文丘里段计算方法
毕托管实验报告

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验姓名:卞明勇学号:051001501 组别:1 实验指导教师姓名:艾翠玲同组成员:陈承杰陈思颖陈彦任戴晓斯2012年1月8日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差δh和管嘴上、下游水位差δh之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。
喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。
所以。
3.所测的流速系数??说明了什么?答:若管嘴出流的作用水头为速v,则有,流量为q,管嘴的过水断面积为a,相对管嘴平均流称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
实验结论:表格中我们可以得出:1,。
测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。
2. 测点流速在阀门半开,全开,全闭时流速不同,(全开时最大,半开次之,全闭最小),但流速系数几乎不变,说明流速系数不由流量大小决定。
流体静压强的测量液柱式测压计

流动参数的测量一、静压强的测量在流体力学实验中,压强是描述流体状态和运动的主要参数之一。
设S ∆为流体中任意小的面积,P ∆为与S ∆相邻的流体微团作用在该微团上的力,当S ∆无限缩小并趋于一点时,其上的压力由数学表示为limS PP S∆→∞∆=∆通过测量压强还可以求得流体速度、流量等许多力学量。
因此在流体力学实验中,压强的测量是最基本和最重要的测量。
由于压强测量都是以差值的方式出现,即压强值都是相对某个基准而言的。
常用的基准有绝对压强和计示压强,绝对压强是以完全真空为基准计量的压强;计示压强是以当地大气压强为基准计量的压强。
压强分静压强、动压强和总压强,总压强=动压强+静压强1)静压强:流场中某一点得静压强指的是该点三个方向法向压强的平均值1122331()3P σσσ=-++,对管流来说,就是对管壁的法向压强,该压强不会引起流线变化或者可以理解为一个与流体同样的运动速度的物体所受到的压强,一般采用管壁上引出或采用有侧孔的探头测量。
2)总压:又称驻点压强。
流体受到滞止,在没有任何能量损失的情况下速度降至零时的驻点压强,一般采用有迎流矢方向测孔的探头测量。
3)动压强:引起流体运动的压强,用总压强减静压强所得。
测量压强的仪表称为测压计。
根据测量方式的不同,测压计分为三类:第一类液柱式测压计,它们是根据流体静力学基本方程式利用液柱高度直接测出压强的。
它们测量准确,可测微压,不适用于高压的测量,下面将作详细阐述。
第二类金属式测压计,它们是利用金属的弹性变形并经过放大来测出压强的,是间接测量法。
图1中用椭圆断面的金属弯管来感受压强的波登管测压计和b 中用金属膜片来感受压强的膜片式测压计都是这种测压计。
它们可测较高的压强,不适于微压的测量。
长期使用,金属的弹性变形会有变异,需要定期标定。
第三类电测试测压计,它们是利用感受元件受力时产生压电效应、压阻效应等的电讯号来测量压强的,是间接测量法。
图2为压电晶体式传感器的结构示意图,常用的还有应变片式传感器等。
新版流量计标定实验讲义

实验二 流量计的标定一、实验目的1、了解孔板流量计和文丘里流量计的操作原理和特性,掌握流量计的一般标定方法;2、测定孔板流量计和文丘里流量计的流量系数的C 0和Cv 与管内Re 的关系。
3、通过C 0和Cv 与管内Re 的关系,比较两种流量计。
二、基本原理工厂生产的流量计大都是按标准规范生产的,出厂时一般都在标准技术状况下(101325Pa ,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,或将流量读数直接刻在显示仪表上。
然而在使用时,所处温度、压强及被测介质的性质与标定状况多数并不相同,因此为了测量准确和方便使用,应在现场进行流量计的标定或校正。
对已校正过的流量计,在长时间使用磨损较大时也需要再次校正。
对于自制的非标准流量计,则必须进行校正,以确定其流量系数C 0或C v 。
本实验通过改变流体流量q 和压差ΔP f ,获得一系列Re 与C 0或C v ,采用半对数坐标绘制出C 0或C v 与Re 的关系曲线进而实现流量计的标定或校正。
1、流体在管内Re 的测定:式中:ρ、μ— 流体在测量温度下的密度和粘度 [Kg/m 3]、[Pa ·s]q — 管内流体体积流量 [m 3/s] 2、孔板流量计和文丘里流量计孔板流量计和文丘里流量计是应用最广的节流式流量计,其结构如图2-1所示。
a 孔板流量计 b 文丘里流量计图2-1 节流式流量计结构孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代价的。
孔板的开孔越小、通过孔口的平均流速u 0越大,孔前后的压差ΔP 也越大,阻力损失也随之增大。
为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆角。
因此孔板流量计的安装是有方向的。
若是方向弄反,不光是能耗增大,同时其流量系数也将改变,实际上这样使用没有意义。
以孔板流量计为例,若用f P ∆表示节流前后两截面之间的压差,根据两截面之间的柏努利方程,可知:2222221211u P gZ u P gZ ++=++ρρ,则有:ρf P u u ∆=-22122以孔口速度u 0代替上式中的u 2,并将质量守恒式u 1A 1= u 0A 0代入,得:式中0C 称为孔板的流量系数(201m C C -=),m 为面积比(1A A m =) 故所求孔板流量计的计算公式为:在使用前,必须知道其孔流系数C 0(一般由厂家给出,教课书中只是原理性质,只作参考),一般是由实验标定得到的。
化工原理实验报告

实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解;2、观察各项能量或压头随流速的变化规律;二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件如位置高低、管径大小等的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换;对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的机械能守恒定律;2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失;故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失;3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头;当测压直管中的小孔即测压孔与水流方向垂直时,测压管内液柱高度位压头则为静压头与动压头之和;任意两截面间位压头、静压头、动压头总和的差值,则为损失压头;4、柏努利方程式式中:1Z 、2Z ——各截面间距基准面的距离 m1u 、2u ——各截面中心点处的平均速度可通过流量与其截面积求得m/s1P 、2p ——各截面中心点处的静压力可由U 型压差计的液位差可知Pa对于没有能量损失且无外加功的理想流体,上式可简化为ρρ2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头;三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm;四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系;2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平开关几次;3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况;4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h1…△h4;要注意其变化情况;继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h1…△h4;5、实验完毕停泵,将原始数据整理;实验二离心泵性能曲线测定一、实验目的1.了解离心泵的构造和操作方法2.学习和掌握离心泵特性曲线的测定方法二、实验原理离心泵的主要性能参数有流量Q也叫送液能力、扬程H也叫压头、轴功率 N和效率η;离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线;泵的扬程用下式计算:He=H压力表+H真空表+H+u出2-u入2/2g式中:H压力表——泵出口处压力H真空表——泵入口处真空度H——压力表和真空表测压口之间的垂直距离泵的总效率为:其中,Ne为泵的有效功率:Ne=ρ●g●Q●He 式中:ρ——液体密度g——重力加速度常数Q——泵的流量Na为输入离心泵的功率:Na=K●N电●η电●η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N电——电机的输入功率η电——电机的效率η转——传动装置的传动效率三、实验设备及流程:设备参数:泵的转速:2900转/分额定扬程:20m水温:25℃泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m四、实验操作1.灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵;2.开泵注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故;3.建立流动4.读取数据等涡轮流量计的示数稳定后,即可读数;注意:务必要等到流量稳定时再读数,否则会引起数据不准;五、作业以一组数据计算实验三过滤实验一、实验目的1.了解板框过滤机的构造和操作方法;2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时间;二、基本原理对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:V+Ve2=KS2t+te上式也可写成:q+qe 2=Kt+te微分后得到:dt / dq= 2q / K+2qe/ K该微分式为一直线方程,其斜率为2/K,截距为2qe/K;实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K,虚拟滤液体积qe;只考虑介质阻力时:qe2=Kte将qe 代入上式可求出虚拟过滤时间te;三、实验设备板框过滤机的过滤面积为0.12m2;由空压机提供压力,并恒压可调;以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验;孔板孔口径:8mm,文丘里管喉径:8mm,φ20×2不锈钢管;四、实验步骤1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净;2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通;3、安装时应从左至右进行,装好一块,用手压紧一块;请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板带奇数点,3块框带偶数点,以确保流道的畅通;4、装完以后即可紧固手柄至人力转不动为止;5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌;6、约5min后,检查所有阀门看是否已关紧确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在~范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节;(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作;2、注意看看板框是否泄漏大量液体冲出,少量漏液无妨确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据;3、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要;读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验;(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀;然后关闭进水阀,打开进气阀,恒压在~范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验;(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验;实验四传热实验一、实验目的测定对流传热系数的准数关联式;二、实验原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:对于强制湍流而言,Gr准数可以忽略,故用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归;本实验简化上式,即取n=流体被加热;这样,上式即变为单变量方程,再两边取对数,即得到直线方程:在双对数坐标中作图,找出直线斜率,即为方程的指数m;在直线上任取一点的函数值代入方程中,则可得到系数A,即:对于方程的关联,首先要有Nu、Re、Pr的数据组;其准数定义式分别为:牛顿冷却定律:传热量Q可由下式求得:三、实验设备流程设备参数:孔板流量计:流量计算关联式:V=●O式中:R——孔板压差,mmH2V——水流量,m3 /h换热套管:套管外管为玻璃管,内管为黄铜管;套管有效长度:1.25m,内管内径:0.022m四、实验操作1.启动水泵2.打开进水阀3.打开蒸汽发生器4.打开放汽阀5.读取水的流量6.读取温度7.实验结束后,先停蒸汽发生器,再关进水阀;实验五精馏实验一、试验目的1.掌握精馏塔的结构2.测定精馏塔的理论板数及塔效率二、实验原理1.理论板2.作图法求理论板数3.精馏塔的全塔效率Et为理论塔板数与实际塔板数N之比,即:E t =Nt/ N精馏塔的单板效率Em可以根据气相或液相通过测定塔板的浓度变化进行计算; 若以液相浓度变化计算,则为:Eml =Xn-1-Xn/ Xn-1- Xn若以气相浓度变化计算,则为:Emv =Yn-Yn+1/ Yn-Yn+1式中:Xn-1-----第n-1块板下降的液体组成,摩尔分率;Xn-------第n块板下降的液体组成,摩尔分率;Xn ------第n块板上与升蒸汽Yn相平衡的液相组成,摩尔分率;Yn+1-----第n+1块板上升蒸汽组成,摩尔分率;Yn-------第n块板上升蒸汽组成,摩尔分率;Yn ------第n块板上与下降液体Xn相平衡的气相组成,摩尔分率;三、实验设备及流程简介本实验进料的溶液为乙醇—水体系,其中乙醇占20%摩尔百分比;精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是10mm;四、实验步骤1.全回流进料打开泵开关,再打开进料的管线;2.塔釜加热升温全回流进料完成后,开始加热;3.建立全回流注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果;4.读取全回流数据5.逐步进料,开始部分回流逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物料平衡、塔釜液位和回流比;6.记录部分回流数据五、作业写出精馏段操作线方程、提馏段操作线方程、加料线方程;实验六、吸收实验一、实验原理本实验是用水吸收空气-氨混合气体中的氨;混合气体中氨的浓度很低;吸收所得的溶液浓度也不高;气液两相的平衡关系可以认为服从亨利定律即平衡线在x-y 坐标系为直线;故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: 所以 )/(m p A a Y Y V G K ∆•= 其中 式中G A —单位时间内氨的吸收量kmol/h; K Ya —总体积传质系数kmol/m 3·h ; V p —填料层体积m 3;△Y m —气相对数平均浓度差; Y 1—气体进塔时的摩尔比;Y e1—与出塔液体相平衡的气相摩尔比; Y 2—气体出塔时的摩尔比;Y e2—与进塔液体相平衡的气相摩尔比; 3、计算方法、公式:1氨液相浓度小于5%时气液两相的平衡关系:温度 ℃:***********亨利系数Eatm :2总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤 a 、标准状态下的空气流量V 0:21210010T T PP P T V V ••••= m 3/h 式中:V 1——空气转子流量计示值 m 3/hT 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强b 、标准状态下的氨气流量V 0’210221010010''T T P P P T V V ••••••=ρρ m 3/h 式中:V 1’——氨气转子流量计示值 m 3 / h ρ01——标准状态下氨气的密度 kg / m 3 ρ02——标定状态下氨气的密度 kg / m 3如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:V 0’’=●V 0’c 、惰性气体的摩尔流量G :G=V 0 /d 、单位时间氨的吸收量G A :G A =G ●Y 1-Y 2e 、进气浓度Y 1:f 、尾气浓度Y 2:式中:Ns——加入分析盒中的硫酸当量浓度 NVs——加入分析盒中的硫酸溶液体积 mlV——湿式气体流量计所测得的空气体积 mlT——标准状态下的空气温度 KT——空气流经湿式气体流量计时的温度 Kg、对数平均浓度差ΔYm:Ye2=0Ye1=mx1P=大气压+塔顶表压+填料层压差/2m=E / Px1=GA/ Ls式中:E——亨利常数Ls——单位时间喷淋水量 kmol / hP——系统总压强h、气相总传质单元高度:式中:G’——混合体气通过塔截面的摩尔流速二、实验设备及流程设备参数:基本数据:塔径Φ0.10m,填料层高0.75m填料参数:12×12×mm瓷拉西环,a1—403m-1,ε—,a1/ε3—903m-1尾气分析所用硫酸体积:1ml,浓度:上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂水从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质;从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成;稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色;三、实验步骤建议的实验条件:水流量:80 l/h 空气流量:20 m3/h 氨气流量:0.5 m3/h 注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离;1、通入氨气打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量实验建议流量: 0.5 m3/h;2、进行尾气分析通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积;当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度;3、读取数据实验七干燥实验一、实验目的1.了解气流干燥设备基本流程和工作原理2.测定物料在一定干燥条件下的干燥速率曲线及传质系数二、实验原理1.干燥特性曲线干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段; 式中:x平—某干燥速率下湿物料的平均含水量 kgGsi ,Gsi+1—分别为△τ时间间隔内开始和终了时湿物料重量 kg;Gc—湿物料中绝对干物料的重量 kg;2.传质系数恒速阶段:恒速阶段的干燥速率u仅由外部干燥条件决定,物料表面温度近于空气湿球温度tw;在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含水量x-x成正比时干燥速率曲线可简化为直线;即为:u=kxx-xkx=u / x-x式中:kx—以含水量差△x为推动力的比例系数 kg/m2·s·△x;u—物料含水量为x时的干燥速率 kg/m2·s;x—在τ时的物料含水量 kg/kg绝干物料;x—物料的平衡含水量 kg/kg绝干物料;三、实验装置及流程简介主要设备规格:孔板流量计:管径D=106mm,孔径d=68.46mm孔流系数 C=干燥室尺寸:m×m四、实验步骤1.启动风机注意:禁止在启动风机以前加热,这样会烧坏加热器;2.开始加热3.进行干燥实验。
风量风速计算方法

一、室内风管风速选择表1、低速风管系统的推荐和最大的流速m/s2、低速风管系统的最大允许速m/s注:民用住在≤35dB(A),商务办公≤45dB(A)二、室内风口风速选择表1、送风口风速2、以噪音标准控制的允许送风流速m/s3、推荐的送风口流速m/s4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s7、百叶窗的推荐流速m/s8、逗留区流速与人体感觉的关系三、通风系统设计1、送风口布置间距回风口应根据具体情况布置一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织2、标准型号风盘所接散流器的尺寸表-办公室注:办公室推荐送风口流速:~ m/s风机盘管接风管的风速:通常为~ m/s,不能大于 m/s,否则会将冷凝水带出来.3、散流器布置散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风范围(面积)的长宽不宜大于1:,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在~之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在米左右,320×320米在米左右.四、风管、风口分类1、风管分类1)按风管材料A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可现场临时制作;缺点:受加工设备限制,厚度不宜超过B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技术有一定要求)C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难)D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显着特点是防火性能较好;缺点:综合造价较高)E、复合保温板风管:常用有:上海万博(铝箔聚氨酯)、湖南中野(酚醛树脂)、北京百夏(BBS)、铝箔玻璃绵保温风管等F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管阻力比较大,且对施工管理要求比较高)G、其他风管:土建、砖茄、布风管等2)按风管作用分:送风、回风、排风、新风管等3)按风管内风速分:低速、高速风2、风口分类:1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等2)按风口形状及功能分:A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等B、散流器:方形散流器、矩形散流器、圆形散流器、圆盘散流器、三面吹型散流器、线槽型散流器等C、旋流风口:具有送出旋转达射流,诱导比大,风俗衰减快等特点D、球型喷口:送风距离大,适合送风距离较大的地方,如各种大厅、展厅及大型装配车间等E、其他风口:球形排风口、栅格形风口、装饰板风口等五、风管、风口设计流程流程一:风系统的划分→流程二:系统风量计算→流程三:确定送风方式→流程四:确定风管布置→流程五:计算风管尺寸→流程六:风口设计选型→流程七:阻力平衡计算机气流组织校核流程一:风系统的划分一个完整的风系统至少应包括:送风段、送风口、回风口、回风段、设备装置根据空调房间的功能、类型、空间等情况进行空调系统划分:分几个系统每个系统在扫描区域………在水系统中的大面积区域,一般设有机房,则个根据机房情况进行系统划分,而对于多联机系统来说,内机风量有限,且型号比较固定,根据已有型号进行合理的系统划分即可流程二:系统风量计算送风量计算的依据:空调房间的送风量G通常按照夏季最大的室内冷负荷,由下公式计算确定:公式: G = 3600Q q/ρ(h n-h s) = 3600Q x/ρc(t n-t s) (m3/h)Q q、Q x —室内总全冷负荷和总显冷负荷(KW)H n —室内空气焓值(KJ/Kg)H s —送风焓值(KJ/Kg)t n —室内温度(℃)t s —送风温度(℃)c —空气定压比热[KJ/(Kg. ℃)] ,可取 KJ/(Kg. ℃)ρ—空气密度(Kg/m3),在标准大气压下,空气稳定20℃时,取 Kg/m3舒适型空调和工艺空调的送风温度差可参考下表选取:注:一般在多联机设计中,一般是根据室内冷负荷确定室内机的选择,因此室内的风系统可查相关产品手册确定,根据空调房间的区域面积确定风口个数,根据送风距离选择中或高静压的机型,从而主管及各支管的风量就已经确定.流程三:确定送风方式根据房间功能及装修要求等情况去顶送风方式:侧送侧回、侧送上回、侧送下回、上送上会、上上送下回流程四:确定风管布置根据房间面积、层高及装修要求等情况确定风管的布置:主管走向、支管布置、送/回风管位置流程五:计算风管尺寸采用嘉定流速计算风管截面积,确定风管尺寸1、公式: S=G/3600V确定主风管及各分支管截面积S —风管截面积(㎡)G —风管内风量(m3/h)V —风管内风速(m/h),一般做设计时候,空调送风主管风速不宜大于6 m/h,支管风速不宜大于3 m/h,具体风速可参照下表:低速风管内的风速m/s高速风管内的风速2、根据风管截面积参照风管常规尺寸表选择合适的风管尺寸:圆形常用规格(mm):Φ100、Φ120、Φ140、Φ160、Φ180、Φ200、Φ220、Φ250、Φ280、Φ320、Φ360、Φ400、Φ450、、Φ500、、Φ560、、Φ630、、Φ700、、Φ800、、Φ900、、Φ1000、、Φ1120、、Φ1250、Φ1400、Φ1600、、Φ1800、、Φ2000矩形常用规格(mm):120×120、160×120、200×120、250×120、160×160、200×160、250×160、320×160、200×200、250×200、320×200、400×200、500×200、250×250、320×250、400×250、500×250、630×250、320×320、400×320、500×320、630×320、800×320、1000×320、400×400、500×400、630×400、800×400、1000×400、1250×400、500×500、630×500、800×500、1000×500、1250×500、1600×500、630×630、800×630、1000×630、1250×630、1600×630、800×800、1000×800、1250×800、1600×800、2000×800、1000×1000、1250×1000、1600×1000、2000×1000、1600×1250、2000×1250流程六:风口设计选型1、根据房间功能及气流组织选择合适的风口类型A、在离吊顶高度为2~4米的顶部送风中选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口B、在一般的侧送风的系统中选择什么样的风口比较合适:双层百叶、单层百叶C、在空间比较大的展厅、体育馆、多功能厅、大堂等一般选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口、球形喷口各种不同的风口的特点和使用范围◇双层百叶风口:1调节式百叶送风口、2可直接与风机盘管配套使用、3用于集中空调系统的末端,调节叶角度,可得到相应送风距离和扩散角、4前排叶片平行于短边为A型,叶片平行于长边为B型◇单层百叶风口:1可用于回风系统、2调节式百叶风口、3可以配过滤器和多叶对开调节阀叶片平行于短边为A型,叶片平行于长边为B型◇侧壁格栅风口:1可用做回风和新风口、2装在墙壁上比较美观,看不见后面的东西、3作为新风口时,后面加铝板网或过滤网、4不注明时,叶片平行于长边◇可开式风口:1适用于做回风口、2还可兼做检修口、3此风口不宜做的太大,但B尺寸也不宜≤170mm、4此风口也称铰链式风口◇矩形(方形)散流器:1气流型式为贴附型(平送型)、2适用于底层吊顶送风系统、3按送风距离确定颈部的风速、4中间叶片芯为可拆卸,便于安装,调试、5送风加调节阀,回风可加过滤器、6天花板开洞尺寸为颈尺寸加75mm,即为(A+75)×(B+75)◇三面吹散流器:1气流型式为贴附型(平送型)、2适用于顶棚的靠墙一侧或局部送风、3中间叶片芯为可拆卸,便于安装,调试◇条形直片式散流器:1突了线性设计特点、2用于室内和环形分布的送,回风、3可根据装饰要求做各种造型、4风口后面可配黑色铝板网,可看不见里面,起遮挡作用、5多个风口并接使用,并缝处有插接板◇条缝活叶型风口:1有其独特设计、2可根据装饰要求做各种造型、3每一组槽内存两个可调叶片,可调制气旋方向和大小、4可根据要求做多组,但不宜做的太宽,最多不得超过十组◇自垂百叶式风口:1用于正压的空调房间的启动排气、2用于新风口处和排风口处、3靠风口百叶自然下垂,隔绝室内外空气交换,当室内气压大于室外时,气流将百叶吹开而向外排气室外空气又不能流入室内、4本风口有单向止回作用、5订货时需说明吹出的方向,即A型或B型◇地送风固定百叶风口:1此风口型材刚性好,并斜向送风、2此风口有单向(A)和双向(B)型两种形式、3此风口用于地面送回风,所以不宜做的过大◇遮光百叶风口:1此风口用于暗室通风且遮光、2可用于门上或墙上、3此风口不宜做的过大◇弧形风口:1可用于吊顶安装时的侧弯弧形亦可为侧面安装的内弯随向弧形、2最好根据工地现场弧形板弯制、3弯曲半径不宜做得过小,R>米为宜◇网式回风口:1结构简单、2可用室外和室内自然通风、3中间用瓦楞铝板网做为通风过滤材料◇可拆卸式风口:1此风口后可配过滤网、2可以方便拆装、3可做检查门使用◇风口多叶对开调节阀:1其调节方案是摘下风口的中心叶片在用螺刀调节中心螺杆◇圆形散流器:1用于冷暖送风,常安装在顶棚上、2吹出气流呈贴附(平送)型、3可以供给较大的风量、4可于圆形对开调节阀配套使用◇圆盘式散流器:1用于冷暖送风,常安装在顶棚上、2出口风速大,射程远、3气流特性属于散流下送型、4能以较小的风量供应较大的地面面积、5可与圆形对开调节阀配套使用◇小圆形散流器:1用于冷暖送风安装在顶棚上、2气流特性属于下送型、3此风口造型别致,小巧玲珑、4用于顶棚较低的较小房间送风,其中Φ126. Φ205叶片密度大,其余规格叶片单边间距为25mm◇圆形斜叶片散流器:1适用于在外墙上作新风口、2适用于墙上做回风口、3叶片倾斜24′◇圆环形叶片散流器:1送风距离远、2适用于较高的顶棚、3造型新颖美观◇球形风口:1是一种喷口型送风口,风口流速高、2可以在顶角为35°的圆锥形空间内随意转动调节,按指定方向送风、3适用于高大屋顶高速送风或局部供冷的场合◇球形排气罩:1可安装于室内墙壁的排气罩、2适用于厨房、厕所的排气、3其外观美观◇防水百叶风口:1其叶片设计成特殊形状、2只有防雨溅入内部的功能,一般安装在外墙上做新风口、3风口后面可以加铝板网,以防鸟或虫进入◇可开式单层百叶风口:1回风口可开与送风口单双百叶相对应装饰效果好、2便于安装,清洗过滤网、3适宜宽度120-200之间◇可开式方形散流器:1回风口与送风方型散流器相对应适合于大厅等宽大的客厅房间装饰,使造型风格上得到完美的统一、2便于安装,清洗过滤网、3可加工成方型和矩形两个规格的可开型矩形散流器◇外墙口风:1此风口安装在外墙上,即通风又防雨水流入、2用一种装饰型材粘贴在外框四周、3外框于叶片较一般通风风口型材刚性好,因而可以做成较大尺寸、4风口后面可以装拼接式过滤器◇文丘里式(变风量)喷口:1风口出口段采用特形曲线,使之喷射距离更远、2喷口内一般调节芯可以轴向移动、3可以调节出风而积达到射程,风量的控制,适用于大型厅展,以达到侧向吹出距离远,并扩展其流向下扩展◇带灯箱,静压箱的条缝送风口2、根据风量确定风口尺寸(假定流速法)风口的风速选择卡参考下表流程七:阻力平衡计算机气流组织校核1、计算最不利环路的压力损失并校核各支管阻力平衡1)简单计算最不利环路的压力损失A、摩擦压力损失值:Pm为~mB、P=Pm×L×(1+K)L为风管总长度弯头三通多时,K=3~5弯头三通少时,K=1~22)校核各支管阻力平衡,如分支管比较多时,需在各分支管上装风量调节阀2、室内气流组织校核校核各空调风系统的气流组织是否出现短路校核室内空气循环是否合理,避免空调四区的出现校核新风系统与排风系统是否合理风口的距离是否合理风量风管计算方法风管:风管尺寸=风量/风速风量=房间面积*房间高*换气次数例:风量40000m3/h,风速9m/s,得风管尺寸=40000m3/h除以9m/s除以3600s=㎡=*风管尺寸:1500×800mm,而根据矩形常用规格只有:1600×800 mm风速需要根据噪音要求调整的通风工程以假定流速法为例,其计算步骤和方法如下:1、绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量段长度一般按两管件间中心线长度计算,不扣除管件(如三通、弯头)本身的长度2、确定合理的空气流速风管内的空气流速对通风、空调系统的经济性有较大的影响.流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加.对除尘系统会增加设备和管道的磨损,对空调系统会增加噪声.流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大.对除尘系统流速过低会使粉尘沉积赌塞管道.因此,必须通过全面的技术经济比较选定合理的流速.根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定.除尘器后风管内的流速可对比表6-2-3中的数值适当减小.表6-2-1 一般通风系统中常用空气流速(m/s)表6-2-2空调系统低速风管内的空气流速3、据各风管的风量和选择的流速,按式(6-2-1)计算各管段的断面尺寸,并计算摩擦阻力和局部阻力.定风管断面尺寸时,应采用规范统一规定的通风管道规格,以利于工业化工制作.风管断面尺寸确定后,应按管内实际流速计算阻力.阻力计算应从最不利环路(即阻力最大的环路)开始.袋式除尘器和静电除尘器后风管内的风量应把漏风量和反吹风量计入.在正常运行条件下,除尘器的漏风率应不大于5%.4、并联管路的阻力平衡调节了保证各种、排风点达到预期的风量,两并联支管的阻力必须保持平衡.对一般的通风系统,两支管的阻力差应不超过15%,除尘系统应不超过10%.若超过上述规定,可采用下述方法调节其阻力平衡.(1)调整支管管径这种方法是通过改变支管管径改变支管的阻力,达到阻力平衡.调整后的管径按下式计算:(6-2-2)式中 D′—调整后的管径mmD —原设计的管径mm△P —原设计的支管阻力Pa△P′—要求达到的支管阻力Pa应当指出,采用本方法时,不宜改变三通的支管直径,可在三通支管上先增设一节渐扩(缩)管,以免引起三通局部阻力的变化(2)增大风量当两支管的阻力相差不大时,例如在20%以内,可不改变支管管径,将阻力小的那段支管的流量适当加大,达到阻力平衡.增大后的风量按下式计算:(6-2-3式中 L′—调整后的支管风量m3/hL —原设计的支管风量m3/h采用本方法会引起后面干管内的流量相应增大,阻力也随之增大;同时风机的风量和风压也会相应增大(3)阀门调节通过改变阀门开度,调节管道阻力,从理论上讲是一种最简单易行的方法.必须指出,对一个多支管的通风空调系统进行实际调试,是一项复杂的技术工作.必须进行反复的调整、测试才能完成,达到预期的流量分配.5、计算系统的总阻力。
流体力学-04-2 伯努利方程的应用.

伯努利方程的应用伯努利方程对于流动体系除了掌握体系的对于流动体系,除了掌握体系的物料衡算关系以外,还必须找出体系各种形式能量之间的转换关系系各种形式能量之间的转换关系。
伯努利(Bernoulli)方程:描述了流体流动过程中各种形式能量之间的转换关系,是流体在定常流动情。
是热力学第一Daniel Bernoulli ,1700-1782况下的能量衡算式是热力学第定律对流体流动过程的具体描述。
流动系统的能量流动系统的能量:流动系统的能量流动系统的能量:(3) 动能:流体以一定的速度运动时便具有一定的动能,大时所需要的功小等于流体从静止加速到流速v时所需要的功。
(4) 静压能:流体进入划定体积时需要对抗压力所做的功。
流体进入划定体积时需要对抗压力所做的功若质量为m的流体体积为,某截面处的静压强为p,截面面积为A,则将质量为m的流体压入划定体积的功为:则将质量为的流体压入划定体积的功为质量为能量还可以通过其他外界条件与流动系统进行交换,包括::流体通过换热器吸热或放热Q e吸热时为正,放热时为负。
:泵等流体输送机械向系统做功W em 的流体交换热量=m Q e流体接受外功为正流体对外作功为负作功为负的流体所接受的功= mW e以截面两边同除以m单位质量流体稳定流动过程的总能量衡算式,流动系统的力学第一定律表达式系统内能变化系统内能变化:是单位质量流体从截面1-1到截面是单位质量流体从截面1-1到截面2-2流体通过环境直接获得的热量,Q e(1)流体通过环境直接获得的热量流体流动时需克服阻力做功,因而消耗机械能转化为热量,若流体等温流动,这部分热量则散失到系统外部。
设单位流体因克服阻力而损失的,则则不可压缩流体ρ=const=0无外加功W e=0理想流体,Σhf伯努力方程努力方程的有关伯努力方程的讨论(1)伯努力方程的适用条件:不可压缩的理想流体做定常流动而无外功输入的情况,选取截面符合缓变流条件。
单位质量流体在任一截面上所具有的势能、动能和静压能之和是一常数。
化工原理整理知识点
第一章 流体传递现象➢ 流体受力:表面力和体积力体积力/场力/质量力:为非接触力,大小与流体的质量成正比表面力:为接触力,大小与和流体相接触的物体(包括流体本身)的表面积成正比, ➢ 流场概念:场和流场;矢量场和标量场;梯度第一节 流体静力学1-1-2 压力流体垂直作用于单位面积上的力,称为流体的静压强,又称为压力。
在静止流体中,作用于任意点不同方向上的压力在数值上均相同。
压力的单位(1) 按压力的定义,其单位为N/m 2,或Pa ;(2) 以流体柱高度表示,如用米水柱或毫米汞柱等。
标准大气压的换算关系:1atm = 1.013×105Pa =760mmHg =10.33m H 2O 压力的表示方法表压 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 1-1-3 流体静力学基本方程 静力学基本方程:压力形式 :)(2112z z g p p -+=ρ能量形式 :gz p g z p 2211+=+ρρ适用条件:在重力场中静止、连续的同种不可压缩流体。
(1)在重力场中,静止流体内部任一点的静压力与该点所在的垂直位置和流体的密度有关,而与该点所在的水平位置和容器的形状无关。
(2)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。
液面上方压力变化时,液体内部各点的压力也将发生相应的变化。
(3)物理意义:静力学基本方程反映了静止流体内部能量守恒与转换的关系,在同一静止流体中,处在不同位置的位能和静压能各不相同二者可以相互转换,但两项能量总和恒为常量。
应用:1. 压力和压差的测量 (1)U 形压差计:gR p p )(021ρρ-=- 若被测流体是气体,可简化为:021ρRg p p ≈-U 形压差计也可测量流体的压力,测量时将U 形管一端与被测点连接,另一端与大气相通,此时测得的是流体的表压或真空度。
(2)倒U 形压差计 ρρρRg Rg p p ≈-=-)(021(3)双液体U 管压差计)(21C A Rg p p ρρ-=- 2. 液位测量3. 液封高度的计算第二节 流体动力学1-2-1 流体的流量与流速 一、流量体积流量V S 单位时间内流经管道任意截面的流体体积, m 3/s 或m 3/h 。
水力学实验报告思考题答案(想你所要)
水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P<0时,试根据记录数据,确定水箱内的真空区域。
B,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
流体实验答案
流体力学实验思考题解答(一)流体静力学实验1、 当0<B p 时,试根据记录数据确定水箱的真空区域。
答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。
2、 若再备一根直尺,试采用另外最简便的方法测定0γ。
答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。
3、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小,可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
风量风速计算方法
一、室风管风速选择表1、低速风管系统的推荐和最大的流速m/s2、低速风管系统的最大允许速m/s注:民用住在≤35dB(A),商务办公≤45dB(A)二、室风口风速选择表1、送风口风速2、以噪音标准控制的允许送风流速m/s3、推荐的送风口流速m/s4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s7、百叶窗的推荐流速m/s8、逗留区流速与人体感觉的关系三、通风系统设计1、送风口布置间距回风口应根据具体情况布置一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织2、标准型号风盘所接散流器的尺寸表-办公室注:办公室推荐送风口流速:2.5~4.0 m/s风机盘管接风管的风速:通常为1.5~2.0 m/s,不能大于2.5 m/s,否则会将冷凝水带出来.3、散流器布置散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风围(面积)的长宽不宜大于1:1.5,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在0.5~1.5之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在3.5米左右,320×320米在4.2米左右.四、风管、风口分类1、风管分类1)按风管材料A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可现场临时制作;缺点:受加工设备限制,厚度不宜超过1.2mm)B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技术有一定要求)C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难)D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显著特点是防火性能较好;缺点:综合造价较高)E、复合保温板风管:常用有:万博(铝箔聚氨酯)、中野(酚醛树脂)、百夏(BBS)、铝箔玻璃绵保温风管等F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管阻力比较大,且对施工管理要求比较高)G、其他风管:土建、砖茄、布风管等2)按风管作用分:送风、回风、排风、新风管等3)按风管风速分:低速、高速风2、风口分类:1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等2)按风口形状及功能分:A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等B、散流器:方形散流器、矩形散流器、圆形散流器、圆盘散流器、三面吹型散流器、线槽型散流器等C、旋流风口:具有送出旋转达射流,诱导比大,风俗衰减快等特点D、球型喷口:送风距离大,适合送风距离较大的地方,如各种大厅、展厅及大型装配车间等E、其他风口:球形排风口、栅格形风口、装饰板风口等五、风管、风口设计流程流程一:风系统的划分→流程二:系统风量计算→流程三:确定送风方式→流程四:确定风管布置→流程五:计算风管尺寸→流程六:风口设计选型→流程七:阻力平衡计算机气流组织校核流程一:风系统的划分一个完整的风系统至少应包括:送风段、送风口、回风口、回风段、设备装置根据空调房间的功能、类型、空间等情况进行空调系统划分:分几个系统?每个系统在扫描区域?………在水系统中的大面积区域,一般设有机房,则个根据机房情况进行系统划分,而对于多联机系统来说,机风量有限,且型号比较固定,根据已有型号进行合理的系统划分即可流程二:系统风量计算送风量计算的依据:空调房间的送风量G通常按照夏季最大的室冷负荷,由下公式计算确定:公式: G = 3600Q q/ρ(h n-h s) = 3600Q x/ρc(t n-t s) (m³/h)Q q、Q x —室总全冷负荷和总显冷负荷(KW)H n —室空气焓值(KJ/Kg)H s —送风焓值(KJ/Kg)t n —室温度(℃)t s —送风温度(℃)c —空气定压比热[KJ/(Kg. ℃)] ,可取1.01 KJ/(Kg. ℃)ρ—空气密度(Kg/m³),在标准大气压下,空气稳定20℃时,取1.2 Kg/m³舒适型空调和工艺空调的送风温度差可参考下表选取:注:一般在多联机设计中,一般是根据室冷负荷确定室机的选择,因此室的风系统可查相关产品手册确定,根据空调房间的区域面积确定风口个数,根据送风距离选择中或高静压的机型,从而主管及各支管的风量就已经确定.流程三:确定送风方式根据房间功能及装修要求等情况去顶送风方式:侧送侧回、侧送上回、侧送下回、上送上会、上上送下回流程四:确定风管布置根据房间面积、层高及装修要求等情况确定风管的布置:主管走向、支管布置、送/回风管位置流程五:计算风管尺寸采用嘉定流速计算风管截面积,确定风管尺寸1、公式: S=G/3600V确定主风管及各分支管截面积S —风管截面积(㎡)G —风管风量(m³/h)V —风管风速(m/h),一般做设计时候,空调送风主管风速不宜大于6 m/h,支管风速不宜大于3 m/h,具体风速可参照下表:低速风管的风速m/s高速风管的风速2、根据风管截面积参照风管常规尺寸表选择合适的风管尺寸:圆形常用规格(mm):Φ100、Φ120、Φ140、Φ160、Φ180、Φ200、Φ220、Φ250、Φ280、Φ320、Φ360、Φ400、Φ450、、Φ500、、Φ560、、Φ630、、Φ700、、Φ800、、Φ900、、Φ1000、、Φ1120、、Φ1250、Φ1400、Φ1600、、Φ1800、、Φ2000矩形常用规格(mm):120×120、160×120、200×120、250×120、160×160、200×160、250×160、320×160、200×200、250×200、320×200、400×200、500×200、250×250、320×250、400×250、500×250、630×250、320×320、400×320、500×320、630×320、800×320、1000×320、400×400、500×400、630×400、800×400、1000×400、1250×400、500×500、630×500、800×500、1000×500、1250×500、1600×500、630×630、800×630、1000×630、1250×630、1600×630、800×800、1000×800、1250×800、1600×800、2000×800、1000×1000、1250×1000、1600×1000、2000×1000、1600×1250、2000×1250流程六:风口设计选型1、根据房间功能及气流组织选择合适的风口类型A、在离吊顶高度为2~4米的顶部送风中选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口B、在一般的侧送风的系统中选择什么样的风口比较合适:双层百叶、单层百叶C、在空间比较大的展厅、体育馆、多功能厅、大堂等一般选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口、球形喷口各种不同的风口的特点和使用围◇双层百叶风口:1调节式百叶送风口、2可直接与风机盘管配套使用、3用于集中空调系统的末端,调节叶角度,可得到相应送风距离和扩散角、4前排叶片平行于短边为A型,叶片平行于长边为B型◇单层百叶风口:1可用于回风系统、2调节式百叶风口、3可以配过滤器和多叶对开调节阀叶片平行于短边为A型,叶片平行于长边为B型◇侧壁格栅风口:1可用做回风和新风口、2装在墙壁上比较美观,看不见后面的东西、3作为新风口时,后面加铝板网或过滤网、4不注明时,叶片平行于长边◇可开式风口:1适用于做回风口、2还可兼做检修口、3此风口不宜做的太大,但B尺寸也不宜≤170mm、4此风口也称铰链式风口◇矩形(方形)散流器:1气流型式为贴附型(平送型)、2适用于底层吊顶送风系统、3按送风距离确定颈部的风速、4中间叶片芯为可拆卸,便于安装,调试、5送风加调节阀,回风可加过滤器、6天花板开洞尺寸为颈尺寸加75mm,即为(A+75)×(B+75)◇三面吹散流器:1气流型式为贴附型(平送型)、2适用于顶棚的靠墙一侧或局部送风、3中间叶片芯为可拆卸,便于安装,调试◇条形直片式散流器:1突了线性设计特点、2用于室和环形分布的送,回风、3可根据装饰要求做各种造型、4风口后面可配黑色铝板网,可看不见里面,起遮挡作用、5多个风口并接使用,并缝处有插接板◇条缝活叶型风口:1有其独特设计、2可根据装饰要求做各种造型、3每一组槽存两个可调叶片,可调制气旋方向和大小、4可根据要求做多组,但不宜做的太宽,最多不得超过十组◇自垂百叶式风口:1用于正压的空调房间的启动排气、2用于新风口处和排风口处、3靠风口百叶自然下垂,隔绝室外空气交换,当室气压大于室外时,气流将百叶吹开而向外排气室外空气又不能流入室、4本风口有单向止回作用、5订货时需说明吹出的方向,即A型或B型◇地送风固定百叶风口:1此风口型材刚性好,并斜向送风、2此风口有单向(A)和双向(B)型两种形式、3此风口用于地面送回风,所以不宜做的过大◇遮光百叶风口:1此风口用于暗室通风且遮光、2可用于门上或墙上、3此风口不宜做的过大◇弧形风口:1可用于吊顶安装时的侧弯弧形亦可为侧面安装的弯随向弧形、2最好根据工地现场弧形板弯制、3弯曲半径不宜做得过小,R>1.5米为宜◇网式回风口:1结构简单、2可用室外和室自然通风、3中间用瓦楞铝板网做为通风过滤材料◇可拆卸式风口:1此风口后可配过滤网、2可以方便拆装、3可做检查门使用◇风口多叶对开调节阀:1其调节方案是摘下风口的中心叶片在用螺刀调节中心螺杆◇圆形散流器:1用于冷暖送风,常安装在顶棚上、2吹出气流呈贴附(平送)型、3可以供给较大的风量、4可于圆形对开调节阀配套使用◇圆盘式散流器:1用于冷暖送风,常安装在顶棚上、2出口风速大,射程远、3气流特性属于散流下送型、4能以较小的风量供应较大的地面面积、5可与圆形对开调节阀配套使用◇小圆形散流器:1用于冷暖送风安装在顶棚上、2气流特性属于下送型、3此风口造型别致,小巧玲珑、4用于顶棚较低的较小房间送风,其中Φ126. Φ205叶片密度大,其余规格叶片单边间距为25mm◇圆形斜叶片散流器:1适用于在外墙上作新风口、2适用于墙上做回风口、3叶片倾斜24´◇圆环形叶片散流器:1送风距离远、2适用于较高的顶棚、3造型新颖美观◇球形风口:1是一种喷口型送风口,风口流速高、2可以在顶角为35°的圆锥形空间随意转动调节,按指定方向送风、3适用于高大屋顶高速送风或局部供冷的场合◇球形排气罩:1可安装于室墙壁的排气罩、2适用于厨房、厕所的排气、3其外观美观◇防水百叶风口:1其叶片设计成特殊形状、2只有防雨溅入部的功能,一般安装在外墙上做新风口、3风口后面可以加铝板网,以防鸟或虫进入◇可开式单层百叶风口:1回风口可开与送风口单双百叶相对应装饰效果好、2便于安装,清洗过滤网、3适宜宽度120-200之间◇可开式方形散流器:1回风口与送风方型散流器相对应适合于大厅等宽大的客厅房间装饰,使造型风格上得到完美的统一、2便于安装,清洗过滤网、3可加工成方型和矩形两个规格的可开型矩形散流器◇外墙口风:1此风口安装在外墙上,即通风又防雨水流入、2用一种装饰型材粘贴在外框四周、3外框于叶片较一般通风风口型材刚性好,因而可以做成较大尺寸、4风口后面可以装拼接式过滤器◇文丘里式(变风量)喷口:1风口出口段采用特形曲线,使之喷射距离更远、2喷口一般调节芯可以轴向移动、3可以调节出风而积达到射程,风量的控制,适用于大型厅展,以达到侧向吹出距离远,并扩展其流向下扩展◇带灯箱,静压箱的条缝送风口2、根据风量确定风口尺寸(假定流速法)风口的风速选择卡参考下表流程七:阻力平衡计算机气流组织校核1、计算最不利环路的压力损失并校核各支管阻力平衡1)简单计算最不利环路的压力损失A、摩擦压力损失值:Pm为0.8~1.5Pa/mB、P=Pm×L×(1+K)L为风管总长度弯头三通多时,K=3~5弯头三通少时,K=1~22)校核各支管阻力平衡,如分支管比较多时,需在各分支管上装风量调节阀2、室气流组织校核校核各空调风系统的气流组织是否出现短路校核室空气循环是否合理,避免空调四区的出现校核新风系统与排风系统是否合理风口的距离是否合理风量风管计算方法风管:风管尺寸=风量/风速风量=房间面积*房间高*换气次数例:风量40000m³/h,风速9m/s,得风管尺寸=40000m³/h除以9m/s除以3600s=1.23㎡=1.5m*0.82 风管尺寸:1500×800mm,而根据矩形常用规格只有:1600×800 mm风速需要根据噪音要求调整的通风工程以假定流速法为例,其计算步骤和方法如下:1、绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量段长度一般按两管件间中心线长度计算,不扣除管件(如三通、弯头)本身的长度2、确定合理的空气流速风管的空气流速对通风、空调系统的经济性有较大的影响.流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加.对除尘系统会增加设备和管道的磨损,对空调系统会增加噪声.流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大.对除尘系统流速过低会使粉尘沉积赌塞管道.因此,必须通过全面的技术经济比较选定合理的流速.根据经验总结,风管的空气流速可按表6-2-1、表6-2-2及表6-2-3确定.除尘器后风管的流速可对比表6-2-3中的数值适当减小.表6-2-1 一般通风系统中常用空气流速(m/s)表6-2-2 空调系统低速风管的空气流速表6-2-3 除尘风管的最小风速(m/s)3、据各风管的风量和选择的流速,按式(6-2-1)计算各管段的断面尺寸,并计算摩擦阻力和局部阻力.定风管断面尺寸时,应采用规统一规定的通风管道规格,以利于工业化工制作.风管断面尺寸确定后,应按管实际流速计算阻力.阻力计算应从最不利环路(即阻力最大的环路)开始.袋式除尘器和静电除尘器后风管的风量应把漏风量和反吹风量计入.在正常运行条件下,除尘器的漏风率应不大于5%.4、并联管路的阻力平衡调节了保证各种、排风点达到预期的风量,两并联支管的阻力必须保持平衡.对一般的通风系统,两支管的阻力差应不超过15%,除尘系统应不超过10%.若超过上述规定,可采用下述方法调节其阻力平衡.(1)调整支管管径这种方法是通过改变支管管径改变支管的阻力,达到阻力平衡.调整后的管径按下式计算:(6-2-2)式中 D´—调整后的管径mmD —原设计的管径mm△P —原设计的支管阻力Pa△P´—要求达到的支管阻力Pa应当指出,采用本方法时,不宜改变三通的支管直径,可在三通支管上先增设一节渐扩(缩)管,以免引起三通局部阻力的变化(2)增大风量当两支管的阻力相差不大时,例如在20%以,可不改变支管管径,将阻力小的那段支管的流量适当加大,达到阻力平衡.增大后的风量按下式计算:(6-2-3式中 L´—调整后的支管风量m³/hL —原设计的支管风量m³/h采用本方法会引起后面干管的流量相应增大,阻力也随之增大;同时风机的风量和风压也会相应增大(3)阀门调节通过改变阀门开度,调节管道阻力,从理论上讲是一种最简单易行的方法.必须指出,对一个多支管的通风空调系统进行实际调试,是一项复杂的技术工作.必须进行反复的调整、测试才能完成,达到预期的流量分配.5、计算系统的总阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.1 反应器设计:
反应器进口烟气量:Q 1=126455m 3/h
反应器出口烟气量:Q 2=108567m 3/h
平均烟气量Q =(Q 1+Q 2)/2=117511m 3/h
平均温度:(150+65)/2=107.5℃
4.2.1.1净化塔直径
净化塔直径D 1烟速以V 1=6m/s 计
1136002V Q
D ⨯⨯⨯=π=2630mm , 取塔外径D 1=2600mm 。
实际流速:126455/(3600×3.14×1.3×1.3)=6.15m/s
4.2.1.2塔圆柱段高度h 3
烟气在塔内停留时间取2.8s ,烟速以V 1=6m/s 计:
塔圆柱段高度=烟气流速×停留时间=6m/s ×2.8s=16.8m
2、文丘里的设计:
分为7个小文丘里
○
1喉口直径D 2及高度h 1 喉口风速按40 m/s 计,分为7个小文丘里。
D 2。
1=7
14.34536001264552⨯⨯⨯⨯=0.38 故管束取内径D 1=380mm ;
喉口实际流速:w=117511 3600 7 3.14 (0.4/2)2=25.2m/s h 1=1.5×380=570mm ,
取h 1=570mm
○
2文丘里扩散段出口直径D 2、收缩段进口直径D 3 D 2=D 3=h 1=570mm
○
3文丘里扩散段出口高度h 2 扩散角α=20°计算,
则扩散段高度h 2=(570-380)÷2÷tg10°=539mm 取540mm 。
取h2=540mm
④文丘里收缩段进口高度h3
收缩角α=70°计算,
则收缩段高度h3=(570-380)÷2÷tg35°=136mm 取140mm。
取h3=140mm
⑤文丘里喉口外径D2
小文丘里壁厚约10mm,间距约50mm。
D2=3×570+10×8+50×4=1990mm
取喉口外径D2=2000mm。