数学建模案例分析--线性代数建模案例(20例)

数学建模案例分析--线性代数建模案例(20例)
数学建模案例分析--线性代数建模案例(20例)

线性代数建模案例汇编

张小向

东南大学数学系

2012年6 月

案例一. 交通网络流量分析问题错误!未定义书签。

案例二. 配方问题错误!未定义书签。案例三. 投入产出问题错误!未定义书签。案例四. 平板的稳态温度分布问题错误!未定义书签。案例五.CT图像的代数重建问题错误!未定义书签。案例六. 平衡结构的梁受力计算错误!未定义书签。案例七. 化学方程式配平问题错误!未定义书签。

案例八. 互付工资问题错误!未定义书签。案例九. 平衡价格问题错误! 未定义书签。案例十. 电路设计问题错误!未定义书签。案例十一. 平面图形的几何变换错误!未定义书签。案例十二. 太空探测器轨道数据问题错误!未定义书签。案例十三. 应用矩阵编制Hill 密码错误!未定义书签。案例十四. 显示器色彩制式转换问题错误!未定义书签。案例十五. 人员流动问题错误!未定义书签。

案例十六. 金融公司支付基金的流动错误!未定义书签。案例十七. 选举问题错误!未定义书签。

案例十八. 简单的种群增长问题错误!未定义书签。

案例十九. 一阶常系数线性齐次微分方程组的求解错误!未定义书签

案例二十. 最值问题错误!未定义书签。

附录数学实验报告模板错误!未定义书签。

这里收集了二十个容易理解的案例.和各类数学建模竞赛的题目相比,这些案例确实显得过于简单.但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解,培养数学建模的意识,那么我们初步的目的也就达到了.

案例一.交通网络流量分析问题

城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

图1某地交通实况

图2某城市单行线示意图

【模型准备】某城市单行线如下图所示,其中的数字表示该路段每小时按箭头方向行驶的车流量(单位:辆).

图3某城市单行线车流量

(1) 建立确定每条道路流量的线性方程组.

(2) 为了唯一确定未知流量,还需要增添哪几条道路的流量统计 ⑶ 当X 4 = 350时,确定X 1, X 2, X 3的值. (4)若X 4 = 200,则单行线应该如何改动才合理

【模型假设】(1)每条道路都是单行线?⑵ 每个交叉路口进入和离开的车辆数 目相等?

【模型建立】 根据图3和上述假设,在①,②,③,④四个路口进出车辆数目分 别满足

500 = X 1 + x 2 ① 400 + X 1 = X 4 + 300 ② x 2 + X 3 = 100 + 200 ③

X 4 = X 3 + 300

④ 【模型求解】根据上述等式可得如下线性方程组

为 x 2 500

X

1

x 4 100 X X 3

300

X 3

x 4 300

其增广矩阵

1 1 0 0 500

1 0 0

1 100 1 (A, b) = 0

0 0 1 100

初等行变换

0 1 0 1 600 1 1 0 300

0 0 1 1 300 0 0 1 1 300

0 0 0 0 0

由此可得

x-i x 4 100 x 2 x 4 600 x 3 x 4

300

x 1 x 4 100 x 2 x 4 600 . x 3 X 4

300

为了唯一确定未知流量,只要增添X 4统计的值即可.

当 X 4 = 350 时,确定 x i = 250, X 2 = 250, X 3 = 50.

若X 4 = 200,则x i = 100, X 2 = 400, X 3 = 100 < 0.这表明单行线“③ ④”应该改

为“③④”才合理.

【模型分析】(1)由(A, b)的行最简形可见,上述方程组中的最后一个方程是多余 的.这意味着最后一个方程中的数据“ 300”可以不用统计.

就是说X 1, X 2, X 3, X 4这四个未知量中,任意一个未知量的值统计出来之后都可以确

定出其他三个未知量的值? 参考文献

陈怀琛,高淑萍,杨威,工程线性代数,北京:电子工业出版社,2007.页码: 16-17.

Matlab 实验题

某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的 车流量?图中的数字表示该条路段的车流数?如果每个交叉路口进入和离开的车 数相等,整个图中进入和离开的车数相等?

图4某城市单行线车流量

(1) 建立确定每条道路流量的线性方程组. (2) 分析哪些流量数据是多余的.

(3) 为了唯一确定未知流量,需要增添哪几条道路的流量统计

220

300

100

150 400 290

X 1 X 4 100

X 2

X 1 500

⑵由X 2

X 4 600可得 X 3 X 1 200 X 3 X 4 300

X 4 X 1 100

X 1 X 2 500 X 1 X 3 200 X 3 X 2 300 , X 2

X 3 300 ,这 X 4 X 2 600

X 4

X 3 300

案例二.配方问题

在化工、医药、日常膳食等方面都经常涉及到配方问题?在不考虑各种成分之间可能发生某

些化学反应时,配方问题可以用向量和线性方程组来建模.

图5日常膳食搭配图6几种常见的作料

【模型准备】一种佐料由四种原料A、B、C、D混合而成.这种佐料现有两种规格,这两种规格的佐料中,四种原料的比例分别为2:3:1:1和1:2:12现在需要四种原料的比例为4:7:3:5的第三种规格的佐料?问:第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成

【模型假设】(1)假设四种原料混合在一起时不发生化学变化? (2)假设四种原料的比例是按重量计算的? (3)假设前两种规格的佐料分装成袋,比如说第一种规格的佐料每袋净重7克(其中A、B、C、D四种原料分别为2克,3克,1克,1克),第二种规格的佐料每袋净重6克(其中A、B、C D四种原料分别为1克,2克,1克,2克).

【模型建立】根据已知数据和上述假设,可以进一步假设将x袋第一种规格的佐料与y袋第二种规格的佐料混合在一起,得到的混合物中A、B、C、D四种原料分别为4克,7克,3克,5 克,则有以下线性方程组

2x y 4,

3x 2y 7,

x y 3,

x 2y 5.

【模型求解】上述线性方程组的增广矩阵

214101

3

/ A I \

27初等行变换012

(A, b) = 113000

125000

可见x [又因为第一种规格的佐料每袋净重7克,第二种规格的佐料每袋净重6克,所以y 2.

第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成.

【模型分析】(1)若令1 = (2, 3, 1, 1T, 2 = (1,2, 1, 1T, = (4, 7, 5, 3),则原问题等价于线性

方程组Ax = b是否有解”,也等价于“能否由1, 2线性表示”.

⑵若四种原料的比例是按体积计算的,贝U还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比,然后再按上述方法处理.

(3) 上面的模型假设中的第三个假设只是起到简化运算的作用.如果直接设x克第一种规格的

佐料与y克第二种规格的佐料混合得第三种规格的佐料,则有下表

数学建模经典案例:最优截断切割问题复习进程

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

数学建模参赛真实经验(强烈推荐)

数学建模参赛真实经验(强烈推荐) 本文档节选自: Matlab在数学建模中的应用,卓金武等编著,北航出版社,2011年4月出版 以下内容根据作者的讲座整理出来,多年数学建模实践经历证明这些经验对数学建模参赛队员非常有帮助,希望大家结合自己的实践慢慢体会总结,并祝愿大家在数学建模和Matlab世界能够找到自己的快乐和价值所在。 一、如何准备数学建模竞赛 一般,可以把参加数学建模竞赛的过程分成三个阶段:第一阶段,是个人的入门和积累阶段,这个阶段关键看个人的主观能动性;第二阶段,就是通常各学校都进行的集训阶段,通过模拟实战来提高参赛队员的水平;第三阶段是实际比赛阶段。这里讲的如何准备数学建模竞赛是针对第一阶段来讲的。 回顾作者自己的参赛过程,认为这个阶段是真正的学习阶段,就像是修炼内功一样,如果在这个阶段打下深厚的基础,对后面的两个阶段非常有利,也是个人是否能在建模竞赛中占优势的关键阶段。下面就分几个方面谈一下如何准备数学建模竞赛。 首先是要有一定的数学基础,尤其是良好的数学思维能力。并不是数学分数高就说明有很高的数学思维能力,但扎实的数学知识是数学思维的根基。对大学生来说,有高等数学、概率和线性代数就够了,当然其它数学知识知道的越多越好了,如图论、排队论、泛函等。我大一下学期开始接触数学建模,大学的数学课程只学习过高等数学。说这一点,主要想说明只要数学基础还可以,平时的数学考试都能在80分以上就可以参加数学建模竞赛了,数学方面的知识可以在以后的学习中逐渐去提高,不必刻意去补充单纯的数学理论。 真正准备数学建模竞赛应该从看数学建模书籍开始,要知道什么是数学建模,有哪些常见的数学模型和建模方法,知道一些常见的数学建模案例,这些方面都要通过看建模方面的书籍而获得。现在数学建模的书籍也比较多,图书馆和互联网上都有丰富的数学建模资料。作者认为姜启源、谢金星、叶齐孝、朱道元等老师的建模书籍都非常的棒,可以先看二三本。刚开始看数学建模书籍时,一定会有很多地方看不懂,但要知道基本思路,时间长了就知道什么问题用什么建模方法求解了。这里面需要提的一点是,运筹学与数学建模息息相关,最好再看一二本运筹学著作,仍然可以采取诸葛亮的看书策略,只观其大略就可以了,等知道需要具体用哪块知识后,再集中精力将其消化,然后应用之。 大家都知道,参加数学建模竞赛一定要有些编程功底,当然现在有Matlab这种强大的工程软件,对编程的的要求就降低了,至少入门容易多了,因为很容易用1条Matlab命令解决以前要用20行C语言才能实现的功能。因为Matlab的强大功能,Matlab在数学建模中已经有了非常广泛的应用,在很多学校,数学建模队员必须学习Matlab。当然Matlab的入门也非常容易,只要有本Matlab参考书,照猫画虎可以很快实现一些基本的数学建模功能,如数据处理、绘图、计算等。我的一个队友,当年用一天时间把一本二百多页的Matlab 教程操作完了,然后在经常运用中,慢慢地就变成了一名Matlab高手了。 对于有些编程基础的同学,最好再看一些算法方面的书籍,了解常见的数据结构和基本

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例 1 基因间“距离”的表示 在ABO 血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。 表1.1基因的相对频率 爱斯基摩人f 1i 班图人f 2i 英国人f 3i 朝鲜人f 4i A 1 0.2914 0.1034 0.2090 0.2208 A 2 0.0000 0.0866 0.0696 0.0000 B 0.0316 0.1200 0.0612 0.2069 O 0.6770 0.6900 0.6602 0.5723 合计 1.000 1.000 1.000 1.000 问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。 解 有人提出一种利用向量代数的方法。首先,我们用单位向量来表示每一个群体。为此目的,我们取每一种频率的平方根,记ki ki f x = .由于对这四种群 体的每一种有14 1 =∑=i ki f ,所以我们得到∑==4 1 2 1i ki x .这意味着下列四个向量的每个都是单位向量.记 .44434241,34333231,24232221,141312114321???? ? ? ??????=????????????=????????? ???=????????????=x x x x a x x x x a x x x x a x x x x a

在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公 式,得21cos a a ?=θ 而 .8307.03464.02943.03216.0,8228.01778.00000.05398.021???? ? ???????????????? ???=a a 故 9187.0cos 21=?=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2. 表1.2基因间的“距离” 爱斯基摩人 班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人 16.8° 20.4° 19.6° 0° 由表 1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大. 2 Euler 的四面体问题 问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的. 解 建立如图 2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为 .,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→ → → OC OB OA ,,组成右

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

浅谈矩阵在数学建模中的应用

浅谈矩阵在数学建模中的应用 【摘要】矩阵作为一种认识复杂事物的简捷工具已经被广泛应用在各个学科领域中,在数学建模中也有许多应用。本文就数学建模中使用矩阵的情况做一些举例、小结,最后给出一个典型的数学模型。 【关键词】数学建模;模型;矩阵 矩阵是最基本的数学概念之一,也是人们把握复杂的实际事物本质的一种简捷的思维工具。在数学建模中,矩阵的使用相当广泛,如数学规划、层次分析、马氏链模型、投入产出、数据拟合等都主要应用矩阵分析解决问题,就数学建模中涉及的矩阵就有量纲矩阵、L矩阵、成对比较矩阵、正互反矩阵、一致阵、邻接矩阵、素阵、状态转移矩阵、随机矩阵,还有网络计划分析法中的可达矩阵、模糊评价分析法中的评判矩阵、投入产出法中的消耗系数矩阵、产品流量矩阵,另外在数学建模中还使用了许多普通矩阵。 1.线性方程组与矩阵 自然科学和工程实践很多问题的解决都归纳为线性方程组的求解和矩阵运算。有些问题本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题、投入产出分析问题和各种晶体管电路分析问题;另一方面有些数值计算方法也导致线性方程组求解,如数据拟合问题、非线性方程组和偏微分方程数值解问题等等。 例1:曲线拟合问题:已知一组(二维)数据,即平面上n个点(x1,y1)(i=1,2,…,n),寻求一个函数(曲线)y=f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。曲线拟合问题最常用的解法——线性最小二乘法的基本思路: 数学规划是解决这类问题的有效方法。 而线性规划是数学规划中产生较早的一个分支,如今在国防科技、经济学、现代工农业、环境工程、生物学等众多学科和领域都有十分广泛的应用,典型问题有生产计划、任务分配、投料或产品的混合、运输、库存等问题。 3.微分方程模型中的矩阵 微分方程是研究函数变化过程中变化规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用,如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。矩阵较多地用在微分方程,尤其是方程组有关的理论结果的表示上。

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

多元线性回归 数学建模经典案例

多元线性回归 黄冈职业技术学院数学建模协会胡敏 作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 编写程序如下: data ex; input x1-x5 y@@; cards; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 ; proc reg; model y=x1 x2 x3 x4 x5/cli; run; 运行结果如下: (1)回归方程显著性检验. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 5 2.25207 0.45041 11.63 0.0170 Error 4 0.15497 0.03874 Corrected Total 9 2.40704

数学建模思想在线性代数教学中的应用

数学建模思想在线性代数教学中的应用 作者:刘逸轩 来源:《教育周报·教育论坛》2020年第19期 摘要:线性代数是现代高等院校理工科与经管类学科的专业基础课程,也是一门有着极强逻辑性与实际应用价值的重要学科。它对学生的抽象思维与逻辑思维能力提出了一定的要求。数学建模思想是数学思想当中的一种,它能帮助学生更加迅速地梳理线性代数知识点,同时完成对相关概念的高效吸收。如何将数学建模思想融入到线性代数的教学工作当中,逐渐成为现代高校线性代数教学工作的核心教研课题。 关键词:数学建模思想;线性代数;教学探究 引言 现代高校的线性代数教学内容大多以矩阵运算及向量组线性相关性的研究为主,教师在实际的教学过程中,往往更加重视学生对数学概念的理论认知,却忽视了学生自身的个性化理解。这在很大程度上降低了线性代数课程对学生未来发展的实际帮助,也让高校线性代数课程的实际价值变得较为片面。数学建模思想本身作为一种思维能力,能够最大程度上引导学生完成知识于现实生活中的应用。想要发挥数学建模思想的全部作用,首先就要求教师能够清晰地认识到数学建模思想在线性代数课程中的具体价值。 1.将数学建模思想应用到线性代数教学中的重要价值 1.1有效提升学生的学习动力 线性代数的教学任务本身就包含了对学生个人技能的有效培养,这也是高校线性代数基本素养的主要内容之一。而传统的线性代数课程更加注重学生的理论认知,教师经常会采取灌输式教学法搭配题海战术的方式培养学生的线性代数计算能力。这种教学方式不仅无法吸引学生的注意力,还很容易让学生产生厌烦和抵触心理。数学建模思想的应用,能够使原本枯燥的数学形象变得更加生动立体,从而使学生的学习动力得到显著的提升。 1.2充分增强课程的应用价值 线性代数是一门十分注重实践性与应用型的课程,将数学建模思想应用到线性代数的教学工作当中,能够最大程度地启发学生利用数学思想来解决未来生活及工作中常见的数学问题。另外,数学建模思想在教学过程中的使用,也能帮助学生另辟蹊径地处理复杂的数学概念。这不仅可以有效提升学生的学习效率,也能使教师的教学工作事半功倍。

数学建模小实例

1、司乘人员配备问题 某昼夜服务得公交路线每天各时间区段内需司机与乘务人员如下: 设司机与乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机与乘务人员? 解: 设为第班应报到得人员,建立线性模型如下: LINGO程序如下: MODEL: min=x1+x2+x3+x4+x5+x6;

x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到得解为: x1=60,x2=10,x3=50,x4=0,x5=30 ,x6=0; 配备得司机与乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状得地面,但当时市场上只有长方形瓷砖,每块大小等于方形得两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问就是这人得功夫不到家还就是这个问题根本无解呢?

3、棋子颜色问题 在任意拿出黑白两种颜色得棋子共n个,随机排成一个圆圈。然后在两颗颜色相同得棋子中间放一颗黑色棋子,在两颗颜色不同得棋子中间放一颗白色棋子,放完后撤掉原来所放得棋子,再重复以上得过程,这样放下一圈后就拿走前次得一圈棋子,问这样重复进行下去各棋子得颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色得棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这就是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色得棋子中间放一颗白色棋子。设棋子数为,为初始状态。

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学建模案例分析线性代数建模案例例

线性代数建模案例汇编 目录

案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆). 图3 某城市单行线车流量 (1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值. (4) 若x 4 = 200, 则单行线应该如何改动才合理? 【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等. 【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足 500 = x 1 + x 2 ① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组 12142334500100300300x x x x x x x x +=??-=-??+=??-+=? 其增广矩阵 (A , b ) =1100500100110001103000011300?? ?-- ? ? ?-??????→初等行变换10011000101600001130000000--?? ? ?-- ? ?? ? 由此可得

142434 100600300x x x x x x -=-??+=??-=-? 即 14243 4100600300x x x x x x =-??=-+??=-?. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50. 若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = ?100 < 0. 这表明单行线“③?④”应该改为“③?④”才合理. 【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计. (2) 由142434100600300x x x x x x =-??=-+??=-?可得213141500200100x x x x x x =-+??=-??=+?, 123242500300600x x x x x x =-+??=-+??=-+?, 13234 3200300300x x x x x x =+??=-+??=+?, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值. Matlab 实验题 某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开 图4 某城市单行线车流量 (1)建立确定每条道路流量的线性方程组. (2)分析哪些流量数据是多余的. (3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.

由此准则,只需考虑 P 6 6 222 90 !!! ?? =种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况 为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z. 图9-13 G(V,E) 图G(V,E)的含义为: (1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.

相关文档
最新文档