控制系统的频率特性

合集下载

控制工程基础第4章控制系统的频率特性

控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。

控制系统的频率特性

控制系统的频率特性

频率特性是一个复数,有三种表示:
代数式
极坐标式
G j U jV
G( j ) G( j ) G( j ) A( ) ( )
指数式
G( j ) G( j ) e jG ( j ) A( )e j ( )
A G j U 2 V 2
率特性是系统的固有特性,与输入信号无关,
即当输入为非正弦信号时,系统仍然具有自身的频率特性。
频率特性定义为输出量的Fourier变换与输入量
的Fourier变换之比,即
X 0 j G j X i j
频率特性的矢量图
jv V () A () () 0 U () u G(j)
2T 2 1
相频特性 arctan T 一阶惯性环节的幅相频率特性曲 线是一个半圆。
5. 一阶微分环节
频率特性
G j Tj 1
jv
2 45°
幅频特性 A 1 T 2 相频特性 实频特性
∞ ↑ =0 u
arctan T
r为谐振频率
Mr为谐振峰值
r n 1 2 2
M r A max
0.707
1 2 2
2 1 2
7. 二阶微分环节

jv
=0 0 1 u
8. 延迟环节
频率特性
G j e
A 1
jT
1 1 j T

1 TS 1 S j
定义:
A / 1 2T 2 1 稳态输出幅值 A( ) RC网络幅频 2 2 A 输入幅值 1 T 特性
( ) arctan T 稳态输出相位 输入相位 RC网络相频特性

控制工程 第5章 系统的频率特性

控制工程 第5章 系统的频率特性
解:系统的频响函数(频响特性)、幅频特性和相频 特性分别为
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即

自动控制原理_第5章_3

自动控制原理_第5章_3
5.3 控制系统的频率特性
在绘制各个典型环节频率特性的基础上, 可以绘制控制系统的频率特性。
5.3.1 控制系统开环频率特性的Nyquist图
一个控制系统的开环传递函数可以写成典型
环节的连乘积形式。
1
举例 一个开环传递函数为
K ( s 1) G( s) 2 2 s(T1s 1)(T2 s 2 T2 s 1)
27
2
对于非单位反馈系统, 在其开环频率特性幅值
G( j)H ( j) 很大的频段内, 闭环频率特性
1 ( j ) H ( j )
即近似等于反馈环节频率特性的倒数。
对于开环放大倍数 K 很大的闭环系统,在低频段
具有这个特点。
28
3
对于非单位反馈系统, 一般来说, 其开环
频率特性的高频段幅值很小。在这一频段内, 闭环
1
当 0 时,放大环节、惯性环节、振荡环节、
一阶微分环节、二阶微分环节的幅角均为 00 。
。 只有积分环节, 0 时,相角为 900 当
如果开环传递函数中含有 v 个积分环节,开环频率 特性的Nyquist图在 0 的起始处幅角为 v 900 。


6
2
当 0 时, 放大环节的幅值为 K ,
21
[例5-5] 控制系统的开环传递函数为
10( s 1) G( s) s(2.5s 1)(0.04s 2 0.24s 1)
绘制系统的渐近开环对数幅频特性和相频特性。
22
100 Magnitude (dB)
Asymptotic Bode Diagram
-20dB/dec
50
20
频率特性近似等于系统前向通道的频率特性。 一般来说,闭环系统在高频段内显示这一性质。 在工程实践中, 当开环幅频特性

实验四 控制系统频率特性的测试 实验报告

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。

二.实验装置(1)微型计算机。

(2)自动控制实验教学系统软件。

三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。

这就是所谓“李沙育图形”。

由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。

(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。

在拐点处有一定的差距,在某些点处也存在较大的误差。

分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。

(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。

(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。

在实验过程中一个频率可同时记录2Xm,2Ym,2y0。

(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。

自动控制原理与系统__课件第四章控制系统的频率特性

自动控制原理与系统__课件第四章控制系统的频率特性

由拉氏变换可知,传递函数的复变量s =σ+jω。 当σ=0时,s = jω。所以G(jω)就是σ=0时 的G(s),即复域与频域的关系为:
传递函数 G(s) 频率特性 s j G(jω )
s j
5
三、频率特性的表示方法
1、数学式表示法
G (j ) G (j ) G (j )
arctanT
对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似 的绘制方法,用两条渐进线近似表示.
低频渐近线: 高频渐近线:
T 1 L 20 lg 1 0
3
低频渐近线为零分贝线。
高频渐近线为一条在ω=1/T处穿越横轴、且斜率为-20dB/dec的直线。对 数幅频特性曲线可近似地用上述两条直线表示,且它们相交于ω=1/T(转 折频率)处。由这两条直线构成的近似对数幅频特性曲线称为 渐近对
对数相频特性φ(ω) 低 频 : 当 ω→0 时 , φ(ω)→0。因此,低频段为 一条φ(ω)→0的水平线。 高频:当ω→∞时,φ(ω) →-180o 。因此,高频段一条 φ(ω)→-180o的水平线。 交接频率处的相位:当 ω=ωn时,φ(ω)=-90o。
20
振荡环节的对数相频特性既 是ω的函数,又是ζ的函数。 随阻尼比ζ不同,对数相频特 性在转折频率附近的变化速 度也不同。ζ越小,相频特性 在转折频率附近的变化速度 越大,而在远离转折频率处 的变化速度越小。
(极坐标表示法)
U ( ) jV ( )
(直角坐标表示法)
(指数表示法) A ( )e j ( )
V ( ) U ( )
图4-2
A ( ) G (j ) U 2 ( ) V 2 ( )

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7

(c ) 0 (c ) 0 (c ) 0
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。

第六章控制系统的频率特性

个点:
S平面上的两点之间的弧线可映射为F平面 的一段弧线:
S平面上的一条闭合的围线可映射为F平面 的一段闭合围线。
条件:S平面上的弧线和围线不经过奇异点
例:对于分式复变函数: 取:
取:
弧线:
s1 : 2 j2
S
-3 -2 s2 :
1
F
F (s1 ) :
4 5

j
2 5
F (s2 ) :1 2
频率特性法: 通过实验对开环对象施加不同频率的正 弦信号,即可获得系统的频率特性(幅 频特性曲线和相频特性曲线),方法简 便; 从频率特性图中分析闭环系统的性能, 分析参数变化对系统瞬态响应的影响。
二、常用的频率特性表示方法
对数频率特性曲线,也称波特图(Bode) 对数幅频特性曲线: 对数相频特性曲线
3.乃奎斯特图顺时针包围原点N圈 4.n、m、N之间存在关系:N = m - n
j
[S ]
j
[F ]
F (s) 1 G0 (s)
[F]平面 → [G]平面: Nyquist图围绕[F]平面原点
的圈数
Nyquist图围绕[G]平面中
[F ]
点的圈数。
[G]
系统在S右半平面闭环特征根的个数m取决 于开环传递函数 的Nyquist曲线围绕
10-1
100
频 率 (rad/sec)
相位:G( ji )
101
0.6 0.4 0.2
0 -0.2 -0.4
乃奎斯特图
G( ji ) G( ji )
Im
-1
-0.5
0
0.5
1
Re
第六章 控制系统的频率特性
第2小节 幅角原理

控制系统的频率特性分析实验报告

竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。

二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。

本实验应用频率特性测试仪测量系统或环节的频率特性。

图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关器件运算后在显示器中显示。

根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。

如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。

自动控制原理-5.3 控制系统的频率特性


-2.67k
Im

0
Re
=0
16
5.3.2 开环伯德图
开环对数幅频特性和开环对数相频特性分别为
n
n
n
Lk () 20 lg A() 20 lg Ai () 20 lg Ai () Li ()
i 1
i 1
i 1
n
( ) i ( ) i 1
与实轴的交点:
令 Im() = 0 求出 x 代入 Re(x)
(4) 由起点出发,绘制曲线大致形状。
6
m
k (is 1)
= 设开环传递函数G(s)H(s)
i1
s n (Tjs 1)
相频特性:
j1
φ(ω)=-υ×90o+Σim=a1 rtan(ωτi)-jΣn=-1aυ rtan(ωTj )
例5-3 已知系统开环传函为 k
Gk (s) (T1s 1)(T2s 1) 试绘制系统的开环幅相曲线。 解:系统开环频率特性
Gk
(
j
)

T1T2
(
j

k 1 T1
)(
j

1 T2
)
-1/T2
-1/T1
j (1)Gk (j0) = k0
(2)Gk (j) = 0180
() = 90 arctanT
2
A() T 1
() = 90 arctanT
1 (T )2
T
0 0.1 0.3 1.0 2.0 5.0 ∞
A() 0 0.0995 0.288 0.707 0.895 0.982 1
()(°) 90 84.3 73.3 45 30 11.3 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数幅频特性是对数值20lgA(ω)和频率ω的关系曲线。 对数相频特性是相角φ(ω)和频率ω的关系曲线。 这两条特性曲线画在半对数坐标纸上,采用同一个横坐 标作为频率轴。横坐标采用对数分度,但标写的却是ω 实际值,单位为弧度/秒(rad/s).
L() (dB)
40 20 0 0.01 -20 -40 0.1 1 10 100 (rad/s)
指数式
G( j ) G( j ) e jG ( j ) A( )e j ( )
A G j U 2 V 2
U A cos
V arctan U
1
幅频特性 A G j
1 T 2T
2 2 2
1
2
1 A G j 2 2T 1 arctan 2 1 2T 2 2T 2T 2 T 相频特性 1 G j 2 T 2 arctan 1 T 1 arctan 1 2T 2 T 2 2 1 T T G j arctan 2T 1 2 2 1 T T
( ) arctan T 稳态输出相位 输入相位 RC网络相频特性
1 1 T
2 2
arctan T
将s以j 代入RC网络传递函数,即得RC网络频率特性
1 1 G( j ) RCj 1 1 jT

1 1 2T 2
e j ( arctanT )
A( )e j ( )
RC电路的这一特性,对于任何稳定的线性网络都成立 虽然在前面的分析中,设定输入信号是正弦信号,然而频
率特性是系统的固有特性,与输入信号无关,
即当输入为非正弦信号时,系统仍然具有自身的频率特性。
频率特性定义为输出量的Fourier变换与输入量
的Fourier变换之比,即
7 勾画大致曲线,
4.3 频率响应的Bode图(对数坐标图)
幅相频率特性的优点:
在一张图上把频率ω由0到无穷大区间内各个频率 的幅值和相位都表示出来。 缺点:
在幅相频率特性图上,很难看出系统是由哪些环节组成 的,并且绘图较麻烦。 对数频率特性能避免上述缺点,因而在工程上得到广泛 的应用。
一.对数频率特性的坐标

2
3. 微分环节
频率特性
G( j ) j
L() 20dB/dec
对数幅频特性
0.1
1
10

L( ) 20 lg G( j ) 20 lg
对数相频特性
()
90° 0° 0.1 1 10

( )

2
4.一阶惯性环节
频率特性
1 G j 1 jT
当T=1时, T =1/T称为转折频率,
5. 一阶微分环节
频率特性
G( j ) j 1
对数幅频特性
L( ) 20 lg 2 2 1
对数相频特性
arctan
6.二阶振荡环节
频率特性
G j ) j 2 n n
RC网络的幅相曲线绘在s平面上
jv →∞ 0 -45° 0.707 =1/T =0 u
4.2 频率响应的Nyquist 图
一. 典型环节的Nyquist图
1. 放大环节
频率特性 幅频特性
G j K
A G j K
jv K 0 u
相频特性
G j 0o
p1
1 2 4 1倍频程 1倍频程
p2
p3
6 8 10 20 40 60 80 100 1倍频程 1倍频程
10倍频程 10倍频程
(a)
10倍频程
1
2
3
4
(b)
5
6
7
二.典型环节的 Bode图
1. 放大环节
频率特性
G( j ) K
L()
20lgK 0 0.1 1 10
对数幅频特性
L( ) 20 lg A( ) 20 lg K
2. 积分环节
j ( ) 频率特性 G j 1 1 e 2 j

jv 0

幅频特性 A G j 1 相频特性

u →∞ =0
G j 90
3. 微分环节
频率特性
G j j e
j

2
jv
幅频特性 A G j
对数幅频特性 L( ) 20 lg G( j ) 20 lg 2T 2 1 对数相频特性
arctan T
低频段,当很小,T<<1时,L()=0dB 高频段,当很大,T>>1时,L()=-20lg(T) 惯性环节的Bode图可用上述低频段与高频段两条渐近线的 折线近似表示,
输入信号 输出信号
xi t A sin t
AT x0 t e 2 2 1 T
系统稳态输出

t T

A 1 T
2 2
sin t arctanT
lim x0 t
t
A 1 2T 2
sin t arctan T
定义:
A / 1 2T 2 1 稳态输出幅值 RC网络幅 A( ) 频特性 2 2 A 输入幅值 1 T
7. 二阶微分环节
G( j ) ( j / n ) 2 ( j / n ) 1
2
8. 延迟环节
频率特性
L()
0.1 1 10
G j e j
对数幅频特性

()
0° 0.1 1 10

L( ) 20lg G( j ) 20lg1 0dB
相频特性
2T 1 arctan 1 2T 2 ( T ) ( ) arctan 2T ( 1 ) T 1 2T 2
在低频段,很小,φ(ω)约等于0,高频段,很大, φ(ω) =-,转折频率处,
1 n , ( n ) T 2
T
二.Nyquist图的一般作图方法
1 分别写出开环系统中各个典型环节的幅频特性和相 频特性。 2 写出开环系统的A(ω)和φ(ω)表达式。 3 分别求出ω=0和ω为无穷时的G(j ω)。 4 求Nyquist与实轴交点,交点可用Im[G(j ω)]=0求出。 5 求Nyquist与虚轴交点,交点可用Re[G(j ω)]=0求出。 6 必要时再画出中间几点。
V A sin
二. 频率特性的几何表示
1. 幅相频率特性(Nyquist 图) 当频率 从0到无穷大变化 时,向量G(j )的端点在复 平面上的运动轨迹。 规定极坐标图的实轴正方向为相角零度线,逆时针转过 的角度为正,顺时针转过的角度为负。 2. 对数频率特性(Bode图) 由两张图组成:一张是对数幅频特性,另一张是对数相频 特性。


jv →∞ 0 n n n =1 =0.5 =0.3 =0 1 u
振荡环节的 Nyquist曲线不 仅与频率 有关,而且与 阻尼比ξ也有关。 ξ 越小, 幅频越大。 当ξ 小到一定程度时,幅 频将会出现峰值:
M r A( r )
r为谐振频率
Mr为谐振峰值
r n 1 2 2
4) 频率特性分析法不仅适用于线性系统,而且可以推广到某些非线 性系统。
5) 当系统在某些频率范围存在着严重噪声时,应用频率法,可以设 计出能够很好抑制这些噪声的系统。
4.1 频率特性
一.频率特性的基本概念
xi (t) xi (t) t R C xo(t)
RC网络的传递函数为
X 0 s 1 G( s) X i s Ts 1
5. 一阶微分环节
频率特性
G j Tj 1
jv
2 45°
幅频特性 A 1 T 2 相频特性 实频特性
∞ ↑ =0 u
arctan T
0
1
U ( ) 1
6. 二阶振荡环节
频率特性
G j
j 2 T 2 j 2T 1
X 0 j G j X i j
频率特性的矢量图
jv V () A() () 0 U() u G(j)
频率特性是一个复数,有三种表示:
代数式
极坐标式
G j U jV
G( j ) G( j ) G( j ) A( ) ( )
第4章 控制系统的频率特性
4.1 频率特性 4.2 频率响应的Nyquist 图 4.3 频率响应的Bode图 4.4 控制系统的闭环频率响应
时域分析法研究系统的各种动态与稳态性 能比较直观、准确
缺点是: 1. 当某些系统工作机理不明了时,数学模型难以确定, 因而无法分析系统性能。
2. 当系统的响应不能满足技术要求时,也不容易确
对数相频特性

()
0° 0.1 1 10
( ) 0
o

2.积分环节
频率特性
G ( j ) 1 j
L() -20dB/dec
0.1 1 10
对数幅频特性
L( ) 20 lg 1 20 lg j

()
0° 0.1 -90° 1 10
对数相频特性

( )
定应该如何调整系统来获得预期效果。
频域法是利用频率特性研究自动控制系统的一种古典方 法,它有如下特点
1) 应用Nyquist(奈奎斯特)稳定性判据,可以根据系统的开环频率特 性,研究闭环系统的稳定性,而不必求特征方程的根。 2) 对于二阶系统,频率响应和瞬态响应的性能指标之间有确定的对 应关系,而高阶系统也存在类似的关系。因为系统的频率特性与系 统参数、结构之间有着密切关系,所以可以利用研究频率特性的方 法,把系统的参数、结构变化和瞬态响应性能指标之间联系起来。 3) 频率特性有明确的物理意义,很多元件的这一特性都可以用实验 的方法确定,这对难于分析其物理规律来列出微分方程的元部件和 系统,有很重要的工程实际意义。
相关文档
最新文档