简单复合函数的求导法则精华版

合集下载

复合函数导数公式及运算法则

复合函数导数公式及运算法则

复合函数导数公式及运算法则复合函数导数公式及运算法则是以下这些:1、链式法则:若$f\left( x \right)$关于$x$的导数为$f'\left( x \right)$,且$g\left( x \right)$关于$f\left( x \right)$的导数为$g'\left( f\left( x \right)\right)$,则$g\left( f\left( x \right) \right)$关于$x$的导数为$f'\left( x\right)\times g'\left( f\left( x \right) \right)$。

2、乘法法则:若$y=f\left( x \right)\times g\left( x \right)$,则$y$关于$x$的导数为$f'\left( x \right)\times g\left( x \right)+f\left( x \right)\timesg'\left( x \right)$。

3、除法法则:若$y=f\left( x \right)\div g\left( x \right)$,则$y$关于$x$的导数为$\frac{f'\left( x \right)\times g\left( x \right)-f\left( x \right)\timesg'\left( x \right)}{\left[ g\left( x \right) \right]^2}$。

4、指数函数法则:若$y=a^x$(a>0,a 不等于1),则$y$关于$x$的导数为$a^x\cdot \ln\left( a \right)$。

5、指数函数反函数法则:若$y=a^x$(a>0,a 不等于1),则其反函数$y=\ln _ax$的导数关于$x$的导数为$\frac{1}{a^x\cdot \ln\left( a \right)}$。

导数复合函数求导法则(非常实用)

导数复合函数求导法则(非常实用)

导数复合函数求导法则(非常实用)一、导数复合函数求导法则(非常实用)在学习数学的过程中,我们经常会遇到各种各样的函数,其中有一种特殊的函数叫做复合函数。

复合函数是由两个或多个函数组成的函数,它们之间的关系是“和”的关系。

那么,如何求解复合函数的导数呢?这里我们就来探讨一下导数复合函数求导法则。

我们需要了解什么是导数。

导数是一个函数在某一点处的变化率,也就是说,它表示了函数在这个点的切线斜率。

而求导数的目的,就是为了更好地理解函数在不同点上的变化规律,从而更好地解决实际问题。

那么,如何求解复合函数的导数呢?这里我们可以借鉴一下初等函数的求导方法。

对于一个简单的初等函数f(x),它的导数可以通过以下公式计算:f'(x) = (f(x) f(a)) / (x a)其中,a是一个常数,表示我们要求导的点。

这个公式的意义是:在点a处,函数f(x)的导数等于它在点a两侧的平均变化率。

现在,我们来看一个例子。

假设我们有一个复合函数g(u)(u为参数),它的定义域是[0, 1],值域是[0, 1]。

我们要求的是g(u)在u=0.5时的导数。

根据导数复合函数求导法则,我们可以得到:g'(0.5) = [g(0.5) g(0)] / (0.5 0) = (g(0.5) g(0)) / 0.5这个公式的意义是:在u=0.5处,函数g(u)的导数等于它在u=0和u=0.5两侧的平均变化率。

二、复合函数求导法则的实际应用了解了导数复合函数求导法则之后,我们可以将其应用到实际问题的解决中。

下面我们通过一个例子来说明这一点。

假设我们要设计一个程序,计算一个二次多项式在给定点处的值。

这个二次多项式的定义域是[-1, 1],值域是[-1, 1]。

我们可以将这个二次多项式表示为:h(x) = a * x^2 + b * x + c其中,a、b、c是常数,且满足以下条件:1. a > 0 且 a < 1;2. b > 0 且 b < 1;3. c > -1 且 c < 1;4. |a| + |b| + |c| <= 1;5. a * b * c != 0。

简单复合函数求导法则

简单复合函数求导法则

简单复合函数求导法则根据链式法则,如果y是一个由u=g(x)和v=f(u)组成的复合函数,则复合函数y=f(g(x))的导数可以表示为:dy/dx = dy/du * du/dx其中,dy/du 是函数f对u的导数,du/dx 是函数g对x的导数。

下面我们将介绍一些常见的简单复合函数求导法则。

一、常数倍数法则如果 f(x) 是一个可导函数,而 c 是一个常数,则 cf(x) 的导数是c * f'(x)。

根据这个法则,我们可以推导出以下常见的函数求导法则。

二、和差法则如果f(x)和g(x)都是可导函数,则它们的和f(x)+g(x)的导数是f'(x)+g'(x)差f(x)-g(x)的导数是f'(x)-g'(x)。

三、乘积法则如果f(x)和g(x)都是可导函数,则它们的乘积f(x)g(x)的导数是f'(x)g(x)+f(x)g'(x)。

四、商法则如果f(x)和g(x)都是可导函数,且g(x)≠0,则它们的商f(x)/g(x)的导数是[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。

如果f(u)是一个可导函数,而u=g(x)是一个可导的函数,则复合函数y=f(g(x))的导数是dy/dx = dy/du * du/dx = f'(u) * g'(x)。

这个法则是链式法则的核心,也是复合函数求导的关键。

对于指数函数 f(x) = a^x,其中 a 是一个正实数,则它的导数是f'(x) = (ln a) * a^x。

对于对数函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,则它的导数是 f'(x) = 1 / (x * ln a)。

这是一些常见的简单复合函数求导法则。

在实际应用中,我们经常会遇到更复杂的函数,需要根据特定函数的性质和结构来应用合适的求导法则。

掌握这些法则可以帮助我们更准确地计算各种复合函数的导数,并应用于相关问题的求解中。

复合函数导数公式及运算法则

复合函数导数公式及运算法则

复合函数导数公式及运算法则1.基本公式:设有两个函数$f(x)$和$g(x)$,它们的复合函数为$h(x)=f(g(x))$。

那么$h(x)$的导数可以表示为:$$\frac{{dh}}{{dx}} = \frac{{df}}{{dg}} \cdot\frac{{dg}}{{dx}}$$或者可以写成简洁的形式:$$h'(x) = f'(g(x)) \cdot g'(x)$$这个公式是复合函数导数的基本公式,也是后续运算法则的基础。

2.反函数法则:设有函数$y=f(x)$,如果$f(x)$的反函数存在且可导,那么反函数$f^{-1}(x)$的导数可以表示为:$$(f^{-1})'(x) = \frac{1}{{f'(f^{-1}(x))}}$$3.乘积法则:设有两个函数$f(x)$和$g(x)$,它们的乘积为$h(x) = f(x) \cdot g(x)$。

那么$h(x)$的导数可以表示为:$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$这个公式可以直接应用于两个或多个函数的乘积的导数运算。

4.商法则:设有两个函数$f(x)$和$g(x)$,它们的商为$h(x) =\frac{{f(x)}}{{g(x)}}$。

那么$h(x)$的导数可以表示为:$$h'(x) = \frac{{f'(x) \cdot g(x) - f(x) \cdotg'(x)}}{{(g(x))^2}}$$这个公式可以用于计算两个函数的商的导数。

5.复合函数的高阶导数:复合函数的高阶导数是指对复合函数进行多次求导的结果。

根据基本公式,我们可以计算复合函数的高阶导数。

例如,对于三次导数,我们可以应用基本公式三次,得到如下的表达式:$$h''(x) = [f'(g(x)) \cdot g'(x)]' = f''(g(x)) \cdot(g'(x))^2 + f'(g(x)) \cdot g''(x)$$类似地,我们可以计算更高阶的导数。

复合函数的求导法则

复合函数的求导法则

复合函数的求导法则复合函数是由两个或多个函数的组合构成的函数。

在数学中,复合函数的求导法则是一种用于计算复合函数导数的规则。

对于一对函数u(x)和v(x),其中u(x)是v(x)的内函数,即v(x)=u(f(x)),我们可以使用链式法则来求解复合函数的导数。

链式法则的表述如下:若y=u(v(x)),其中u(t)和v(x)均可导,则y对x的导数等于u对v的导数乘以v对x的导数,即:dy/dx = du/dv * dv/dx下面我们通过具体的例子来解释复合函数的求导法则,并应用链式法则来计算复合函数的导数。

假设我们想要求解函数y=(2x+1)^3的导数。

我们可以将该函数看作是一个复合函数,其中u(t)=t^3,v(x)=2x+1,即y=u(v(x))。

首先,我们求解 u(t) 对 t 的导数 du/dt。

根据幂函数的导数公式,我们有 du/dt = 3t^2然后,我们求解 v(x) 对 x 的导数 dv/dx。

由于 v(x) = 2x + 1,我们可以直接应用导数的线性性质得到 dv/dx = 2最后,我们将 du/dt 和 dv/dx 相乘,得到 dy/dx = du/dv * dv/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^2所以,函数 y = (2x + 1)^3 对 x 的导数为 dy/dx = 6(2x + 1)^2以下是一些其他常见的复合函数的导数求解例子:1.y=e^x^2首先,设置u(t)=e^t,v(x)=x^2求导得到 du/dt = e^t,dv/dx = 2x。

最后,dy/dx = du/dv * dv/dx = e^(x^2) * 2x。

2. y = ln(2x + 1)首先,设置 u(t) = ln(t),v(x) = 2x + 1求导得到 du/dt = 1/t,dv/dx = 2最后,dy/dx = du/dv * dv/dx = (1/(2x + 1)) * 2 = 2/(2x + 1)。

复合函数导数公式及运算法则

复合函数导数公式及运算法则

复合函数导数公式及运算法则复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。

下面是由小编为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。

复合函数导数公式.常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。

在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。

复合函数求导公式运算法则

复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。

2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。

3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。

4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。

5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。

7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。

8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。

下面通过实际例子来说明复合函数求导公式的运算法则。

例子1:求函数y=(2x+1)^3的导数。

解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。

复合函数求导法则有哪些呢

复合函数求导法则有哪些呢复合函数的求导法则同学们清楚吗,如果不清楚,快来小编这里瞧瞧。

下面是由小编为大家整理的“复合函数求导法则有哪些呢”,仅供参考,欢迎大家阅读。

复合函数求导法则有哪些呢Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3拓展阅读:求导公式运算法则是什么运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

导数也叫导函数值,又名微商,是微积分中的重要基础概念。

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。

求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

复 合 函 数 的 求 导 法 则



1 u

c
1 os2
v

1 2

1
1
1
tan( x ) cos2 ( x ) 2
24
24

2
sin(
x


1 )c
os(x


)

1 sin(x

)

sec
x.
24 24
2
熟悉了复合函数的求导法则后,中间变量默记在心, 由外及里、逐层求导。
(A) 例6 求y (3x 2)5 的导数
所以
yx

yu

u

x

1 u
(2x)

2x x2 1
(A) 例3 求函数 y cos2 x 的导 数
解:设 y u 2 则 u cos x
因为
yu

2u,
u

x


sin
x
所以
yx

yu

u

x
2u(sin x) 2cosxsin x sin 2x
10 x(1
1
x) 3

(5x 2

4) 1
(1
2
x) 3
(1)
3
10x3 1 x 1 (5x2 4) 1 .
3
3 (1 x)2
(2) y (x sin2 x)4 解 :y 4(x sin 2 x)3 (x sin 2 x)
4(x sin 2 x)3[x (sin 2 x)] 4(x sin 2 x)3[1 2sin x(sin x)] 4(x sin 2 x)3 (1 2sin x cos x) 4(x sin 2 x)3 (1 sin 2x)

复合函数求导法则公式

复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。

设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。

链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。

例如,设y=sin(x^2),我们需要求解dy/dx。

首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。

其次,求解du/dx=2x。

最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。

2.乘积法则:乘积法则用于求解两个函数乘积的导数。

设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。

乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。

根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。

3.商规则:商规则用于求解两个函数的商的导数。

设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。

商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。

根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。

链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 f ( ) x
×

1 1 2 f ( ) x x
( x 2 1 ) f
2x x2 1
小结
* 复合函数求导公式: f ( x ) f (u ) ( x ) 关键:分清函数的复合关系,合理选定中间变量。 利用复合函数的求导公式可以求抽象函数的导数。 * 抽象复合函数的导数: 对于抽象复合函数的求导, 要从其形式上把握其 结构特征,找出中间变量;另外要充分运用复合关
100 y h(t ) 2t 1 求其在 t 3 时的导数,并解释其意义。解析
例4 求列函数的导数:
(1) y f ( x )
2
( 2) y f (sin x )
前面所求的都是具体的复合函数的导数,而此题 中的对应法则 f 是未知的,是抽象的复合函数。它们
的导数如何求得??
知识回顾
1、导数公式表
函数 导函数
y c(c是常数)
y x (为实数)
y a x (a 0, a 1)
y 0 y x 1
y a x ln a
ye
x
y e x
y 1 x ln a 1 y x
y log a x (a 0, a 1)
y ln x
y sin x
y cos x
Title
y cos x
y sin x
y 1 cos 2 x
1 sin 2 x
y tan x
y cot x
y
* 导数的加减法法则: f ( x) g ( x) f ( x ) g ( x)
分运用复合关系的求导法则。
解: (1)函数是由 y f (u ) 与 u ( x ) x 2复合而成的, 由复合函数的求导法则知:
f (u ) ( x) f (u ) 2 x 2 xf ( x 2 ) y
(2)函数由 y f (u )与 u ( x) sin x 复合而成,
3 ( 3 x 1 ) f (u ) ( x) 3 2 u 2 3x 1
例2
1
解: 令 u ( x) 2 x 1 ,则函数是由 f (u ) u 3与
u ( x) 2 x 1 复合而成,由复合函数求导法则
可知:
(2x 1) f (u) ( x)
由复合函数的求导法则知:
y f (u ) ( x) f (u ) cos x cos xf (sin x)
练习
x y y yu u
' ' x
3 ;
' x
x 分析三个函数解析式以及导数 yu , u , y
之间的关系:
19:49:27
概括
一般地,对函数 y f (u ) 和 u ( x) ax b , 给定 x 的一个值,可得 u 的值,进而确定 y 的值, 这就确定了新函数 y f (ax b),它是由 y f (u ) 和u ( x) ax b复合而成的,我们称之为复合函 数,其中

系的求导法则。
结束
分析: 利用复合函数的求导法则来求导数时,首先要 弄清复合关系,而选择中间变量是复合函数求导的 关键。
解: 1 令 u ( x ) 3 x 1 ,则函数是由 f (u ) u u 2 与 u ( x ) 3 x 1 复合而成,由复合函数求导法则 可知:
① y x y [(3x 2) ]' 9 x 12x 4 18 x 12
'
'
2
问题: 如何求y (3x 2) 的导数?
2
2 '
y ② 其实, (3 x 2)
2
是一个复合函数,
由 yu
yu
2
与 u 3 x 2复合而成 .
2u

6 x 4 ; ux
u 是中间变量。
复合函数 y f (ax b) 的导数: f (u ) f (u ) ( x) af (ax b)
注意: 复合函数的中间变量可以是任何函数,在高中
阶段我们只讨论 u ( x) ax b 的情况。
推广:
复合函数 y f (x ) 中,令 u (x ),则
概括
分析: 函数 y 100 由 f ( x ) 100 与 x (t ) 2t 1 2t 1 x 复合而成。 解: 令 x (t ) 2t 1 ,由复合函数求导法则可 以求得:
(t ) f (t ) f ( x) (t ) h 100 200 2 2 x ( 2t 1)2
3

3u 2 2 6( 2 x 1)2
总结
利用复合函数的求导法则来求导数时,选择中间 变量是复合函数求导的关键。必须正确分析复合函数 是由哪些基本函数经过怎样的顺序复合而成的,分清
其间的复合关系。要善于把一部分量、式子暂时当作
一个整体,这个暂时的整体,就是中间变量。求导时 需要记住中间变量,注意逐层求导,不遗漏,而其中 特别要注意中间变量的系数,求导后,要把中间变量 转换成自变量的函数。
f ( x) g ( x )

f ( x ) g ( x )
* 导数的乘除法法则:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
f ( x) f ( x ) g ( x ) f ( x ) g ( x ) g ( x) g 2 ( x)
对x求导
f ( x)

f (u ) ( x )
对 (x )求导
注意:不要写成 f (x )!
证 设变量 x 有增量 x,相应地变量 u 有 增量 u, 而 y 有增量 y. 由 于 u 导 数 存 在 , 从
所以 lim u 0.
x 0
y y u lim y lim u lim lim x 0 u x 0 x x 0 x x 0 u x
200 ∴ h( 3) (cm / s ) 49
200 cm / s 。 当 t 3 时,水面高度下降的速度是 49
在对法则的运用熟练后,可以不必写中间步骤。 练习
分析: 求复合函数的导数,关键在于分清函数的复合关 系,合理选定中间变量,明确求导过程中每次是哪
个变量对哪个变量求导。
而对于抽象复合函数的求导,一方面要从其形式 上把握其结构特征,找出中间变量,另一方面要充
(1) y (5 x 2) ( 2) y e1cos x
10
sin x e1cos x y
2 2. 求曲线 y x ( 2 x 1) 在 x 6 处的切线方程。
43 x y 143 0
例4
动手做一做
求下列函数的导数:
1 (1) y f ( ) x ( 2) y f ( x 2 1 )
y u lim lim y u , u x u 0 u x 0 x

y y u . x u x
例1 求函数 y 3 x 1 的导数。
解析
例2 求函数 y ( 2 x 1) 的导数。
3
解析
例3 一个港口的某一观测点的水位在退潮过程中, 水面高度 y 关于时间 t 的函数为:
解析
复合函数求导法则的注意问题: (1)首先要弄清复合关系,特别要注意中间变量; (2)尽可能地将函数化简,然后再求导; (3)要注意复合函数求导法则与四则运算的综合 运用; (4)复合函数求导法则,常被称为“链条法则”,
一环套一环,缺一不可。
例3
动手做一做
1. 求下列函数的导数:
y 50(5 x 2)
相关文档
最新文档