三角函数的概念ppt-沪教版必修1PPT课件
合集下载
高中数学新教材必修一第五章《三角函数》(1)全套课件

(新教材)第五章 三角函 数(1)
全套课件
1.1 任意角
体操是力与美的结合,也充满了角的概念.2002年11 月22日,在匈牙利德布勒森举行的第36届世界体操锦 标赛中,“李小鹏跳”——“踺子后手翻转体180度接 直体前空翻转体900度”,震惊四座,这里的转体180 度、 转体900度就是一个角的概念.
若弧是一个整圆,它的圆心角是周角,其弧
度数是 2 ,而在角度制里它是360 ,
角度制与弧度制的互换:
(1)把角度换成弧度
360o 2 rad,
180o rad,
1o rad 0.01745rad.
180
(2)把弧度换成角度
2 rad 360o ,
rad 180o ,
1 rad
180
终边落在坐标轴上的情形
900 + k360°
y
1800 + k360°
o
或3600+ k360°
x
00 + k360°
2700 + k360°
复习回顾
1、初中几何研究过角的度量,1°的角是如何定义?角度 制呢?
答 : 规定把周角的 1 作为1度的角;而把用度做单位 360
来度量角的制度叫做角度制.
1、角的范围
初中角的定义: 从一个点出发引出的两条射线构成的 几何图形(0°,360°)
“旋转”形成角
终边
B
顶点
o
A
始边
角可以看成平面内一条射线绕着端点从一
个位置旋转到另一个位置所成的图形.
1、花样游泳中,运动员旋转的周数如何 用角度计算来表示?
2、汽车在前进和倒车中,车轮转动的角度 如何表示才比较合理?
2.我们可以使线段 OP 的长为多少,能简化上述计算?
全套课件
1.1 任意角
体操是力与美的结合,也充满了角的概念.2002年11 月22日,在匈牙利德布勒森举行的第36届世界体操锦 标赛中,“李小鹏跳”——“踺子后手翻转体180度接 直体前空翻转体900度”,震惊四座,这里的转体180 度、 转体900度就是一个角的概念.
若弧是一个整圆,它的圆心角是周角,其弧
度数是 2 ,而在角度制里它是360 ,
角度制与弧度制的互换:
(1)把角度换成弧度
360o 2 rad,
180o rad,
1o rad 0.01745rad.
180
(2)把弧度换成角度
2 rad 360o ,
rad 180o ,
1 rad
180
终边落在坐标轴上的情形
900 + k360°
y
1800 + k360°
o
或3600+ k360°
x
00 + k360°
2700 + k360°
复习回顾
1、初中几何研究过角的度量,1°的角是如何定义?角度 制呢?
答 : 规定把周角的 1 作为1度的角;而把用度做单位 360
来度量角的制度叫做角度制.
1、角的范围
初中角的定义: 从一个点出发引出的两条射线构成的 几何图形(0°,360°)
“旋转”形成角
终边
B
顶点
o
A
始边
角可以看成平面内一条射线绕着端点从一
个位置旋转到另一个位置所成的图形.
1、花样游泳中,运动员旋转的周数如何 用角度计算来表示?
2、汽车在前进和倒车中,车轮转动的角度 如何表示才比较合理?
2.我们可以使线段 OP 的长为多少,能简化上述计算?
《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )
高中数学课件三角函数ppt课件完整版

归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数
高中数学必修一课件:三角函数的概念

(3)sin αcoห้องสมุดไป่ตู้ α(α是第二象限角).
【分析】 先确定所给角的象限,再确定有关的三角函数值的符号.
【解析】 (1)∵105°,-230°均为第二象限角, ∴sin 105°>0,cos(-230°)<0.于是sin 105°cos(-230°)<0. (2)∵π2 <78π<π,∴78π是第二象限角, 则sin 78π>0,tan 78π<0.∴sin 78πtan 78π<0.
1
2
4.sin 390°=____2____;cos(-315°)=____2____;tan
8π 3 =__-___3___.
5.判断sin 3cos 4tan-234π的符号. 解析 ∵π2 <3<π,π<4<3π 2 ,∴sin 3>0,cos 4<0.
∵-234π=-6π+π4 ,∴tan-234π>0.
1.对三角函数概念的理解应注意什么? 答:①三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终 边上的位置无关,只由角α的终边位置确定,即三角函数值大小只与角有关.
②符号sin α,cos α,tan α各自是一个整体,离开“α”,“sin” “cos”“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘
课时学案
题型一 利用定义求值
例1 (1)求4π 3 的正弦值、余弦值和正切值.
【解析】
①sin
4π 3 =sinπ+π3 =-sin
π 3 =-
23,
②cos 4π 3 =cosπ+π3 =-cos π3 =-12,
③tan
4π 3 =tanπ+π3 =tan
【分析】 先确定所给角的象限,再确定有关的三角函数值的符号.
【解析】 (1)∵105°,-230°均为第二象限角, ∴sin 105°>0,cos(-230°)<0.于是sin 105°cos(-230°)<0. (2)∵π2 <78π<π,∴78π是第二象限角, 则sin 78π>0,tan 78π<0.∴sin 78πtan 78π<0.
1
2
4.sin 390°=____2____;cos(-315°)=____2____;tan
8π 3 =__-___3___.
5.判断sin 3cos 4tan-234π的符号. 解析 ∵π2 <3<π,π<4<3π 2 ,∴sin 3>0,cos 4<0.
∵-234π=-6π+π4 ,∴tan-234π>0.
1.对三角函数概念的理解应注意什么? 答:①三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终 边上的位置无关,只由角α的终边位置确定,即三角函数值大小只与角有关.
②符号sin α,cos α,tan α各自是一个整体,离开“α”,“sin” “cos”“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘
课时学案
题型一 利用定义求值
例1 (1)求4π 3 的正弦值、余弦值和正切值.
【解析】
①sin
4π 3 =sinπ+π3 =-sin
π 3 =-
23,
②cos 4π 3 =cosπ+π3 =-cos π3 =-12,
③tan
4π 3 =tanπ+π3 =tan
任意三角函数的定义PPT课件

加强数形结合数学思想的培养。
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线
沪教版(上海)高一数学上册3.1函数的概念_1课件

解析:11-+xx≠>00, ⇒x>-1 且x≠1,则f(x)的定义域是(-1,1)
∪(1,+∞).
易错、易混、易漏 4.对复合函数的定义域理解不透彻 例题:(1)若函数 f(x)的定义域为[2,3],则 f(x-1)的定义域为 ________; (2) 若 函 数 f(x - 1) 的 定义域为 [2,3] , 则 f(x) 的定义域为 ________; (3) 若函数 f(x - 1) 的定义域为 [2,3] , 则 f(x) 的 定 义 域 为 ________,f(2x+1)的定义域为________; (4)若函数 f(x)的值域为[2,3],则 f(x-1)的值域为_______;f(x) -1 的值域为________.
正解:(1)若函数 f(x)的定义域为[2,3], 则 f(x-1)有 2≤x-1≤3,解得 3≤x≤4. 即 f(x-1)的定义域为[3,4]. (2)若函数 f(x-1)的定义域为[2,3], 即 2≤x≤3,有 1≤x-1≤2. 则 f(x)的定义域为[1,2]. (3)若函数 f(x-1)的定义域为[2,3],则 f(x)的定义域为[1,2]. 则 f(2x+1)有 1≤2x+1≤2,解得 0≤x≤12. 即 f(2x+1)的定义域为0,21.
考点3 求函数的定义域
例3:(2011年江西)若函数f(x)= 域为( A )
1
,则f(x)的定义
log1 (2x 1)
2
A.-12,0
B.-12,0
C.-12,+∞
D.(0,+∞)
解析:∵log 1 (2x+1)>0,∴0<2x+1<1.∴x∈-12,0. 2
求一些具体函数的定义域,有分母的保证分母不为
∪(1,+∞).
易错、易混、易漏 4.对复合函数的定义域理解不透彻 例题:(1)若函数 f(x)的定义域为[2,3],则 f(x-1)的定义域为 ________; (2) 若 函 数 f(x - 1) 的 定义域为 [2,3] , 则 f(x) 的定义域为 ________; (3) 若函数 f(x - 1) 的定义域为 [2,3] , 则 f(x) 的 定 义 域 为 ________,f(2x+1)的定义域为________; (4)若函数 f(x)的值域为[2,3],则 f(x-1)的值域为_______;f(x) -1 的值域为________.
正解:(1)若函数 f(x)的定义域为[2,3], 则 f(x-1)有 2≤x-1≤3,解得 3≤x≤4. 即 f(x-1)的定义域为[3,4]. (2)若函数 f(x-1)的定义域为[2,3], 即 2≤x≤3,有 1≤x-1≤2. 则 f(x)的定义域为[1,2]. (3)若函数 f(x-1)的定义域为[2,3],则 f(x)的定义域为[1,2]. 则 f(2x+1)有 1≤2x+1≤2,解得 0≤x≤12. 即 f(2x+1)的定义域为0,21.
考点3 求函数的定义域
例3:(2011年江西)若函数f(x)= 域为( A )
1
,则f(x)的定义
log1 (2x 1)
2
A.-12,0
B.-12,0
C.-12,+∞
D.(0,+∞)
解析:∵log 1 (2x+1)>0,∴0<2x+1<1.∴x∈-12,0. 2
求一些具体函数的定义域,有分母的保证分母不为
高一数学必修课件第一章三角函数
积化和差与和差化积公式
要点一
积化和差公式
$sin x cos y = frac{1}{2}[sin(x + y) + sin(x - y)]$,$cos x sin y = frac{1}{2}[sin(x + y) - sin(x - y)]$,$cos x cos y = frac{1}{2}[cos(x + y) + cos(x - y)]$,$sin x sin y = frac{1}{2}[cos(x + y) - cos(x - y)]$。
PART 02
三角函数图像与性质
正弦函数图像及性质
正弦函数图像
正弦函数y=sinx的图像是一个周期函数,图像呈现波浪形, 周期为2π。在区间[0, 2π]内,图像从原点开始,上升到最高 点(π/2, 1),然后下降到最低点(π, -1),再上升到原点。
正弦函数性质
正弦函数是奇函数,即sin(-x) = -sinx。其值域为[-1, 1],在 区间[0, π/2]内单调递增,在区间[π/2, π]内单调递减。
应用
余弦定理主要用于解决已知三角 形的三边求角或者已知三角形的 两边及夹角求第三边的问题。
判断三角形形状问题
通过已知条件判断三角形形状
利用正弦定理、余弦定理以及三角形的内角和性质,可以判断三角形的形状,如等边三角形、等腰三角形、直角 三角形等。
三角形形状的判断方法
除了利用正弦、余弦定理外,还可以通过比较三角形的三边长度关系或者利用三角形的面积公式等方法来判断三 角形的形状。
等问题。
PART 05
三角函数在生活、生产中 的应用
振动、波动问题中三角函数模型建立
简谐振动
三角函数的概念 课件(39张)
tan cos = × +1× = .
数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.
因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),
所以 sin α=- ,cos α= ,
所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?
解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-
-
-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.
②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,
三角函数的定义ppt课件
(2) 熟 记 几 组 常 用 的 勾 股 数 组 , 如 (3,4,5) , (5,12,13) , (7,24,25),(8,15,17),(9,40,41)等,会给我们解题带来很多方便.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.
1 5.2.1三角函数的概念(共46张PPT)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 B.由-π2<α<0 知 α 为第四象限角,
则 tan α<0,cos α>0,点在第二象限.
()
2.已知 sin θcos θ<0,且|cos θ|=cos θ,则角 θ 是 A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
解得 b=3(b=-3 舍去).
4.sin 780°=________,cos94π=________.
答案:
3 2
2 2
探究点 1 求任意角的三角函数值 (1)已知角 α 的终边与单位圆的交点为 P35,y(y<0),求 tan α 的值.
(2)已知角 α 的终边落在射线 y=2x(x≥0)上,求 sin α,cos α 的值.
第五章 三角函数
5.2 三角函数的概念 5.2.1 三角函数的概念
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
三角函数的概念
理解三角函数的概念,会求 给定角的三角函数值
掌握各象限角的三角函数值 三角函数值的符号判断
的符号规律
诱导公式一及应用
正弦、余弦、正切都是以角为自变量,以单位圆上点的纵 三角
坐标与横坐标的比值为函数值的函数,将正弦函数、余弦 函数
函数和正切函数统称为三角函数
■微思考 1 (1)初中学习的锐角三角函数的定义是什么? 提示:如图,在 Rt△ABC 中,∠A,∠B,∠C 的对边分别为 a,b,c,则: sin B=bc=对 斜边 边, cos B=ac=斜 邻边 边, tan B=ba=邻 对边 边.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦”,即第一象限全是正,第二象限正弦
函数为正,第三象限正切、余切函数为正,
第四象限余弦函数为正.
2020年10月2日
20
• 拓展练习 函数ysinxcosxtanx|cotx|
的值域是( )
|sinx| |cosx| |tanx| cotx
• A. {-2,4}
B. {-2,0,4}
• C. {-2,0,2,4} D. {-4,-2,0, 2,4}
• 故选B.
2020年10月2日
4
• 若角α的始边为x轴的非负半轴, 顶点为坐标原点,点P(-4,3)为其终 边上一点,则cosα的值为( C)
A. 4 5
C. - 4
•
5
B. - 3 5
D. 3 5
• 解:r=5,
故选C.
cos x - 4.
2020年10月2日
r5
5
• 若θ是第二象限角,则能确定为
正值的是( C )
•
A. sin
2
B. cos
2
C. tan
2
D. cos2
•
解:因为θ是第二象限角,所
以 为 第一、三象限角,
•
2
所以tan
2
>0,故选C.
2020年10月2日
6
题型1 角所在位置及其关系
• 1. 若角2α的终边在x轴上方,那么α 是( )
• A. 第一象限角 • B. 第一或第二象限角 • C. 第一或第三象限角 • D. 第一或第四象限角
2020年10月2日
12
• 拓展练习 在半径为R的圆中,
240°的中心角所对的弧长为
________;面积为2R2的扇形的中心
角等于弧度_______l _ _ .R 4 R .
3
•
解:由弧长S 公1式lR得1R2,
•
由 2扇S 形4 . 面积公2式 2 R2
•
得
2020年10月2日
13
参考题
考
识与基本技能考查的重要内容 之一,试题经常出现且多为选
猜 择、填空题,难度一般不太高,
想 主要考查角的范围的判定、三 Nhomakorabea角函数值的符号、大小等.
2020年10月2日
3
• 若sinθcosθ>0,则θ在( ) B
• A. 第一、二象限 B. 第一、三象限
• C. 第一、四象限 D. 第二、四象限
• 解:因为sinθcosθ>0,所以sinθ、 cosθ同号. 当sinθ>0,cosθ>0时,θ 在第一象限; 当sinθ<0,cosθ<0 时,θ在第三象限,
l=20-2r cm.
•
扇形面积 S1(20-2r)r-(r-5)225. 2
•
所以,当r=5
cm时,
l r
2,
S取最大值,
为2020年2105月2日cm2,此时l=10 cm,
11
•
点评:当半径为r的扇形的
圆心角为α(α>0)弧度时,扇形的
弧 的S 面长12 ll积r的 S12计的r算2 . 计公算式公为式:为l=:αr,扇形
k∈Z.
•
因为β∈[0°,360°),
•
所以k=-10,且β=300°.
•
所以在0°~360°之间,
与3900°角终边相同的角是
300°.
2020年10月2日
15
•
1. 在写出与α角终边相同的角的
集合时要 注意单位统一,避免出现 “2kπ+360°,k∈Z或k·360°+ ,k∈Z”
之类的错误;判断角所 在的象限时要 注意2π的整数倍(360°3 的k 2 整数倍)加α与 α终边相同,避免出现kπ+ 是第一象限
角的错误判断.如遇kπ+α(k ∈Z)或
+20α20年(1k0月∈2日 Z)等应对1 k8 0的 奇偶性1 8 0进° 行讨论,再16
题型4 三角函数的定义
•
1. 已知角α的终边过点
(a,2a)(a≠0),求α的三个三角函数值.
• 点评:三角函数的定义中,终边上的点的坐标 值可正、可负、也可以为零,但距离恒为正.如 果坐标或距离是含参数的式子,注意对参数的
正负进行讨论.
2020年10月2日
17
• 拓展练习 若P从(1,0)出发,
沿单位圆x2+y2=1按逆时针方向运动
2 3
弧长到达Q点,则Q点的坐标为( )
A. (- 1 , 3 ) 22
B. (- 3 , - 1) 22
C. (- 1 , - 3 ) 22
D. (- 3 , 1) 22
2020年10月2日
18
题型5 三角函数的符号
•
2. 解答下列问题:
•
(1)若θ在第四象限,试判断
sin(cosθ)·cos (sinθ)的符号;
•
(2)若tan(cosθ)·cot(sinθ)>0,试
指出θ所在的象限.
2020年10月2日
19
• 点评:三角函数在各象限的符号,按口诀
熟记:“一全正,二正弦,三切函,四余
2020年10月2日
1
4.1 三角函数的概念
●三角函数的定义及符号
●弧度制以及弧度与角度的互
考 换公式
点 ●弧长、扇形面积公式
搜 ●常用角的集合表示法
索
●利用三角函数的符号法则, 判断三角函数式的符号;反过
来,已知三角函数的符号,求
角的范围 2020年10月2日
2
三角函数的概念是三角函
高 数的基础,也是高考对基础知
•
在0°~360°之间,找出与下
列角的终边相同的角:
•
(1)-265°;
(2)3900°.
•
解:(1)设α=-265°+k·360°,
k∈Z.
•
因为α∈[0°,360°),
•
所以k=1,且α=95°.
•2020年10月2日 所以在0°~360°之间,与- 14
•
(2)设β=3900°+k·360°,
角集与数集得到了统一.角度化为弧
度的方法是:
n
n
180
• 弧度.弧度单位一般省略.角集作为 定义域时,一般用弧度数.
2020年10月2日
10
题型3
| | l 的应用 R
• 3. 一扇形的周长为20 cm,当扇形的
圆心角α等于多少弧度时,这个扇形的
面积最大?最大面积是多少?
• 解:设扇形的半径为r cm,则弧长为
2020年10月2日
8
题型2
角度与弧度互化
•
2. 设角
1
-570,2
750,1
53,2
-7.
3
• (1)将α1、α2用弧度制表示出来,并指
出它们各自所在的象限;
• 72(02。)将~0β。1、之β间2用找角出度与制它表们示有出相来同,并终在边-的 所有角.
2020年10月2日
9
•
点评:角度化为弧度,使得
2020年10月2日
7
解:由题意知,2kπ<2α<2kπ+π,(k∈Z),
•得 • 当k是奇数k时,kα是2 第(k 三 Z象). 限角 当k
是偶数时,α是第一象限角,故选C.
• 点评:角所在的位置与角集的对应 关系是解决有关象限角问题的基础. 涉及半角或倍角的范围求解时,注
意倍数关系中的奇偶讨论.