2015中考数学模拟试题2015.5.1

合集下载

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015中考模拟试卷数学卷和答案

2015中考模拟试卷数学卷和答案

2015年中考模拟试卷数学卷和答案
2015年中考模拟试卷数学卷
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.如果,那么,两个实数一定是()
A.一正一负
B.相等的数
C.互为相反数
D.互为倒数
2.下列调查适合普查的是()
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
3.函数,一次函数和正比例函数之间的包含关系是()
4.已知下列命题:①同位角相等;②若a0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。

从中任选一个命题是真命题的概率为()
A.B.C.D.
精心整理,仅供学习参考。

2015年中考数学模拟试题附答案

2015年中考数学模拟试题附答案

2015年中考数学模拟试题一、选择(3′×20)1、﹣的绝对值是()AA D4、某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,)13亿张厚度约为( ) A,1.3×107km B,1.3×103k C,1.3×102km D,1.3×10km 6、一个圆锥的三视图如图所示,则此圆锥的底面积为()与△ABE不一定全等的条件是()A.DF=BE B.AF=CE C.CF=AE D.CF∥AE8、若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣369、已知函数y=(x ﹣m )(x ﹣n )(其中m <n )的图象如图所示,则一次函数y=mx+n 与反比例函数y=的图象可能是( )A .BCD .10、暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( ) A .12 B .13 C .16 D .1911、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( ) A .13 B .12 CD .3 12、如图,已知正方形ABCD 的对角线长为将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .B .C .8D .6 13、如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE+FC ,则边BC 的长为( ) 14、如图Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A.7π3B.4π3+ C .π D.4π3+HC1O 1ACE BA FD18题15、甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天可完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天,则可列方程为( ) A .10830x+=1 B .10+8+x =30 C .10118()3030x ++=1D .10(1)30x -+=8 16、如图,在Rt △ABC 中,∠ACB=90°,∠A=α,将△ABC 绕点C 按顺时针方向旋转后得到△EDC ,此时点D 在AB 边上,则旋转角的大小为( ).A 、αB 、2αC 、90°—αD 、90°—2α17、已知二次函数y =a x 2+b x +c (a ≠0)的图像如图所示,现有下列结论: ①a b c >0②b 2-4a c <0 ③c <4b④a +b >0,则其中正确结论的个数是( ) A 、1个B 、2个、C 、3个 D 、4个18、18.如图,在等腰Rt ABC △中,908C AC ∠==°,, F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论: ①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4;④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤ 19、已知如图133,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN 的最小值为( ) A.9 B.10 C.11 D.1220、如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A .(﹣1)cm 2B . (+1)cm 2C . 1cm2D .cm 2二、填空(3′×4)21、化简=.22、某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.若该校有1400名学生,据此估计该校初中生在1.5小时以内完成了家庭作业的学生约有学生上一点(不与A,B重合),则的值为。

2015中考数学模拟试卷及答案

2015中考数学模拟试卷及答案

2015中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,满分32分) 1.在数轴上表示2-的点离开原点的距离等于( A )A .2B .2-C .2±D .42.已知2243a b x y x y x y -+=-,则a +b 的值为( C ). A. 1 B. 2 C. 3 D. 4 3.从某个方向观察一个正六棱柱,可看到如图所示的图形,其 中四边形ABCD 为矩形,E 、F 分别是AB 、DC 的中点.若 AD =8,AB =6,则这个正六棱柱的侧面积为( D ) A .48 3 B .96 C .144 D .96 34.如图,以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( C )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( B )A .121 B .61 C .41D .316.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( A ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠57.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx (x >0)上,则k =( B )A .2B .3C .4D .68.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y轴的正半轴的交点在(02),的下方.下列结论: ①420a b c -+=;②ac <0;③4a+2b+c <0;④-2<2ba-<0.其中正确结论是( D ). A.①④ B. ②④ C.①③④ D.①②③④ 二.填空题(本大题共8个小题,每小题4分,共32分) 9.当的值为最小值时,a 的取值为﹣2 . 10.已知关于x 的分式方程2x +2 - ax +2=1的解为负数,那么字母a 的取值范围a>0. 11.如图AB 是⊙O 的直径,AB=4,AC 是弦,AC=23,∠AOC 的度数是120°.12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为___30______cm2.OAB PxyABD CEF (第3题)13.如图,△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是____4π____ (结果保留π). 14.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF 的值为 23 . 15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为__4______。

2015年中考模拟数学试题及答案

2015年中考模拟数学试题及答案

2015年初三模拟考试数 学 试 卷(本试卷共26道题 考试时间120分钟 试卷满分150分) 注意:所有试题必须在答题卡上作答,在本试卷上答题无效.1. -12的绝对值是A .-2B .-12 C.12D .22. 到2015年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是 A. 2.653×105B. 2.653×106C. 2.653×107D. 2.653×1083. 下面的三视图所对应的物体是4. 把不等式组x 315x 6-⎧⎨⎩<--<的解集表示在数轴上,正确的是5.下列运算正确的是( ) A . 532a a a =⋅B .22()ab ab =C .329()a a =D .632a a a ÷=6. 已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是210S =甲,25S =乙,比较这两组数据,下列说法正确的是( ) A .甲组数据较好B .乙组数据较好C .甲组数据比较整齐D .乙组数据的波动较小A .B .C .D .7. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 2第7题图 第10题图8. 已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程02=+bx ax 一定有两个不相等的实数根.以上说法正确的个数为A .1B .2C .3D .49. 解放军某部接到上级命令,乘车前往地震灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为S (千米),则能反映S 与t 之间函数关系的大致图象是10. 在四边形ABCD 中,AC 、BD 是对角线,△ABC 是等边三角形,∠ADC=30°,AD=3,BD=5,则CD 的长为A .33B .52C .4D .5BD11.使21-x 有意义的x 的取值范围是.12.一个口袋中装有4个红球,x 个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是31,则袋里有 个绿球 13.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的中位数为 . 14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y 名,根据题意可列方程组为 . 15. 如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .第15题 第16题 第18题16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .17.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD ,若∠OCD=22°,则∠ABD 的度数是________.18.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2015次,点P 依次落在点P 1,P 2,P 3,……P 2015的位置,则点P 2015的横坐标为 . 三、解答题(19、20每小题9分,共18分)2y x =xyOP 1 P 2P 3 P 4 1234AD C BFG E19. 先化简,再求值:)b1a 1(b a b ab 2a 2222-÷-+-,其中12b ,12a -=+= 20.由于某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。

2015年中考数学模拟试卷及答案(含答题纸)

2015年中考数学模拟试卷及答案(含答题纸)

9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3

2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图

(最新整理)年初中数学中考模拟试卷(含详细解答)

2015年初中数学中考模拟试卷(含详细解答)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年初中数学中考模拟试卷(含详细解答))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年初中数学中考模拟试卷(含详细解答)的全部内容。

2015年初中毕业生数学考试卷考生须知:1. 全卷共4页,有3大题,24小题。

满分为120分。

考试时间120分钟。

2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。

3. 请考生将姓名、准考证号填写在答题纸对应位置上,并认真核准条形码姓名、准考证号.4。

作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑。

5. 本次考试不能使用计算器.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是.)442(2ab ac a b --,卷 Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)2015-A .6a -5a=1B .(a 2)3=a 5C .a 6÷a 3=a 2D .a 2·a 3=a 53.钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为A . 464×104B .46。

4×106C .4.64×106D .0.464×1074.下图中几何体的左视图是5。

如果分式12-x 与33+x 的值相等,则的值是x A .9B .7C .5 D .36.一个正多边形的每个内角都为140°,那么这个正多边形的边数为 A. 11 B 。

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015年中考模拟考试数学试卷

2015年中考模拟考试数学试卷(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.计算:3×(-1)等于( ).A .0B .2C .3D .3- 2.计算:23)(a 等于( ).A .5aB .6aC .32aD .a 63.如图,数轴上表示的是某不等式组的解集,则这个不等式组可以是( ).A .12x x ≥-⎧⎨<⎩B .12x x ≤-⎧⎨<⎩C .12x x >-⎧⎨≤⎩D .12x x ≥-⎧⎨>⎩4.在某次体育测试中,九年级某班7位同学的立定跳远成绩(单位:m )分别为:2.15,2.25,2.25,2.31,2.42,2.50,2.51,则这组数据的中位数是( ). A .2.15 B .2.25 C .2.31 D .2.42 5.若n 边形的内角和是1080︒,则n 的值是( ). A .6 B .7 C .8 D .96.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ).7.如图,在ABC Rt ∆中,90BAC ∠=︒, D 、E 分别是AB 、BC 的中点, F 在CA 的延长线上,FD A B ∠=∠,AC=6,AB=8,则四边形AEDF 的周长为( ).A .22 B.20 C.18 D.16二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.-2的相反数是 . 9.分解因式:23a a += .10.世界文化遗产长城总长约为6 700 000 m ,将6 700 000用科学记数法表示为 .11.计算:222a a a -=-- . 12.方程311x =-的解是 .13.在菱形ABCD 中,AB=3cm ,则菱形ABCD 的周长为 cm .(第6题图)(第3题图)A(第7题图)CD EF(第20题图)14.已知扇形的圆心角为120︒,弧长是4πcm ,则扇形的半径是 cm . 15.如图,点C 在直线MN 上,AC BC ⊥于点C ,165∠=°,则2∠= °. 16.如图,点A 在函数6y x=.(x >0)的图象上,过点A 作AH y ⊥轴,点P 是x 轴上的一个动点,连结PA 、PH ,则APH ∆的面积为 .17.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,连结AB . (1)AB 的长为 ;(2)连结CD 与AB 相交于点P ,则APD ∠tan 的值是.三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(91082(1)3π-⨯--+-.19.(9分)先化简,再求值:2(2)(2)(2)x x x +-+-,其中12x =-.20.(9分)已知:如图,在ABC ∆中,AB=AC ,D 为BC 的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .求证:BED ∆≌CFD ∆.21.(9分)某校举办“科技创新”作品评比,作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,共分成六组,现对每一组的件数进行统计,绘制成如图所示的不完全统计图.已知第二组与第四组的件数比为1∶2.请你回答(1)本次活动共有 件作品参赛,并.把.条.形.统计图补....充完整...; (2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组哪个组获奖率较高?为什么?BACMN1 2(第15题图)(第16题图)(第17题图)ABCDP参赛作品件数条形统计图 (第21题图)22.(9分)某市举办中学生足球赛,初中男子组共有市直学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲队由A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽e 队的概率是 ;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.23.(9分)如图,已知ABC ∆的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0).(1)请画出ABC ∆绕坐标原点O 逆.时针..旋转90°后的A B C '''∆,并直接写出点B 的对应点B '的坐标; (2)请直接写出D 的坐标,使得以A 、B 、C 、D 为顶点的四边形是平行四边形.24.(9分)某服装专卖店计划购进甲、乙两种新款服装共100件,其进价与售价如表所示:(1)若该专卖店计划用42000元进货,则这两种新款服装各购进多少件?(2)若乙的数量不能超过甲的数量的2倍,试问:应怎样进货才能使专卖店在销售完这批服装时获利最多?并求出最大利润.25.(13分)已知顶点为P 的抛物线1C 的解析式是2(3)(0)y a x a =-≠,且经过点(0,1).(1)求a 的值;(2)如图,将抛物线1C 向下平移h (h >0)个单位得到抛物线2C ,过点K (0,2m )(m >0)作直线l 平行于x 轴,与两抛物线从左到右分别相交于A 、B 、C 、D 四点,且A 、C 两点关于y 轴对称.① 点G 在抛物线1C 上,当m 为何值时,四边形APCG 是(第23题图)(第25题图)平行四边形?②若抛物线1C 的对称轴与直线l 交于点E ,与抛物线2C 交于点F .试探究:在K 点运动过程中,KCPF的值是否会改变?若会,请说明理由;若不会,请求出这个值.26.(13分)在平面直角坐标系中,O 为坐标原点,已知点F(,0),直线GF 交y 轴正半轴于点G ,且.30GFO ∠=︒(1)直接写出点G 的坐标;(2)若⊙O 的半径为1,点P 是直线GF 上的动点,直线PA 、PB 分别与⊙O 相切于点A 、B .①求切线长PB 的最小值;②问:在直线GF 上是否存在点P ,使得 60APB ∠=︒?若存在,请求出P 点的坐标;若不存在,请说明理由.(第26题图)(第20题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.D 2.B 3.A 4.C 5.C 6.A 7.D 二、填空题(每小题4分,共40分)8.2 9.(3)a a + 10.66.710⨯ 11.1 12.4x = 13.12 14.60 15.25 16.3 17.(1);(2)2三、解答题(共89分) 18.(本小题9分)解:原式3413=+-+ ……………………………………………………………8分 9= ……………………………………………………………………… 9分 19.(本小题9分) 解:原式22469x x x =-+-+ …………………………………………………4分136x =- ………………………………………………………………6分当12x =-时,原式1136()2=-⨯- ………………………………………7分16= …………………………………………………9分 20.(本小题9分)证明:∵AB AC =, ∴B C ∠=∠……………3分∵DE AB DF AC ,⊥⊥,∴90BED CFD ∠=∠=︒.…………………6分 ∵D 为BC 边的中点, ∴BD CD =, ……8分∴BED ∆≌CFD ∆. ………………………9分21.(本小题9分)解:(1)60,补图如右;(填空3分,补图2分,共5分) (2)由图可得:第四组的件数是18件,第六组的件数是3件,故第四组的获奖率为:105189=,第六组的获奖率为:2639=,……………………8分∵5699<, ∴第六组获奖率较高. …………………………………………………………………9分 22.(本小题9分) 解:(1)P (e 队出场)=133分 (2)解法一: 画树状图甲组 乙组参赛作品件数条形统计图(第21题图)……………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队 的有4种情况, P ∴(两队都是县区队)=49. ………………………………………9分 解法二:列表…………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况,P ∴(两队都是县区队)=49. ………………………9分 23.(本小题9分)解:(1)如图所示: …………………………3分 点B 的对应点'B 的坐标为(0,-6); ……6分(2)第四个顶点D 的坐标()7,3-、()3,3、()5,3--; ……………………………………9分24.(本小题9分)解:(1)设甲种新款服装购进x 件,那么乙种新款服装购进(100)x -件,由题意可得 300500(100)42000x x +-=,解得40x =. ………………………………2分 经检验,符合题意.当40x =时,10060x -=(件).答:甲种新款服装购进40件,乙种新款服装购进60件.………………………………4分 (2)解法一:设甲种新款服装购进m 件,那么乙种新款服装购进(100)m -件,由题意可得1002m m -≤,解得1333m ≥.…………………………………………………………………6分∴m 的取值范围为1331003m ≤<.(第23题图)380300600500-<-∴同样售出一件新款服装,甲的获利比乙少,∴只能取34m =,此时获利为3480661009320⨯+⨯=(元).答:甲种新款服装购进34件,乙种新款服装购进66件,才能使专卖店在销售完这批服装时获 利最多,最大利润为9320元. …………………………………………………9分 解法二:设该专卖店销售完这批服装可获利润w 元,甲种服装m 件.依题意可得, (380300)(600500)(100)w m m =-+--, 整理得1000020w m =-. ∴w 是m 的一次函数,且200-<. ∴w 随m 的增大而减小.∵乙的数量不能超过甲的数量的2倍, ∴1002m m ≤﹣, 解得1333m ≥, …………………………………………………………6分∴m 的取值范围为1331003m ≤<.∵m 为整数,∴34m =时,w 取得最大值,此时9320w =(元).答:该专卖店购进甲种服装34件,乙种服装66件,销售完这批服装时获利最多,此时利润为9320元.…………………………………………………………………………9分 25.(本小题13分)解:(1)∵抛物线1C 的过点()0,1,∴()2103a =-,解得:19a =. ∴设抛物线1C 的解析式为()2139y x =-. …………3分(2) ①∵点A 、C 关于y 轴对称,∴点K 为AC 的中点.若四边形APCG 是平行四边形,则必有点K 是PG 的中点. 过点G 作GQ y ⊥轴于点Q , 可得:GQK ∆≌POK ∆,∴3GQ PO ==,2KQ OK m ==, 22OQ m =. ∴点()23,2G m -. ……………………………5分 ∵顶点G 在抛物线1C 上,∴()2212339m =--,解得:m =0m >,∴m =(第25题图)∴当m =APCG 是平行四边形. ……………………………………8分 ②在抛物线()2139y x =-中,令2y m =,解得:33x m =±,又0m >,且点C 在点B 的右侧,∴()233,C m m +,33KC m =+. …………………………………………………9分 ∵点A 、C 关于y 轴对称,∴()233,A m m --.∵抛物线1C 向下平移()0h h >个单位得到抛物线2C , ∴抛物线2C 的解析式为:()2139y x h =--. ∴()2213339m m h =----,解得:44h m =+, ∴44PF m =+. ∴()()3133344414m KC m PF m m ++===++……………………13分 26.(本小题13分) 解:(1)点G 的坐标是(0,2);………………………3分 (2)解法一:①连结OP 、OB . ∵PB 切⊙O 于点B , ∴OB PB ⊥;根据勾股定理得:222PB OP OB =﹣, ∵1OB =不变,若BP 要最小,则只须OP 最小. 即当OP GF ⊥时,线段PO 最短,………………6分在Rt PFO ∆中,30OF GFO =∠=︒,∴OP∴PB…………8分 解法二:设直线GF 解析式为(0)y mx n m =+≠. ∵直线GF 过点(0,2)、F ()0,∴0,2n n ⎧+=⎪⎨=⎪⎩解得: 2.m n ⎧=⎪⎨⎪=⎩∴2y =+.……………………………………………………………………………5分设(,2)P x +. 过P 作PH x ⊥轴于点H ,连结OA 、OP ,在Rt OHP ∆中,2222224(2)43OP OH PH x x =+=++=-+. PA 与⊙O 相切,(第26题图)∴90OAP ∠=︒,1OA =.在Rt PAO ∆中, 222AP OP OA =-. ∵PA PB 、均与⊙O 相切,∴222224413PB AP OP OA x ==-=+-22443(233x x =+=-+.∴当x =22PB =为最小, PB 最小,此时PB =………………………8分 ②方法一:存在.∵PA PB 、均与⊙O 相切, ∴OP 平分APB ∠. ∵60APB ∠=︒, ∴30OPB ∠=︒. ∵1OB =, ∴2OP =.∴点P 是以点O 为圆心,2为半径的圆与直线GF 的交点,即图中的12P P 、两点. ∵2OG =,∴点1P 与点(0,2)G 重合.………………………………………………10分 在Rt GOF ∆中,30GFO ∠=︒, ∴60OGF ∠=︒. ∵2OG OP =,∴2GOP ∆是等边三角形, ∴2 2G P OG ==. ∵4GF =, ∴22FP =, ∴2P 为的中点GF ,∴2P .综上所述,满足条件的点P 坐标为(0,2) 或.……………………………………13分方法二:假设在直线GF 上存在点P ,使得60APB ∠=︒,则必须有30APO ∠=︒. PA OA ⊥, 90OAP ∴∠=︒.∴1sin 2OA APO OP ∠==, ∴22OP OA ==. ……………………………………………………………………10分由①解法二可知22443OP x =+,∴224423x +=,解得10x =,2x .满足条件的点P坐标为(0,2)或. …………………………………13分。

2015年中考模拟试题数学试卷

A BCDPE第12题图2015年中考数学模拟练习题数学试卷(问卷)注意事项:1.本卷共6页,满分150分,考试时间120分钟.考试时可使用计算器.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试卷指定的位置上.3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试卷上.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚.4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效.在草稿纸、本试卷上答题无效.5.作图可先用2B 铅笔绘出图,确定后必须用0.5毫米的黑色字迹的签字笔描黑.6.考试结束后,将本试卷和答题卡一并回. 一、选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 6的相反数是( ) A .-6 B .16C .±6 D2.下列计算正确的是( )A .x 4+x 2=x 6B .x 4-x 2=x 2C .x 4·x 2=x 8D .(x 4) 2=x 83.同学们,你们看过美国著名3D 卡通电影《里约大冒险》吗?该片在2011年3月、4月和5月蝉联全球票房冠军,累计票房达2.86亿美元. 数据“2.86亿”用科学记数法表示为 A .71086.2⨯B .81086.2⨯C .91086.2⨯D .7106.28⨯4.科学家测得肥皂泡的厚度约为0.000 000 7米,用科学记数法表示为( )5.如图,正方形OABC 的边长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧, 交正半轴于一点,则这个点表示的实数是 A .1B .2C .1.5D .26.函数31+=x y 的自变量取值范围是( ) A .3->x B .3-<x C .3-≠x D .3-≥x7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30° 8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( ) A .32 cm B .3cm C .332 cm D .1cm9.如图是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .πab 21 B .πac 21C .πabD .πac 10.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.A .6B .7C .8D .911.如图,在等边△ABC 中,AB 、AC 都是圆O 的弦,OM⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为( ).A.3B.3C.4D.33 12.如图所示,矩形ABCD 中,AB =4,BC =E 是折线段A -D - C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )A .2个B .3个C .4个D .5个 13、如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是A .6B .7C .8D .914、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则()A 、ac+1=bB 、ab+1=cC 、bc+1=aD 、以上都不是15、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( ) A 、0<S<2 B 、S>1 C 、1<S<2 D 、-1<S<116、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) A 、8 B 、14 C 、8或14 D 、-8或-14第5题图 主视图 左视图 俯视图17、函数2y x x m =-+(m 为常数)的图象如左图,如果x a =时,0y <;那么1x a =-时,函数值( ) A .0y < B .0y m << C .y m > D .y m =18、如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA =3;②a +b +c <0;③ac >0;④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①②19、如图,一条抛物线与x 轴相交于A 、B 两点,其顶点P 在折线C ﹣D ﹣E 上移动,若点C 、D 、E 的坐标分别为(﹣1,4)、(3,4)、(3,1),点B 的横坐标的最小值为1,则点A 的横坐标的最大值为( )20.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006B .2007C .2008D .200921.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )22.如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、N 两点,若点M 的坐标 是(-4,-2),则点N 的坐标为( ) A .(-1,-2) B .(1,-2) C .(-1.5,-2) D .(1.5,-2)23.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=2,ED=8,则⊙O 的半径是 A .3 B .4C .5D .3424.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2013,则m 的值是 ( )A .43B .44C .45D .4625.把代数式a a a +-232分解因式,下列结果中正确的是( ) A .2)1(-a a B .)1(2-a a C .2)1(+a a D .)1)(1(-+a a a26.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有( ) A .5个B .4个C .3个D .2个27. 某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A .40分,40 分B .50分,40分C .50分,50 分D .40分,50分 28、在Rt△ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )A 、b a c =+B 、b ac = C、222b ac =+ D 、22b a c ==29、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ).A . (4 cmB . 9 cmC .D . cm30、平面直角坐标系中,O 为坐标原点,点A 的坐标为(,1),将OA 绕原点按逆时针方向旋转30°得OB ,,)(分)某班46名同学一周平均每天体育活动时间频数分布直方图 (第7题)31、已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 232.函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 A .0<k B .1<kC .0>kD .1>k二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卡的相应位置处.33、如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=BC 的长为 __________.34、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).35.某品牌自行车进价为每辆800元,标价为每辆1200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打 折.36、初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y = .37.某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图(6)所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为 .38、已知2a -3b 2=5,则10-2a +3b 2的值是 .39.如图,在△ABC 中,AC=BC=2,∠ACB=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015中考数学模拟试题
一、选择题(本大题共10小题,每小题4分,满分40分) 1.在实数032-
,|-2|中,最小的数是 ( )A
.3
2
- B .0 C D .|-2|
2.为了实现道路畅通工程,我省今年计划公路建设累计投资92.7亿元,该数据用科学记数法可表示为 ( )
A . 0.927×1010
B .92.7×108
C .9.27×1010
D .9.27×109 3.下列运算正确的是 ( ) A .222()a b a b -=- B . 1
1
()33
-= C . 3(2)8-= D .633a a a -=
4.在数轴上表示不等式组10x +>⎧⎨的解集,正确的是( )
A.
B.
C.
D.
5.下列函数:①y x =-;②2y x =;③1
y x
=-
;④2y x =.当0x <时,y 随x 的增大而减小的函数有( ) A .1 个 B .2 个 C .3 个 D .4 个 6.如图,点O 是线段BC 的中点,点A 、D 、C 到点O 的距离相等。

若30=∠ABC °,则ADC ∠的度数是 ( )A .30° B .60° C .120° D .150° 7.某市2012年国内生产总值(GDP )比2011年增长了12%,由于受到国际金融危机的影响,
预计今年比2012年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 ( ) A .12%7%%x +=
B .(112%)(17%)2(1%)x ++=+
C .%2%7%12x =+
D .2(1
+
8.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )
A .3<k
B .03≠<k k 且
C .3≤k
D .03≠≤k k 且
9.直线y =12-x -1与反比例函数y =k
x
的图象(x <0)交于点A ,与x 轴交于点B ,
过点B 作x 轴的垂线交双曲线于点C ,若AB =AC ,则k 的值是( ) A .-2 B .-4 C .-6 D .-8 10.若不等式组530
x x m -⎧⎨
-⎩≥≥有实数解,则实数m 的取值范围是( )
A .53
m ≤
B .53
m <
C .53
m >
D .53
m ≥
11.函数2
77y kx x =--的图像和x 轴有交点,则k 的值为( ) A .74k >-
B .74k ≥-
C .74k ≥-且0k ≠
D . 7
4
k >-且0k ≠ 12. 二次函数)0(12
≠++=a bx ax y 的图象的顶点在第一象限,且过点(﹣1,0).设1++=b a t 则t 值的变化
范围是 ( )A .10<<t B .20<<t C .21<<t D .11<<-t 二、填空题(本大题共4小题,每小题5分,满分20分) 1. 因式分解:3
9a b ab - .
2. 甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得为方差
6.0=甲s ,8.0=乙s ,则运动员 的成绩比较稳定.
3.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6), C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .
4.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数x y =的图象被⊙P 所截得的弦AB 的
长为a 的值是 .
5. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作
OD ⊥AC 于D .下列四个结论:①∠BOC =90º+ 1
2∠A ; ②EF=BE+CF ;③设OD =m ,AE +AF =n ,则S △AEF =2
1mn ;
④EF 是△ABC 的中位线.其中正确的结论是_____________.
三、(本大题共4小题,每小题4分,满分16分) 1.计算:
2
01()2sin 303
2
--+︒+-
2、先化简,再求值:
()()32
11123
x x x x x --=---+,其中.
3、先化简,再求值:(2
1
+a -1)÷212+-a a ,其中a =13+
4.小民在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部 AD 的距离,小强测得办公大楼顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角 为60°,已知办公大楼高46米,CD =10米.求点P 到AD 的距离(用含根号的式子表示). 四、(本大题共2小题,每小题8分,满分16分)
1. 如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的1
A B C 1△(2)把11A B C 1△绕点1A 按逆时针方向旋转
90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.
2.为实施“留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2
名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整; (2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,
求出所选两名留守儿童来自同一个班级的概率.
3.已知一次函数m x y +=1的图象与反比例函数x
y 6
2=的图象交于A 、B 两点,已知当1>x 时,21y y >;当10<<x
时,21y y <.
(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C 到y 轴的距离为3,求ABC ∆的面积.
4.已知:如图,在平行四边形ABCD 中,点M 在边AD 上,且DM AM =.CM 、BA 的延长 线相交于点E .
求证:1)AB AE =;2)如果BM 平分ABC ∠,求证:CE BM ⊥.
5.(本题满分12分).为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.
(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元
(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
6(本题满分14分).在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将∆ABC 绕点B 按逆时针方向旋转,得到∆A 1BC 1.
(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;
(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求∆CBC 1的面积;
7.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).
(1)求此抛物线的解析式;
(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;
(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.
x。

相关文档
最新文档