六、三角函数及同角三角函数的基本关系式,诱导公式
同角三角函数基本关系式及诱导公式-高考数学复习

2.(必修第一册P194练习T2改编)(多选)已知x∈R,则下列等式恒成立的是
A.sin(-x)=sin x
B.sin32π-x=cos x
√C.cosπ2+x=-sin x
√D.cos(x-π)=-cos x
sin(-x)=-sin x,故A不成立; sin32π-x=-cos x,故 B 不成立; cosπ2+x=-sin x,故 C 成立; cos(x-π)=-cos x,故D成立.
3.(必修第一册 P185T6 改编)若 sin α= 55,π2<α<π,则 tan α 等于
A.-2
B.2
1 C.2
√D.-12
∵π2<α<π,∴cos α=- 1-sin2α=-255,∴tan α=csoins αα=-12.
4.已知
cos
α=15,-π2<α<0,则tanα+cπoscoπ2s+-ααtan
为 -13 .
因为 cosπ6+α=-13, 所以 sin23π+α=sinπ2+π6+α=cosπ6+α=-13.
诱导公式的两个应用 (1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了.
跟踪训练2 (1)化简:
sinθ-sin5θπ-co32sπ-sin2π--θθc-os4π8π-θ等于
(2)(2023·全国乙卷)若 θ∈0,π2,tan θ=12,则 sin θ-cos θ=
-
5 5
.
因为 θ∈0,π2,则 sin θ>0,cos θ>0, 又因为 tan θ=csoins θθ=12,则 cos θ=2sin θ, 且cos2θ+sin2θ=4sin2θ+sin2θ=5sin2θ=1,
同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z.公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α. 公式三:sin(-α)=-sin α,cos(-α)=cos α.公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )(απ-2=cos α,cos )(απ-2=sin α. 公式六:sin )(απ+2cos α,cos )(απ+2=-sin α. 一个口诀:诱导公式的记忆口诀为:(απ±2k )奇变偶不变,符号看象限. 三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….一、已知某角的一个三角函数值,求其它三角函数值 例1:① 已知sinA=23, A 为第二象限的角,求cosA ,tanA 的值;②已知cosA=23, A 为第四象限的角,求sinA ,tanA 的值;③已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________;二、由某角的正切值求该角关于正弦余弦的三角函数式的值例 2:已知tan α=2,求:(1)4sin 2cos 5sin 3cos αααα-+;(2)2222sin 2sin cos cos 4cos 3sin 1αααααα---+;(3)25sin 3sin cos 2ααα+-变式(1)已知tan α=13,求12sin αcos α+cos 2α的值;三、关于某角的正弦与余弦之和,正弦与余弦之差,正弦与余弦之积,知一求二例3: 已知-π2<x <0,sin x +cos x =15①求sinxcosx 的值, ②求sinx+cosx 的值③求sin 2x -cos 2x 的【试一试】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形(2)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.四、利用诱导公式求值,化简例4: 已知sin)(2πα+=-55,α∈(0,π). (1)求)3cos()sin()23cos()2sin(απαπαππα++-+--的值; (2)求cos )(απ-65的值.(2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角, 则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.专项基础训练一、选择题1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32B.32C .-12 D.12 2. cos(-2 013π)的值为( ) A.12B .-1C .-32D .03.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )A.12B .-12C.32 D .-324.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x的最小值是( )A.14B.12 C .2 D .4 二、填空题5.如果sin α=15,且α为第二象限角,则sin ⎝ ⎛⎭⎪⎫3π2+α=________.6.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为________.7. sin ⎝ ⎛⎭⎪⎫α+3π2·tan (α+π)sin (π-α)=________.三、解答题(共22分)8. (10分)已知sin θ+cos θ=23(0<θ<π),求tan θ的值.9. (12分)已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.。
同角三角函数基本关系式、三角函数的诱导公式

一、知识概述1、同角三角函数的基本关系式同角三角函数基本关系可概括为平方关系,商数关系和倒数关系,如考虑sinα,cos α,tanα,cotα与secα,cscα六个函数,还可借助如下图表形象记忆:(1)对角线上两个函数的积为1(倒数关系)(2)任一顶点的函数等于与其相邻两个顶点的函数的积(商数关系)(3)阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系)由此图可得出公式的变形形式或其他同角函数关系式.平方关系:sin2α+cos2α=1,sec2α=1+tan2α,csc2α=1+cot2α.商数关系:倒数关系:tanα·cotα=1,sinα·cscα=1,cosα·secα=1.注:课本上只介绍了其中两个重要的关系式,事实上,掌握好其余的五个关系式能在有关解题中节省过程,带来方便.2、三角函数的诱导公式公式一:sin(α+k·)=sinαcos(α+k·)=cosαtan(α+k·)=tanα其中k∈Z.公式二:sin(+α)=-sinαcos(+α)=-cosαtan(+α)=tanα公式三:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:sin(-α)=sinαcos(-α)=-cosαtan(-α)=-tanα总结:α+k·2(k∈Z),-α,±α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
公式五:sin(-α)=cosαcos(-α)=sinα公式六:sin(+α)=cosαcos(+α)=-sinα总结:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.二、重、难点知识归纳及讲解(一)利用诱导公式可以把任意角的三角函数转化为锐角三角函数,即:例1、求值:.分析:运用诱导公式,对于cot,可先求出sin,cos,然后由商数关系可求出cot.解:原式例2、设的值为()A.B.C.-1 D.1分析:利用诱导公式将条件等式和欲求式都化到α的同名三角函数上去,再利用同角三角函数基本关系式求解.解答:(二)同角三角函数关系式在求值、化简、证明中的应用.1、已知角α的某一三角函数值,可求出α的其余三角函数值.例3、已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.分析:由平方关系知1=sin2α+cos2α,可把式子的分母看成sin2α+cos2α,然后分子分母同除以cos2α,可得.解:2、利用同角三角函数关系式进行化简:化简结果的基本要求:(1)函数个数尽可能少;(2)次数尽可能低;(3)项数尽可能少;(4)尽可能地去掉根号;(5)尽可能地不含分母;(6)能求出值的要求出值来.例4、若sinαcosα<0,sinαtanα<0,化简:.分析:要想去掉根号,就应考虑将被开方数配成完全平方的形式.解:∵sinαcosα<0,sinαtanα<0.∴α是第二象限角.故是第一或第三象限角.原式若是第一象限角,此时1±sin>0,cos>0. 原式=若是第三象限角,此时1±sin>0,cos<0. 原式=.3、利用同角关系式进行三角恒等式的证明.证明三角恒等式的方法较多,既可由一边证向另一边,也可先证得另一个等式成立,从而得出要证的等式,还可用比较法证明等,关键是要依题而定。
同角三角函数的基本关系及诱导公式-高考复习

)
√2
A.6
(2)已知 sin
√2
B.
6
2√5
α= 5 ,则
2
C.3
5π
+)
2
5π
cos ( -)
2
sin (
tan(π+α)+
=
2
D.
3
.
答案 (1)D
5
5
(2) 或2
2
解析 (1)sin2θ+sin(3π-θ)cos(2π+θ)-√2cos2θ
sin
θ-2cos2θ=
=
,
2
2
2
sin +cos
tan +1
4+2-2
θ=2,故原式=
4+1
=
4
.
5
解题心得 1.利用 sin2α+cos2α=1 可以实现角 α 的正弦、余弦的互化,利用
tan
sin
α=cos
≠ π +
π
,∈Z
2
可以实现角 α 的弦切互化.
2.“1”的灵活代换:1=cos α+sin α=(sin α+cos α) -2sin αcos
解题心得1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择
恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.
2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可
能低,结构尽可能简单,能求值的要求出值.
3.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简
【例 1】 (1)若
1
三角函数诱导公式知识点

三角函数诱导公式知识点导读:我根据大家的需要整理了一份关于《三角函数诱导公式知识点》的内容,具体内容:三角函数诱导公式适用于数学,天文,物理,可谓是多用的公式。
下面是我给大家整理的三角函数诱导公式,供大家参阅!三角函数诱导公式定义所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
三角函数诱导公式三角函数诱导公式三角函数同角三角函数的基本关系式倒数关系tan cot=1sin csc=1cos sec=1商的关系sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系sin2()+cos2()=11+tan2()=sec2()1+cot2()=csc2()同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。
)由此,可得商数关系式。
平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan )/(1-tantan)tan(-)=(tan-tan)/(1+tantan)二倍角的正弦、余弦和正切公式sin2=2sincoscos2=cos2()-sin2()=2cos2()-1=1-2sin2()tan2=2tan/[1-tan2()]tan[(1/2)]=(sin )/(1+cos )=(1-cos )/sin半角的正弦、余弦和正切公式sin2(/2)=(1-cos)/2cos2(/2)=(1+cos)/2tan2(/2)=(1-cos)/(1+cos)tan(/2)=(1—cos)/sin=sin/1+cos 万能公式sin=2tan(/2)/[1+tan2(/2)]cos=[1-tan2(/2)]/[1+tan2(/2)] tan=[2tan(/2)]/[1-tan2(/2)]三倍角的正弦、余弦和正切公式 sin3=3sin-4sin3()cos3=4cos3()-3costan3=[3tan-tan3()]/[1-3tan2()]三角函数的和差化积公式sin+sin=2sin[(+)/2]cos[(-)/2] sin-sin=2cos[(+)/2]sin[(-)/2] cos+cos=2cos[(+)/2]cos[(-)/2] cos-cos=-2sin[(+)/2]sin[(-)/2]三角函数的积化和差公式sincos=0.5[sin(+)+sin(-)]cossin=0.5[sin(+)-sin(-)]coscos=0.5[cos(+)+cos(-)]sinsin=- 0.5[cos(+)-cos(-)]三角函数诱导公式推导过程万能公式推导sin2=2sincos=2sincos/[cos2()+sin2()],(因为cos2()+sin2()=1)再把分式上下同除cos^2(),可得sin2=2tan/[1+tan2()]然后用/2代替即可。
同角三角函数的基本关系与诱导公式-高考数学复习

3
θ= ,
5
cos
π
θ<0,所以可得θ∈( ,π),
2
sin θ cos
θ)2=1-2
sin θ+ cos
4
θ=- ,tan
5
1
θ= ,可得
25
sin θ cos
1
θ=- ,
5
sin θ cos θ
49
θ= ,所以
25
sin θ- cos
sin θ
7
θ= ,联
5
3
θ=- ,故B错误,C正确.
4
目录
高中总复习·数学
可求解;
(2)若齐次式为二次整式,可将其视为分母为1的分式,然后将分母
1用 sin 2α+ cos 2α替换,再将分子与分母同除以 cos 2α,化为只
含有tan α的式子,代入tan α的值即可求解.
目录
高中总复习·数学
考向3 “ sin α±cos α, sin α cos α”之间关系的应用
可以知一求二.
目录
高中总复习·数学
1. 若 sin θ+ cos
2 3
θ=
,则
3
解析:由 sin θ+ cos
θ cos
1
θ= ,∴
6
sin 4θ+ cos 4θ=(
2 3
θ=
,平方得1+2
3
)
sin θ cos
4
θ= ,∴
3
sin
sin 4θ+ cos 4θ=( sin 2θ+ cos 2θ)2-2 sin 2θ cos 2θ
(1)思路:①分析结构特点,选择恰当的公式;②利用公式化成单
(4) sin α=tan α cos
同角三角函数基本关系与64个诱导公式经典记忆法
2
意即为“A——all(全部)”、“S——sin”、“T——tan”、“C——cos” 。
2
(四)利用诱导公式,我们可以把任意角的三角函数转化为锐角三角函数。 具体步骤如下:
任意负角的 三角函数 用公式一或三 (负化正) 任意正角的 三角函数 用公式一或七 (大化小)
利用公式二和公式三可以得到公式四。 5、公式五:
2
-α与α的三角函数值之间的关系:
(1)sin( (2)cos(
2
-α)= cosα ( * ) -α)= sinα ( * ) -α)= cotα -α)= tanα —α) = cscα —α) = secα 直线 y=x α 终边
2
(3)tan( (4)cot( (5)sec ( (6)csc (
3 +α与α的三角函数值之间的关系: 2 3 +α)=-cosα 2 3 +α)= 2
sinα
(1)sin( (2)cos( (3)tan(
同角三角函数基本关系与 64 个诱导公式的经典记忆法
说明:公式后标有 ( * ) 是课标要求熟练掌握的内容!
一、同角三角函数的基本关系式及六边形记忆法
构造以"上弦、中切、下割;左正、右余、中间 1"的六边形为模型(如 下图所示):
sin
cos
tan
1
cot
sec
1、平方关系
顶点上的三角函数值的平方和 等于下面一个顶点上的三角函数值的平方。 (1)sin 2 α +cos 2 α =1 (2)1+tan α =sec α (3)1+cot 2 α =csc 2 α 2、商数关系 六边形任意一顶点上的三角函数值等于与它相邻的两个顶点上 三 角函数值的乘积 (主要是两条红线两端的三角函数值的乘积,
三角函数概念、同角三角函数关系式和诱导公式归纳总结
三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。
三角函数的基本关系式
1. 同角三角函数的基本关系式 tan α ⋅ cot α = 1 sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 2. 倒数关系:
tan α =
sin α sec α = cos α csc α 1 cos α csc α = = tan α sin α sec α
正弦为奇函数 余弦为偶函数 正切为奇函数 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2+α)=-cosα cos(3π/2+α)= sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中 k∈Z)
3. 商的关系: cot α = 4. 平方关系:
sin 2 α + cos 2 α = 1
1 + tan 2 α = sec2 α =
(对应于勾股定理)
1 (上述公式的扩展) cos 2 α 1 1 + cot 2 α = csc2 α = sin 2 α
5. 诱导公式 单一角公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
三角函数的基本关系式
同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2)1-tan2(α/2) cosα=—————— 1+tan2(α/2)2tan(α/2) tanα=—————— 1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=—————— 1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-— 2 2α+βα-βsinα-sinβ=2cos—--·sin—-— 2 2α+βα-βcosα+cosβ=2cos—--·cos—-— 2 2α+βα-βcosα-cosβ=-2sin—--·sin—-— 2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)三角形全等的判定1.SSS 两个三角形三边对应相等(边边边)2.AAS 就是两个三角形的两个角对应相等,其中一角所对的边对应相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、扇形中的问题:
例:已知一扇形的中心角是α,所在圆的半径是r. (1)若α = 600 , r = 10cm, 求扇形的弧长及扇形面积。 扇形有最大面积?
c2 = . 16
l=
10π 50π cm; S = cm 2 3 3
(2)若扇形的周长是一定值C, > 0), 当α为多少弧度时, (C
考点讲练:
1.角的概念及表示:
例1.如果α是第三象限角,则 − α ,2α ,
α α
, 的终边落在何处? 2 3
例2.已知点P(sin α − cos α , tan α )在第一象限,则在[0,2π ]内,
α的取值范围是 ____________ 5 . π π ( , ) ∪ (π , π )
sin θ =
3 1 π 1 3 π , cos θ = , θ = 或 sin θ = , θ = cos ,θ = . 2 2 3 2 2 6
巩固练习:
1.有四个关于三角函数的命题:
p1 : ∃ x ∈ R, sin 2 p3 : ∀ x ∈ [ 0, π ] ,
其中假命题的是 A. p1 , p4
x x 1 + cos 2 = 2 2 2
1 − cos 2 x =sinx 2
p2 : ∃ x、y ∈ R, sin(x-y)=sinx-siny p4 : sinx=cosy ⇒ x+y=
π
2
A
B. p 2 , p 4
2
C. p1 , p3
2
D. p2 , p4
2.已知 tan θ = 2 ,则 sin θ + sin θ cos θ − 2 cos θ = ( D A. −
(1)求 f ( x ) 的定义域; (2)设 α 是第四象限的角,且 tan α = −
π
4 3
,求 f (α ) 的值.
解: (1)依题意,有 cosx≠0,解得 x≠kπ+ 即 f ( x ) 的定义域为{x|x∈R,且 x≠kπ+
π
2
,
π
2
,k∈Z}
1 − 2 sin(2 x − ) 4 =-2sinx+2cosx∴ f (α ) =-2sinα+2cosα (2) f ( x) = cos x
B.必要而不充分条件 D.既不充分也不必要条件
解析 本题主要考查三角函数的基本概念、 简易逻辑中充要条件的判断. 属于基础知识、 基 本运算的考查. 当α =
π
6
+ 2kπ (k ∈ Z ) 时, cos 2α = cos 4 kπ +
π
π 1 = cos = 3 3 2
反之,当 cos 2α = 或 2α = 2kπ −
例2.试求满足条件 | cos α |>| sin α | 的角α的范围。
α ∈ kπ − ( π
, kπ + )k ∈ Z 4 4
π
四、三角函数式的化简:
例1.已知f (α ) = (1)化简f (α );
sin(π − α ) cos(2π − α ) tan(−α + sin( −π − α )
∴ 2cos α cos β = ∴ tan α =
4 3 , 2sin α sin β = 5 5
3 4 − 3sin α − 1 cos α − 3sin α 1 − 3 tan α 5 2 = = =− π cosα + sin α 1 + tan α 7 2 sin(α + ) 4
2cos2
例3.已知关于x的方程2 x 2 − ( 3 + 1) x + m = 0的两根为sin θ和 cos θ,θ ∈ (0,2π ), 求: cos θ sin θ + () 的值; 3 + 1 1 1 1 − tan θ 2 1− tan θ 3 (2)m的值; 2 (3)方程的两根及此时θ的值。
π
2
]上是增函数
C.函数 f (x ) 的图象关于直线 x =0 对称 C D . 函数 f (x) 是奇函数
6.若 sin θ = −
4 , tan θ > 0 ,则 cos θ = 5
π
4
3 − 5
π
.
7.已知函数 f ( x ) = f '(
) cos x + sin x, 则 f ( ) 的值为 4
1
.
8.已知 cos θ ⋅ tan θ < 0 ,那么角 θ 是( A.第一或第二象限角 C.第三或第四象限角
C)
B.第二或第三象限角 D.第一或第四象限角
9.若△ ABC 的内角 A 满足 sin 2 A =
2 ,则 sin A + cos A =(A ) 3
C.
A.
15 3
B. −
15 3
5 3
π
3
1 π π 时,有 2α = 2kπ + ⇒ α = kπ + ( k ∈ Z ) , 2 3 6 ⇒ α = kπ −
π
6
( k ∈ Z ) ,故应选 A.
5.已知函数 f ( x) = sin( x −
π
2
)( x ∈ R) ,下面结论错误的是 ..
D
A. 函数 f (x) 的最小正周期为 2 π B. 函数 f (x ) 在区间[0,
π
16.设向量 a = (cos(α + β ),sin(α + β )) ,且 a + b = ( , ) (1)求 tan α ;
r
r r
4 3 5 5
2 cos2
(2)求
α
2
− 3s4
π
.
r r 解: (1) a + b
4 3 = (2 cos α cos β , 2sin α sin β ) = ( , ) 5 5
2
+cos
π
2
=1………5 分
α
2
7
)=sinα+cosα= ,∴1+sin2α= ∵α∈(0,
3 4
1 5
1 24 , sin2α= − ,……7 分 25 25 3 2
π)∴2α∈(π,
π) ∴cos2α<0.
25 7 25
故 cos2α= −
……10 分
B
)
4 5
12.若 cos
θ
2
=
3 5
, sin
θ
2
=−
4 5
,则角 θ 的终边一定落在直线( B. 7 x − 24 y = 0 D. 24 x − 7 y = 0
D )上。
A. 7 x + 24 y = 0 C. 24 x + 7 y = 0
1 − 2 sin(2 x − ) 4 , 13.已知函数 f ( x) = cos x
(2) tan(α + 2 β ) = tan[(α + β ) + β ] =
−3 +
1 2
15.已知 tan (2)
α
2
=2,求 (1) tan(α + 的值.
π
4
) 的值;
6sin α + cosα 3sin α − 2 cos α
解: (I)∵ tan
α
2
=2, ∴ tan α =
2 tan 1 − tan
第六讲:任意角的三角函数及三角函数的诱导公式
一、角的概念: 1.任意角的定义: 2.正角、负角和零角: 3.象限角、轴线角的表示: 4.终边相同的角的表示: 二、弧度制: 1.定义: 记忆1、2、3、4、5、6弧度分别在第几象限。
2.弧长公式与扇形面积公式: 三、三角函数的定义及定义域: 四、三角函数符号规律及三角函数线: 五、同角三角函数基本关系式及变形: 六、诱导公式:
(2)
α
17.已知函数 f (x )=2sin x cosx +cos2x . (Ⅰ)求 f (
π
4
)的值;
3 4
(Ⅱ)设α ∈(0,
α π ),f ( )= 1 ,求 cos2 α 的值.
2
5
解: (Ⅰ)∵f(x)=sin2x+cos2x,∴f( (Ⅱ)∵f( ∴cos2α= ±
π
4
)=sin
π
由 α 是第四象限的角,且 tan α = − ∴ f (α ) =-2sinα+2cosα=
π
4 3
可得 sinα=-
4 5
,cosα=
3 5
14 5
14.如图,在平面直角坐标系 xoy 中,以 ox 轴为始边做两个锐角 α , β ,它们的终边分别与
单位圆相交于 A,B 两点,已知 A,B 的横坐标分别为 (1) 求 tan(α + β ) 的值;
) D.
4 3
B.
5 4
C. −
3 4
4 5
3. “ α =
π
6
”是“ cos 2α =
1 ”的 2
A
B.必要而不充分条件 D.既不充分也不必要条件
A. 充分而不必要条件 C. 充分必要条件
4. “ α = ( )
π
1 + 2kπ (k ∈ Z ) ”是“ cos 2α = ”的 2 6
A
A.充分而不必要条件 C.充分必要条件
5 5
,
因此 tan α = 7, tan β =
。
1 7+ tan α + tan β 2 =-3 。 = (1) tan(α + β ) = 1 − tan α tan β 1 − 7 × 1 2