13、三角函数(01)

合集下载

三角函数三角函数的定义

三角函数三角函数的定义

02
正弦函数
定义
直角三角形中,正弦函数定义为一条直角边的比值:sin(A) = 直角边/斜边 在直角坐标系中,单位圆上任意一点的x轴投影就是该点的正弦值 正弦函数是周期性的,周期为2π
性质
01
02
03
正弦函数是周期性的,这意味着它会 在固定的间隔内重复其形状和大小
正弦函数的最大值为1,最小值为-1
正割函数
定义
正割函数是函数f(x)在区间 (0,π/2)上的倒数,记作sec x
。即:sec x = 1/cos x。
图像
正割函数的图像与正弦函数的图 像类似,只是振幅不同。
性质
正割函数是周期函数,其周期为2π 。其定义域为{x|x≠π/2 + kπ, k∈Z}。
余割函数
定义
01
余割函数是函数f(x)在区间(0,π/2)上的倒数,记作csc x。即:
THANK YOU.
这些函数按照角度范围可以分为三类:锐角三角函数、任意 角三角函数和反三角函数
功能
1
三角函数在数学、物理、工程和计算机科学等 多个领域都有广泛的应用
2
它们可以用于解决直角三角形中的角度和边长 问题,以及极坐标系中的位置和运动问题
3
同时,三角函数也是解决许多其他问题的重要 工具,例如信号处理、图像处理、交流电、振 动分析等
几何
三角形计算
三角函数在三角形计算中有着广泛应用,如正弦定理、余弦定理和勾股定理 等。
圆和极坐标系
三角函数还可以用于描述圆和极坐标系中的相关几何量,如半径、角度和距 离等。
金融
复利计算
三角函数在复利计算中有着应用,如连续复利公式中涉及到指数函数和三角函数 。

三角函数的图像变换

三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。

三角函数表

三角函数表
CREATE TOGETHER
DOCS SMART CREATE
三角函数表:概念与应用
DOCS
01
三角函数的基本概念
直角三角形与三角函数的定义
01
直角三角形的概念
• 两条直角边的边长互为邻边
• 两条直角边之间的夹角为直角
02
三角函数的定义
• 正弦函数:sinθ = 对边/斜边
• 余弦函数:cosθ = 邻边/斜边
三角函数的关系
• 和差角公式:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
• 积商角公式:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
• 倍角公式:sin(2a) = 2sin(a)cos(a),cos(2a) = cos^2(a) - sin^2(a)
三角函数的乘法公式与除法公式
三角函数的乘法公式
三角函数的除法公式
• sin(a)sin(b) = 1/2[cos(a - b) - cos(a + b)]
• sin(a)/cos(a) = tan(a)
• cos(a)cos(b) = 1/2[cos(a + b) + cos(a - b)]
• cos(a)/sin(a) = cot(a)
DOCS
• sin(90°) = 1
• cos(90°) = 0
• tan(90°) = 无定义
任意角度三角函数表
• 任意角度三角函数值
• 利用计算器或软件计算
• 使用反正弦、反余弦、反正切函数转换
• 利用三角函数性质和关系计算
03
三角函数的转换与应用

13三角函数的诱导公式(1)

13三角函数的诱导公式(1)

公式一~四可用下面的话来概括:
2k ( k Z ), - , 的三角函数值,等于角 的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
Hale Waihona Puke 即: 函数名不变,符号看象限!“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可以 通过先假设a是锐角,然后由等号左边的式子中的角 的象限来判断。 如:sin(π+a),假设 a 是锐角,则π+a 是第三象限角 ,所以sin(π+a)=-sina
任意正角的 三角函数
公式一
0°到360°的角 的三角函数
公式二或四
锐角三 角函数
填表:

sin
-

6
2 3
3 2
1 2
3 4
2 2
2 2
7 6
1 2
3 2 3 3
5 3
3 2
1 2
3 2 3 3
cos
tan
1 2
- 3
-1
- 3
三、例题分析
cos(180 ) sin( 360 ) . 例2、 化简: sin( - - 180 ) cos( -180 - )
一、复习回顾 1、终边相同的角的三角函数关系 由三角函数定义可得(诱导公式一) 终边相同的角的三角函数的值相等.
sin( 2k ) sin tan( 2k ) tan
cos( 2k ) cos (k Z )
注意:(1)利用公式一,可以把任意角的三角函数值转 换为 0°到360°角的三角函数值。
α与-α关于x轴对称
O
-
1

专题01 三角函数的实际应用(解析版)

专题01 三角函数的实际应用(解析版)

一、三角函数的实际应用知识点拨一、在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义边范围数量关系正弦斜边的对边A A ∠=sin c a A =sin 1sin 0<<A (∠A 为锐角)余弦斜边的邻边A A ∠=cos cb A =cos 1cos 0<<A (∠A 为锐角)B A cos sin =BA sin cos =1cos sin 22=+A A 正切的邻边的对边A tan ∠∠=A A baA =tan 0tan >A (∠A 为锐角)余切的对边的邻边A A A ∠∠=cot ab A =cot 0cot >A (∠A 为锐角)B A cot tan =B A tan cot =AA cot 1tan =(倒数)1cot tan =⋅AA 二、0°、30°、45°、60°、90°特殊角的三角函数值三角函数0°30°45°60°90°αsin 02122231αcos 12322210αtan 03313不存在αcot 不存在31330三、常见术语:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

对边邻边AC(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l =。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。

例题演练一.选择题(共20小题)1.如图,为了测量旗杆AB 的高度,小明在点C 处放置了高度为2米的测角仪CD ,测得旗杆顶端点A 的仰角∠ADE =50.2°,然后他沿着坡度为i =的斜坡CF 走了20米到达点F ,再沿水平方向走8米就到达了旗杆底端点B .则旗杆AB 的高度约为( )米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A .8.48B .14C .18.8D .30.8【解答】解:如图,延长AB 交水平线于M ,作FN ⊥CM 于N ,延长DE 交AM 于H .:i h l=hlα在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.2.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A 的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90【解答】解:作AH⊥ED交ED的延长线于H,设DE=x米,∵CD的坡度:i=1:2,∴CE=2x米,由勾股定理得,DE2+CE2=CD2,即x2+(2x)2=(30)2,解得,x=30,则DE=30米,CE=60米,设AB=y米,则HE=y米,∴DH=y﹣30,∵∠ACB=45°,∴BC=AB=y,∴AH=BE=y+60,在Rt△AHD中,tan∠DAH=,则≈0.4,解得,y=90,∴高楼AB的高度为90米,故选:D.3.小敏利用无人机测量某座山的垂直高度AB.如图所示,无人机在地面BC上方130米的D 处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A ,B,C,D在同一平面内,则此山的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.146.4米B.222.9米C.225.7米D.318.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣130)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=130米,在Rt△DCR中,DR===65(米),∵tan∠ADH=,∴=0.4,解得x≈222.9,∴AB=222.9(米),故选:B.4.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.20.8B.21.6C.23.2D.24【解答】解:根据题意可知:∠AHC=90°,∠ACH=45°,∴AH=HC,∵DN:NC=i=1:2.4,CD=5.2米,∴DN=2米,CN=4.8米,设DG⊥AB,垂足为G,在Rt△ADG中,∠ADG=37°,∵AG=AB﹣GB=AB﹣(DN﹣EF)=AB﹣1.2,又DG=NH=CN+HC=4.8+AH=4.8+AB+0.8=AB+5.6,∴tan∠ADG=,∴×(5.6+AB)≈AB﹣1.2,解得AB=21.6(米),答:碧津塔AB的高约为21.6米.故选:B.5.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B 之间的距离约为( )(参考数据:=1.732)A.2.33米B.2.35米C.2.36米D.2.42米【解答】解:如图,延长CA交DB延长线于点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴==,设AF=5x,BF=12x,在Rt△ABF中,由勾股定理知,5.22=25x2+144x2.解得:x=0.4,∴AF=5x=2(米),BF=12x=4.8(米),由题意得:AC=6米,∠CAG=∠C=60°,AG∥DF,∴∠EAF=90°﹣60°=30°,∠AEF=∠CAG=60°,∴EF=AF=(米),AE=2EF=(米),∵∠C=∠CED=60°,∴△CDE是等边三角形,∴DE=CE=AC+AE=(6+)米,∵BD=DE﹣EF﹣BF=6+﹣﹣4.8≈2.35(米),即浮漂D与河堤下端B之间的距离约为2.35米,故选:B.6.如图,为测量观光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D点测得塔顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点A,B,C,D在同一平面内,则观光塔AB的高度约为( )米.(结果精确到0.1米,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)A.10.5米B.16.1米C.20.7米D.32.2米【解答】解:如图,延长AB交过点D的水平面于F,作CE⊥DF于E,由题意得:CD=26米,BC=EF=9米,BF=CE,在Rt△CDE中,i=1:2.4,CD=26米,∴BF=CE=10米,ED=24米,在Rt△AFD中,∠AFD=90°,FD=EF+ED=33米,∠ADF=52°,∴AF=FD•tan52°≈33×1.28=42.24(米),∴AB=AF﹣BF=42.24﹣10≈32.2(米);即建筑物AB的高度为32.2米;故选:D.7.如图,一棵松树AB挺立在斜坡CB的顶端,斜坡CB长为52米,坡度为i=12:5,小张从与点C相距60米的点D处向上爬12米到达观景台DE的顶端点E,在此测得松树顶端点A的仰角为39°,则松树的高度AB约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.16.8米B.28.8米C.40.8米D.64.2米【解答】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.8.小明和好朋友一起去三亚旅游,他们租住的酒店AB坐落在坡度为i=1:2.4的斜坡CD上,酒店AB高为129米.某天,小明在酒店顶楼的海景房A处向外看风景,发现酒店前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线上的点D的距离CD为260米,雕像C与酒店AB的水平距离为36米,他站在A处还看到远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线上的点D的距离ED的长大约为( )米.(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276【解答】解:如图,延长AB交ED的延长线于G,过C作CH⊥DG于H,CF⊥BG于F,则四边形CFGH是矩形,∴HG=CF=36(米),FG=CH,在Rt△CDH中,CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,CF=36米,BF:CF=1:2.4,∴BF=15(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°=≈0.5,即≈,解得:DE≈212(米),故选:B.9.保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)A.18.3米B.19.3米C.20米D.21.2米【解答】解:连接DE,作BF⊥DE于F,BG⊥DA于G,如图:则DF=BG,BF=DG=AD+AG,∵AB=斜坡AB的坡度i=0.75=,∴设BG=3xm,则AG=4xm,BF=DG=20+4x(m),CF=BF+BC=20+4x+20=40+4x (m),由题意得:∠EBF=37°,∠ECF=22°,∵tan∠BEF==,tan∠ECF==,∴EF=tan37°(20+4x),EF=tan22°(40+4x),∴0.75(20+4x)=0.40(40+4x),解得:x=,∴DF=BG=3x=(m),EF=0.40(40+4x)=(m),∴DE=DF+EF=+≈19.3(m);故选:B.10.小李同学想测量广场科技楼CD的高度,他先在科技楼正对面的智慧楼AB的楼顶A点测得科技楼楼顶C点的仰角为45°.再在智慧楼的楼底B点测得科技楼楼顶C点的仰角为61°,然后从楼底B点经过4米长的平台BF到达楼梯F点,沿着坡度为i=1:2.4的楼梯向下到达楼梯底部E点,最后沿水平方向步行20米到达科技楼楼底D点(点A、B、C、D、E 、F在同一平面内,智慧楼AB和科技楼CD与水平方向垂直).已知智慧楼AB的高为24米,则科技楼CD的高约为( )米.(结果精确到0.1,参考数据:sin61°≈0.87.cos61°≈0.48,tan61°≈1.80)A.54.0B.56.4C.56.5D.56.6【解答】解:作AM⊥CD于M,FN⊥CD于N,FG⊥DE于点G,则四边形AMNB,四边形NDGF是矩形.在Rt△FEG中,FG:EG=1:2.4,设FG=5x,则EG=12x,∴FN=DG=12x+20,AB=24米,AM=BN=(24+12x)米,∵∠CAM=45°,∴AM=CM=(24+12x)米,∴CN=CM+MN=(48+12x)米,∵∠CBN=61°,∴tan∠CBN==,∴x=,∴CD=CM+MN+DN=24+12x+24+5x=24+17×+24=56.5(米).故选:C.11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福士最高楼顶点F的仰角为45°,此时他头顶正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD 走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为( )(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米【解答】解:如图所示:延长AC和FE交于点G,过点B作BM⊥FE于点M,作DH⊥AG于点H,得矩形ABMG、DHEG,设DH=x,则HC=2x,BM=AG=160+120+2x=280+2x.EG=DH=x,∵∠FAG=45°,∠FGA=90°,∴∠AFG=45°,∴FG=AG,EF=FG﹣EG=AG﹣EG=280+2x﹣x=280+x,∴FM=FG﹣MG=280+2x﹣146=134+2x,在Rt△FBM中,tan31°=,即=0.6,解得x=42.5,则EF=280+x=322.5.故选:B.12.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是( )(参考数据:sin18°≈0.29,cos18°≈0.95,tan18°≈)A.12.3米B.9.8米C.7.9米D.7.5米【解答】解:作BC⊥PA交PA的延长线于点C,作QD⊥BC于点D,∵扶梯AB的坡度i=3:4,∴,设BC=3x米,则AC=4x米,∵AP=8米,QP=1.5米,∴DQ=(4x+8)米,BD=(3x﹣1.5)米,∵∠BQD=18°,tan∠BQD=,tan18°≈,∴≈,解得x=2.5,∴BC=3x=7.5,∵点B到顶部的距离是2.3米,∴点C到顶部的距离是2.3+7.5=9.8(米),即点P到顶部的距离是9.8米,故选:B.13.如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为( )m.(结果精确到0.1m,参考数据:≈1.732)A.59.8B.58.8C.53.7D.57.9【解答】解:如图,作DC⊥EP延长线于点C,作DF⊥ME于点F,作PH⊥DF于点H,则DC=PH=FE,DH=CP,HF=PE,∵山坡坡度i=DC:CP=1:2.4,PD=39,设DC=5x,则CP=12x,根据勾股定理,得(5x)2+(12x)2=392,解得x=3,则DC=15,CP=36,∴DH=CP=36,FE=DC=15,设MF=y,则ME=MF+FE=y+15,在Rt△DMF中,∠MDF=30°,∴DF=y,在Rt△MPE中,∠MPE=60°,∴PE=(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=36,解得y=7.5+18,∴ME=MF+EF=7.5+18+15≈53.7(m).答:电视塔的高度ME约为53.7米.故选:C.14.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度i=1:0.75的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为53°(小辉的身高忽略不计),已知广告牌DE=15米,则该主楼AD的高度约为( )(结果精确到整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.80m B.85m C.89m D.90m【解答】解:过C作CF⊥AE于F,CG⊥AB于G,如图所示:则四边形AFCG是矩形,∴AF=CG,∵斜坡AB的坡度i=1:0.75==,BC=50米,∴BG=30(米),AF=CG=40(米),设DF=x米.在Rt△DCF中,∠DCF=45°,∴CF=DF=x米.在Rt△ECF中,∠ECF=53°,∴EF=tan53°•CF=1.3x(米),∵DE=15米,∴1.3x﹣x=15,∴x=50,∴DF=50米,∴AD=AF+DF=40+50=90(米),故选:D.15.图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)( )A.18B.19C.20D.21【解答】解:如图,过点D作DP⊥AB于点P,作AQ⊥BC交CB延长线于点Q,∵∠DBC=60°、CD=8,∴BD===16,∵AB的坡度i=tan∠ABQ=,∴∠ABQ=∠EAB=60°,∴∠ABD=60°,∴PD=BD sin∠ABD=16×=8,BP=BD cos∠ABD=16×=8,∵∠EAD=15°,∴∠DAP=∠BAE﹣∠EAD=45°,∴PA=PD=8,则AB=AP+BP=8+8,∴AQ=AB cos∠ABQ=(8+8)×=4+12≈19,故选:B.16.3月中旬某中学校园内的樱花树正值盛花期,供全校师生驻足观赏.如图,有一棵樱花树AB垂直于水平平台BC,通往平台有一斜坡CD,D、E在同一水平地面上,A、B、C、D、E均在同一平面内,已知BC=3米,CD=5米,DE=1米,斜坡CD的坡度是,李同学在水平地面E处测得树冠顶端A的仰角为62°,则樱花树的高度AB约为( )(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)A.9.16米B.12.04米C.13.16米D.15.04米【解答】解:过C作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,如图所示:则四边形BHGC为矩形,∴BH=CG,GH=BC=3米,∵斜坡CD的坡度是=,∴设CG=3x米,则DG=4x,由勾股定理得,CD2=CG2+DG2,即52=(3x)2+(4x)2,解得:x=1,∴BH=CG=3(米),DG=4(米),∴EH=DE+DG+GH=1+4+3=8(米),在Rt△AHE中,tan∠AEH==tan62°≈1.88,∴AH≈1.88EH=1.88×8=15.04(米),∴AB=AH﹣BH≈15.04﹣3=12.04(米),故选:B.17.某数学兴趣小组在歌乐山森林公园借助无人机测量某山峰的垂直高度AB.如图所示,无人机在地面BC上方120米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则山峰的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.141.4米B.188.6米C.205.7米D.308.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣120)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=120米,在Rt△DCR中,DR=≈=60(米),∵tan∠ADH=,∴=0.4,解得x≈205.7,∴AB=205.7(米),故选:C.18.小菁在数学实践课中测量路灯的高度.如图,已知她的身高AB1.2米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°.那么该路灯顶端O到地面的距离约为( )(sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2 .1)A.3.2米B.3.9米C.4.4米D.4.7米【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∴BF=BD+DF=3+x,∵tan65°=,∴OF=x tan65°,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x≈0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15(米),∴OE=3.15+1.2=4.35≈4.4(米),故选:C.19.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)A.23.1B.21.9C.27.5D.30【解答】解:如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为:N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB=2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选:B.20.如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方2m处的点C出发,沿坡度l=1:2的斜坡CD前进5m到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5m,已知A,B,C,D,E在同一平面内,AB⊥BC,AB∥D E,则旗杆AB的高度是( )(参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.732,≈2.236,结果保留一位小数)A.8.2B.8.4C.8.6D.8.8【解答】解:延长ED交BC的延长线于点F,作EG⊥AB于G,DH⊥AB于H,则四边形GHDE为矩形,∴GH=DE=1.5,GE=DH,设DF=x,∵斜坡CD的坡度为1:2,∴CF=2x,由勾股定理得,x2+(2x)2=52,解得,x=,则DF=,CF=2,∴GE=DH=BC+CF=2+2,在Rt△AGE中,tan∠AEG=,则AG=EG•tan∠AEG≈(2+2),∴AB=AG+GH+BH≈4.85+1.5+2.24≈8.6(米),故选:C.。

(经典讲义)高一数学下必修四第一章三角函数

(经典讲义)高一数学下必修四第一章三角函数

高一数学下必修四第一章三角函数第一讲:三角函数(1)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k kαα⋅+<<⋅+∈Z第三象限角的集合为{}360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k kαα⋅+<<⋅+∈Z终边在x轴上的角的集合为{}180,k kαα=⋅∈Z终边在y轴上的角的集合为{}18090,k kαα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k kαα=⋅∈Z3、与角α终边相同的角的集合为{}360,k kββα=⋅+∈Z4、已知α是第几象限角,确定()*nnα∈N所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭.8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x rα=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭问题1各是第几象限角问题:已知α角是第三象限角,则2α,2问题21.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

三角函数的图像和性质


当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。

三角函数的概念课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册+

人教2019A版必修 第一册
5.2.1 三角函数的概念
学习目标
01 借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; 02 掌握任意角三角函数(正弦、余弦、正切)在各象限的符号;
教学重难点
重点 理解任意角三角函数(正弦、余弦、正切)的定义;
难点 理解任意角三角函数(正弦、余弦、正切)的定义;
END
新知讲解 任意角三角函数
在平面直角坐标系中,设α是一个任意角,α∈R它的终边与单位圆交 于点P(x,y),那么:
y
r=1
o
x
r=1
新知讲解 任意角三角函数 设α是一个任意角,它的终边与单位圆交于点P( x , y )则:
定义:
y
(1)y叫做α的正弦,记作sinα,即sinα=y;
(2)x叫做α的余弦,记作cosα,即cosα=x;
y
O
x
1
课堂练习
角度
特殊角的三角函数值
弧度1Leabharlann 1-1无1

-1

课堂练习
1.已知 的终边经过点
求 角的正弦,余弦,正切的值.
P(-3,-4)
课堂练习
2.求 的正弦,余弦,正切的值.
y
O
x
1
课堂小结
作业布置
刮开有奖
175页1、2
刮开有奖
自主安排
刮开有奖
175页第2题
本堂课结束
祝各位同学学业进步
复习巩固
象限角 轴线角
终边位置 任意角 旋转方向
正角 负角 零角
终边相同的角构成的集合:
复习巩固
特殊角的度数与弧度数的对应表

弧度
问题导入

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。

三角函数的定义与性质


有界性
三角函数的有 界性是指它们 在一定范围内 取值有限
有界性的证明 通常需要利用 三角函数的定 义和性质,如 周期性、对称 性等
有界性是三角函 数在解决实际问 题中非常重要的 性质之一,例如 在信号处理、控 制系统等领域
有界性还可以 帮助我们理解 三角函数的其 他性质,如单 调性、周期性 等
图像与性质
PART 05
三角函数的和差 化积公式
和差化积公式的基本形式
正弦和差化积公式: sin(A+B) = sinAcosB + cosAsinB
余弦和差化积公式: cos(A+B) = cosAcosB - sinAsinB
正切和差化积公式 :tan(A+B) = (tanA+tanB)/(1tanAtanB)
性质:余弦函数是一个周期函数,其周期为2π。
图像:余弦函数的图像是一个正弦曲线,其最大值为1,最小值为-1。
正切函数
定义:正切函数是三角函数之一,表示单位圆上某点与x轴正方向的夹角。 公式:tan(θ) = sin(θ) / cos(θ) 性质:正切函数在定义域内是连续的,但在某些点处不可导。 应用:正切函数在解析几何、微积分等领域有着广泛的应用。
THANK YOU
汇报人:
数学竞赛:诱 导公式是数学 竞赛中常见的 题型,掌握诱 导公式有助于 提高解题能力
特殊角度的三角函数值
0 °: s i n ( 0 °) = 0 , co s ( 0 °) = 1 , ta n ( 0 °) = 0
4 5 °: s i n ( 4 5 °) = √ 2 / 2 , co s ( 4 5 °) = √ 2 / 2 , ta n ( 4 5 °) = 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数练习(01)
1.o 585sin 的值为 A.22
B.22
- C.23 D.23
-
2.终边在第一象限的角的集合是
A.{}o
0900|<<αα B.{}
Z k ,360k 90360k |o o o ∈⋅+<<⋅αα
C.{}o 0900|≤≤αα
D.{}Z k ,360k 90360k |o 0o ∈⋅+≤≤⋅αα
3.已知角α的终边过经点)3,1(P -,则αtan =
A.3 B .23 D.1
2-
4.若三角形的两内角A 、B 满足0B cos A sin <⋅,则此三角形的形状为
A.锐角三角形
B.钝角三角形
C.直角三角形
D.不能确定
5.若角α的终边落在直线x 2y =上,则αsin 的值为 A.55
2± B.55
± C.55
2 D.21
±
6.若53sin -=α,)2,23(ππ
α∈,那么=αtan A.35- B.34- C.4
3- D.34
7.化简()αααcos 1tan 1sin 1-⎪⎭⎫
⎝⎛+的结果是
A.αsin
B. αcos
C.αsin 1+
D. αcos 1+
8.若2tan =α,则ααα
αcos 2sin cos sin 2+-的值为
A.0
B.43
C.1
D.45
9.已知61
cos sin =αα,且24π
απ
<<,则ααsin cos -的值等于
A.32
B.36
C.36
± D.
10.已知α为第四象限角,化简=+-+-+αα
ααcos 1cos 1cos 1cos 1 A.αsin 2
B.αsin
C.αsin 2
- D.αsin -
11.在]2,0[π上满足x cos x sin ≥的x 的取值范围是 A.]2,4[π
π
B.[45,4π
π] C.]45,[π
π D.[ππ
,4]
12.若4π
<α<2π
,则sin α,cos α,tan α的大小关系是
A.cos α<sin α<tan α
B.sin α<cos α<tan α
C.cos α<tan α<sin α
D.sin
α<tan α<cos α
13.扇形的圆心角为3π
,半径为r ,则扇形内切圆面积与扇形面积的比是 A.31
B.32
C.34
D.94
14、=+-+o o o 0180cos 10270sin 30cos 290sin 5________________.
15.计算:=+-+4
5sin )32sin(49cos πππ _________________. 16.若α是第二象限角,则点P(tan α,cos α)在第____________象限
17.函数x tan y =的定义域是________________.
18.角α终边上有一点)0a ()a ,a (P ≠, 则=αsin ________________.
19.满足)2,0(,2
1cos ,23sin πααα∈><的角α的取值范围是___________. 20.已知2
1cos sin =-θθ,则=θθcos sin _____.
21.=__________________. 22.已知ααcos ,sin 是关于x 的方程01m 2mx 6x 82=+++的两个实根,则=m ___________.
23.已知一扇形的周长为c (c >0),当扇形的圆心角为何值时,它的面积最大?最大面积是多少?
24..求下列函数的定义域:
(1)y=1cos 2-x ;
(2)y=lg(3-4sin 2x)
25.已知θθθ,5m m 24cos ,5m 3m sin +-=+-=
是第二象限角,求θθcos ,sin ,m 的值.
26. 求证:
x tan 1x tan 1x sin x cos x cos x sin 2122+-=--.
27.已知32tan =
α,求α
αααααααsin cos sin cos sin cos sin cos -+++-.
28.已知α是三角形内角,5
1cos sin =
+αα,求下列各式的值: (1)ααcos sin ; (2)ααcos sin -; (3)αtan .
三角函数(1)参考答案:
BBBBA BABDC BAB 14、0 15、23-
16、三 17、},2|{Z k k x ∈+≠ππ 18、2
2± 19、)2,35()3,0(πππ 20、83 21、1 22、910- 23、16
,22
c S ==θ 24、(1)]32,32[ππππ+-k k ;(2))3,3(ππππ+-k k 25、13
12cos ,135sin ,8-===θθm 27、526 28、(1)2512-;(2)57;(3)34-。

相关文档
最新文档