性有限元分析模型,对长短桩复合地基中垫层—桩—土系统的共同作用机理进行了参数分析,并根据分析结果提出了行之有效的沉降控制方法[1]。 牛顺生通过建立长短桩复合地基优化设计数学模型,提出了基于模拟退火算法的长短桩复合地基优化设计方法,并将其运用于实例计算以验证其可行性[2]。 欧丽利用ANSYS 有限元软件对长短桩复合地基进行三维弹塑性计算分析,探讨了桩身应力与土体附加应力分布、荷载传递的性状及变形特性,为长短桩复合地基的理论研究提供了有益的参考[3]。 郭院成、李明宇在现有理论的基础上进行了现场试验,针对刚柔两种基础形式下的长短桩复合地基在不同荷载作用下的应力、 变形、桩土荷载分担比及桩土应力等规律进行了大量的对比分析,为长短桩复合地基的优化设计提供了宝贵资料[4]。 谢新宇利用有限元方法对刚柔性长短桩复合地基的工程性状进行了研究,分析了垫层模量、厚度、短桩模量以及长桩长度的变化对长短桩复合地基的总沉降、 长短桩应力比和长短桩桩身应力的影响,为长短桩复合地基的设计和应用提供了理论基础[5]。 郭院成通过对柔性基础下长短桩复合地基中褥垫层内长、短桩桩顶荷载传递影响区进行受力分析,推导出桩土应力比的解析公式,并结合现场试验测试结果验证了该公式的实用性,为柔性基础下长短桩复合地基桩土应力比的工程应用提供了理论指导[6]。 林本海根据多层地基土分布的特点,结合刚性长桩—櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 柔性短[1]JGJ 120-99,建筑基坑支护技术规范[S ]. [2]谢小松.大型深基坑逆作法施工关键技术研究及结构分析 [D ].上海:同济大学,2007. [3]钟建驰,冯兆祥,刘玉涛,等.嵌岩地下连续墙模型试验研究 和参数测定[J ].河海大学学报(自然科学版),2004(9):52- 55. [4]朱国华,刘玉涛,黄昌锦.某逆作法地下室柱墙差异沉降计 算分析[J ].施工技术,2009(9):92-94. [5]封金财.大型深基坑逆作法施工过程有限元模拟[J ].国防 交通工程与技术,2005(3):55-58. Retaining pile and columns difference settlement analysis of a top down method foundation pit TANG Xiao-qiang 1, 2 ZHANG Zhi-hao 2ZHANG Geng-cheng 2 (1.Environmental Science and Engineering College ,Ocean University of China ,Qingdao 266100,China ;2.China Petroleum East China Survey &Design Institute Geotechnical Engineering Company ,Qingdao 266071,China ) Abstract :In this paper ,a project of air defense top down foundation pit was numerical computed by plaxis.And according to the above calcula-tion ,an analysis of difference settlement of supporting pile and post with a hard layer (strong weathering rock )under the bottom was presented.Pit-bottom uplift estimated by Tongji method ,calculation and the results of numerical simulation coincide ,indicating that the rock area basal re-bound main control factor is simple unloading rebound.If reversed construction of retaining structure and columns are embedded in the rock piles ,the differential settlement between the two components is very small ,meeting the requirements of the structural design.Key words :foundation pit ,top down method ,columns ,differential settlement ,basement uplift · 97·第38卷第31期2012年11月 山西建筑 SHANXI ARCHITECTURE Vol.38No.31Nov.2012

相关文档
最新文档