高压静电法结合冷冻干燥法和离子交联法制备壳聚糖 - 明胶多孔微球
离子交联法制备壳聚糖纳米颗粒_魏谭军

主要仪器: MDR 离心喷雾干燥器,上海保兴生物设备工 程有限公司; 中空纤维超滤膜,北京旭邦膜设备有限责任公 司; JY92-Ⅱ超声波细胞粉碎机,宁波新芝生物科技股份有限
作者简介 收稿日期
魏谭军( 1984 - ) ,男,甘肃兰州人,硕士研究生,研究方向: 新药设 计 与 开 发,E-mail: 404477285 @ qq. com。* 通 讯 作 者,副教授,从事新药设计与开发研究,E-mail: www. apple_ chen_xd@ 163. com. 2011-11-16
根据制备方法划分不同的壳聚糖水凝胶

根据制备方法划分不同的壳聚糖水凝胶水凝胶因其具有三维网状结构且含有亲水基团,能够吸收大量的水分而溶胀,使水凝胶具有优良的保水性质。
同时还有良好的生物相容性,能够广泛应用。
壳聚糖是由2-氨基-2-脱氧-葡萄糖通过1,4糖苷键连结的带正电荷的直链多糖。
其分子链上分布着许多羟基、氨基及N-乙酰氨基,这些基团之间可形成分子间及分子内氢键,使得壳聚糖在有机溶剂、水和碱中难以溶解。
而在稀酸溶液中,由于氨基质子化后破坏了分子内的氢键作用,使壳聚糖能够溶解。
以壳聚糖水凝胶作为药物的载体,不仅有优良的生物相容性和可降解性,还可将药物装载在壳聚糖水凝胶内以便于运送到作用部位再释放,从而使药物能在靶区快速达到所需药物浓度,减少药物的损失并提高疗效,还可减少药物对正常组织造成的毒副作用。
壳聚糖水凝胶的制备方法:壳聚糖形成水凝胶,重要的是分子之间发生交联作用,这种交联作用可通过物理方法或化学方法实现,因此制备壳聚糖水凝胶可从两方面来实现:物理交联法:利用分子内部及分子间的物理作用使得壳聚糖溶液凝胶化;化学交联法:加入化学交联剂,使分子间产生共价交联作用,从而形成壳聚糖水凝胶。
1.物理交联法制备;是通过分子间的作用力,使壳聚糖分子形成交联的网状结构从而形成水凝胶。
通过加入离子化合物﹑聚电解质复合物增强分子间静电相互作用可以实现壳聚糖分子之间的物理交联,另外也可以利用壳聚糖分子之间存在的疏水作用达到物理交联的目的。
(1)阴离子小分子制备壳聚糖水凝胶使用带有负电荷的甘油磷酸钠分子,可成功制备壳聚糖(Chitosan,CS)/ aβ-甘油磷酸钠( a3-sodium glycerophosphate,x3-GP)温敏水凝胶。
α3-GP带有负电荷,与壳聚糖上质子化后的氨基发生静电相互作用,最终使壳聚糖凝胶化。
除甘油磷酸钠外﹐其他如硫酸盐﹑柠檬酸盐和三聚磷酸盐等也可与壳聚糖上质子化后的氨基发生静电相互作用从而形成水凝胶。
(2)金属离子制备壳聚糖水凝胶不同于阴离子分子与壳聚糖质子化后的氨基之间的静电作用,金属离子与壳聚糖分子之间通过配位键合方式实现壳聚糖的凝胶化。
壳聚糖纳米颗粒的制备及在药物递送中的应用潜力探讨

壳聚糖纳米颗粒的制备及在药物递送中的应用潜力探讨引言:药物递送系统是一种能够将药物精确释放到靶位点的技术,可以提高药物疗效,并减少不良反应。
壳聚糖纳米颗粒作为一种新兴的药物递送载体,在医药领域引起了广泛关注。
本文将探讨壳聚糖纳米颗粒的制备方法以及其在药物递送中的应用潜力。
一、壳聚糖纳米颗粒的制备方法壳聚糖具有生物相容性、生物可降解性和多功能修饰等优点,被广泛应用于药物递送系统中。
制备壳聚糖纳米颗粒一般有三种方法:离子凝胶法、乳化法和共沉淀法。
离子凝胶法是将壳聚糖和药物通过化学或物理作用相互结合,制备成纳米颗粒。
该方法简单易行,能够保持药物的活性,但颗粒大小分布较宽。
乳化法是利用乳化剂将壳聚糖和药物悬浮于油相中,经过乳化、沉淀和去溶剂等步骤制备纳米颗粒。
这种方法能够控制颗粒大小,但药物的活性易受到乳化过程的影响。
共沉淀法通过化学反应使壳聚糖溶解于溶液中,再加入药物后通过化学交联或沉淀使壳聚糖形成纳米颗粒。
该方法制备的颗粒大小均一,但药物的稳定性需考虑。
二、壳聚糖纳米颗粒在药物递送中的应用壳聚糖纳米颗粒具有较高的稳定性、生物可降解性和生物相容性,被认为是一种理想的药物递送载体。
其应用潜力主要体现在以下几个方面:1. 肿瘤治疗壳聚糖纳米颗粒在肿瘤治疗中具有重要的应用潜力。
通过修饰纳米颗粒表面的靶向配体,可以使药物精准地释放到肿瘤细胞内,提高治疗效果。
此外,由于壳聚糖具有很好的生物相容性和生物可降解性,纳米颗粒可以在体内稳定循环,并逐渐降解释放药物,减少药物的副作用。
2. 注射给药壳聚糖纳米颗粒可以通过静脉注射等方式给药,有效地提高药物在体内的稳定性和生物利用度。
由于壳聚糖纳米颗粒具有较小的颗粒大小和较大的比表面积,可以提高药物的溶解度和渗透性,加快药物的吸收速度。
3. 控释系统壳聚糖纳米颗粒可以根据不同药物的需求,设计成不同的控释系统。
包括静态控释系统、动态控释系统和受刺激控释系统等。
这些控释系统能够根据体内环境的变化,控制药物的释放速率和释放时间,增加药物在体内的停留时间,从而提高药物疗效。
壳聚糖纳米微球的制备及其在药物输送中的应用研究

壳聚糖纳米微球的制备及其在药物输送中的应用研究引言壳聚糖纳米微球是一种重要的纳米材料,具有广泛的应用潜力。
本文将讨论壳聚糖纳米微球的制备方法及其在药物输送领域的应用研究。
一、壳聚糖纳米微球的制备方法1. 电沉积法电沉积法是一种常用的壳聚糖纳米微球制备方法。
它通过电化学方法在电极表面沉积壳聚糖材料,形成纳米级的球状微粒。
此方法具有简单、可控性强、成本低等特点。
2. 水相反应法水相反应法是制备壳聚糖纳米微球的另一种常用方法。
该方法通过水相反应使含有壳聚糖和交联剂的溶液在适当的pH值和温度下发生交联反应,形成纳米级的壳聚糖微球。
3. 反相沉淀法反相沉淀法是一种制备单分散壳聚糖纳米微球的有效方法。
在此方法中,壳聚糖和乙酸乙酯等有机溶剂通过超声处理形成乳化液,然后将其引入水相中,壳聚糖微球通过反相沉淀形成。
二、壳聚糖纳米微球在药物输送中的应用研究1. 利用壳聚糖纳米微球的载药性能壳聚糖纳米微球可以通过静电相互作用或共价结合等方法将药物载入微球内部。
其稳定性和生物相容性使其成为一种理想的药物载体。
通过调节壳聚糖微球的大小和表面性质,可以改变药物的释放速度和释放方式,实现药物的缓释和靶向输送。
2. 利用壳聚糖纳米微球的靶向性壳聚糖纳米微球可以通过改变其表面性质来实现靶向输送。
例如,通过修饰壳聚糖微球表面的靶向分子,可以实现对特定细胞或组织的精确靶向输送。
这种靶向性可以提高药物的局部治疗效果,降低副作用。
3. 利用壳聚糖纳米微球的响应性壳聚糖纳米微球可以通过调整其结构和组成来实现对外界刺激的敏感性。
例如,通过改变壳聚糖微球的pH响应性,可以实现在特定pH环境下的药物释放。
这种响应性能使得壳聚糖纳米微球在肿瘤治疗等需要对外界刺激做出响应的场景中具有潜在应用价值。
结论壳聚糖纳米微球作为一种重要的纳米材料,在药物输送中具有广泛的应用潜力。
其制备方法包括电沉积法、水相反应法和反相沉淀法等。
壳聚糖纳米微球可通过载药性能、靶向性和响应性等特点,实现药物的缓释、靶向输送和对外界刺激的响应。
壳聚糖微球的制备及研究开题报告

壳聚糖微球的制备及研究-开题报告壳聚糖微球的制备及研究摘要:壳聚糖是性能优良的天然黏膜黏着剂,常用于多肽类药物的黏膜给药。
壳聚糖微球除具有壳聚糖本身特点外,在性能上又有新的改善,利用壳聚糖制成的微球可以延长药物在吸收位置的保留时间,达到控释目的。
实验以戊二醛,多聚磷酸钠为交联剂制备微球,通过单因素法考察微球制备工艺。
关键词:微球,壳聚糖,戊二醛,多聚磷酸钠1 研究背景1.1 微球微球是近年来发展的新剂型,它是以清蛋白、明胶、聚乳酸等材料制成的球状载体给药系统,微球中的药物分散或包埋在材料中而形成球状实体,微球直径大小一般为0.3~100μm。
不同粒径范围的微球针对性地作用于不同的靶组织。
这类剂型的开发,对于发展缓控释和靶向给药系统具有重要的意义。
微球的特点药物制备成微球后可达到下述目的:掩盖药物不良气味及口味,如鱼肝油、生物碱类等;提高药物的稳定性,如易氧化的β-胡萝卜素、对水气敏感的阿司匹林等;使液态药物固体化便于应用与储存,如油类、香料、脂溶性维生素等;对缓释或控释药物,可采用惰性基质、薄膜、可生物降解材料、亲水性凝胶等制成微球或微囊,可使药物控释或缓释;使药物浓集于靶区,如治疗指数低的药物或细胞毒素药物(抗癌药)制成微球或微囊的靶向制剂,可将药物浓集于肝或肺等靶区,提高疗效,降低毒副作用;除药物外,可将活细胞或生物活性物质包囊,如胰岛、血红蛋白等包囊,在体内生物活性高,而具有很好的生物相容性和稳定性[1]。
各种微球的制备研究.1 清蛋白微球清蛋白微球制剂是人或动物血清清蛋白与药物一起制成的一种球状制剂。
清蛋白是体内的生物降解物质,注入肌体后,在肌体的作用下逐渐降解后清除,性能稳定、无毒、无抗原性,因此清蛋白微球制剂是理想的控缓释靶向制剂之一。
其制备方法有:热变性法;化学交联法(即用化学交联剂同清蛋白发生交联反应使之变性);聚合物分散法和界面缩聚法等。
.2 聚乳酸、聚乳酸乙醇酸微球聚乳酸(PLA)是一种无毒可生物降解的聚合物,具有很好的生物相容性。
离子凝胶法制备壳聚糖纳米粒的研究进展

离子凝胶法制备壳聚糖纳米粒的研究进展【关键词】离子凝胶法;壳聚糖纳米粒近年来随着科学技术的发展,制药技术和药物剂型也有了很大的发展,出现了很多新剂型和新技术。
其中载药纳米微粒作为药物、基因传递和控释的载体。
是近年来出现的药物控释和缓释的新剂型。
引起了国内外的极大关注和兴趣。
纳米粒是由高分子物质组成,粒径在10-100nm范围,药物可以溶解、包裹于其中或吸附在表面上。
20世纪70年代,Narty等人首先将纳米囊与纳米球作为药物载体,30多年来在药剂学领域得到广泛的推广。
壳聚糖作为一种天然的生物大分子,是自然界中唯一的碱性多糖,它具有生物可降解性、生物相容性、低毒性、良好的粘附性和成膜能力,且价格低廉。
因而被广泛应用于生物医学、制药工业和医疗卫生中。
壳聚糖纳米粒的制备方法有很多种,包括:共价交联法、离子凝胶法、大分子复合法、去溶剂化法、自组装法等。
其中离子凝胶法是制备壳聚糖纳米微球的一种简单、迅速的方法,该方法反应条件温和,无需使用有机溶剂,能得到坚固、稳定性好、粒径均匀的壳聚糖纳米微球[1]。
本文就离子凝胶法制备壳聚糖纳米粒的原理、质量评价以及体外释放性等做简单介绍。
1 离子凝胶法制备壳聚糖纳米粒的原理离子凝胶法是利用无毒副作用的三聚磷酸钠(TPP)对壳聚糖进行离子诱导凝胶化而制备纳米粒。
由于TPP中含有多个PO-Na十基团,而溶解于醋酸的壳聚糖分子链中又含有NH3+结构,类似于壳聚糖-TPP聚离子复合膜的成膜原理,二者发生反应:Chitosan-NH3++TPP-PO-→ Chitosan-NH+—OP-PP[2]。
壳聚糖载药纳米粒的形成主要是靠正负电荷之间的吸引作用,壳聚糖的伯氨基带有阳离子,它与带有阴离子的三聚磷酸钠在适宜的条件下交联并把药物包裹在其中形成载药纳米粒。
2 离子凝胶法制备壳聚糖纳米粒的工艺研究及其质量评价离子凝胶化法制备纳米粒有两种方法,即一步法和二步吸附法。
一步法是在纳米粒制备过程中直接加入药物,载体形成的同时将药物包裹进去,形成纳米粒;二步吸附法是先制得空白纳米粒,再将药物溶液与纳米粒混合吸附制得含药纳米粒。
丝素蛋白-明胶-壳聚糖-羟基磷灰石多孔支架的制备及性能评估
丝素蛋白-明胶-壳聚糖-羟基磷灰石多孔支架的制备及性能评估作者:谷明西王常成田丰德郝瑞胡安宁郭林来源:《丝绸》2023年第11期Preparation and performance evaluation of silk protein-gelatin-chitosan-hydroxyapatiteporous scaffolds摘要:文章以絲素蛋白(SF)、明胶(Gel)、壳聚糖(CS)和羟基磷灰石(Hap)为基础材料,通过真空冷冻干燥和化学交联制备了5组SF-CS-Gel-nHap多孔支架(Hap-1%、Hap-2%、Hap-3%、Hap-4%、Hap-5%)。
通过扫描电子显微镜、X射线衍射仪(XRD)、孔隙率、吸水膨胀率、生物降解率及力学性能研究,筛选出理化性能优越适合全层软骨缺损再生重建的复合支架。
随后将其与骨关节炎患者分离提取的软骨细胞共培养,通过细胞黏附率测定、细胞活死染色和CCK-8细胞活性增殖实验等方法评估多孔支架的生物性能,探索其用于修复全层软骨缺损的可行性。
结果显示,基于明胶、壳聚糖、丝素蛋白和纳米羟基磷灰石制备的SF-CS-Gel-2%Hap多孔复合支架不仅可以模拟天然骨软骨的细胞外基质(ECM),而且具有良好的生物相容性,能够为营养物质的转运和细胞黏附、增殖和立体生长提供良好的网状骨架,为全层软骨缺损的治疗提供新的选择。
关键词:组织工程;支架;全层软骨缺损;丝素蛋白;壳聚糖;明胶;羟基磷灰石中图分类号:TS102.1; Q813文献标志码:A文章编号: 10017003(2023)110001起始页码09篇页数引用页码:111101DOI: 10.3969/j.issn.1001-7003.2023.11.001(篇序)收稿日期:20230128;修回日期:20231011基金项目:作者简介:谷明西(1992),男,医学硕士,主要从事骨关节炎和组织工程方面的研究。
通信作者:郭林,教授,**************。
离子凝胶法制备壳聚糖纳米粒研究进展
离子凝胶法制备壳聚糖纳米粒的研究进展【关键词】离子凝胶法;壳聚糖纳米粒近年来随着科学技术的发展,制药技术和药物剂型也有了很大的发展,出现了很多新剂型和新技术。
其中载药纳米微粒作为药物、基因传递和控释的载体。
是近年来出现的药物控释和缓释的新剂型。
引起了国内外的极大关注和兴趣。
纳米粒是由高分子物质组成,粒径在10-100nm范围,药物可以溶解、包裹于其中或吸附在表面上。
20世纪70年代,narty等人首先将纳米囊与纳米球作为药物载体,30多年来在药剂学领域得到广泛的推广。
壳聚糖作为一种天然的生物大分子,是自然界中唯一的碱性多糖,它具有生物可降解性、生物相容性、低毒性、良好的粘附性和成膜能力,且价格低廉。
因而被广泛应用于生物医学、制药工业和医疗卫生中。
壳聚糖纳米粒的制备方法有很多种,包括:共价交联法、离子凝胶法、大分子复合法、去溶剂化法、自组装法等。
其中离子凝胶法是制备壳聚糖纳米微球的一种简单、迅速的方法,该方法反应条件温和,无需使用有机溶剂,能得到坚固、稳定性好、粒径均匀的壳聚糖纳米微球[1]。
本文就离子凝胶法制备壳聚糖纳米粒的原理、质量评价以及体外释放性等做简单介绍。
1 离子凝胶法制备壳聚糖纳米粒的原理离子凝胶法是利用无毒副作用的三聚磷酸钠(tpp)对壳聚糖进行离子诱导凝胶化而制备纳米粒。
由于tpp中含有多个po-na十基团,而溶解于醋酸的壳聚糖分子链中又含有nh3+结构,类似于壳聚糖-tpp聚离子复合膜的成膜原理,二者发生反应:chitosan-nh3++tpp-po-→ chitosan-nh+—op-pp[2]。
壳聚糖载药纳米粒的形成主要是靠正负电荷之间的吸引作用,壳聚糖的伯氨基带有阳离子,它与带有阴离子的三聚磷酸钠在适宜的条件下交联并把药物包裹在其中形成载药纳米粒。
2 离子凝胶法制备壳聚糖纳米粒的工艺研究及其质量评价离子凝胶化法制备纳米粒有两种方法,即一步法和二步吸附法。
一步法是在纳米粒制备过程中直接加入药物,载体形成的同时将药物包裹进去,形成纳米粒;二步吸附法是先制得空白纳米粒,再将药物溶液与纳米粒混合吸附制得含药纳米粒。
壳聚糖药物微球的制备及应用进展
壳聚糖药物微球的制备及应用进展摘要】壳聚糖由于具有良好的理化性质,在微球的制备中被广泛应用。
本文综述了近两年来壳聚糖药物微球的制备及应用进展,并探讨了影响微球质量的因素。
【关键词】壳聚糖制备应用【中图分类号】R931.4 【文献标识码】A 【文章编号】2095-1752(2011)24-0076-02壳聚糖(chitosan)是一种天然高分子多聚糖,在体内溶胀成水凝胶后可被很好的生物降解,由于其具有良好的成膜性和黏附性,无毒,无抗原性,能溶于酸或酸性水溶液,被广泛应用于微球的制备。
壳聚糖药物微球的制备方法一般有乳化-化学交联法,喷雾干燥法,离子交联法,沉淀/凝聚法等多种方法。
1 壳聚糖微球的制备1.1乳化-化学交联法是将药物、乳化剂和壳聚糖混合搅拌乳化制成乳状液,在复乳体系中,通过引入制孔剂,制备壳聚糖多孔微球,以此提高壳聚糖微球的比表面积和吸附性能,并逐步滴加入交联剂,减压过滤后用不同溶剂洗涤,冷冻干燥后得壳聚糖多孔微球的一种方法。
易兵鸿[1]等制备5-氟脲嘧啶壳聚糖缓释微球,采用戊二醛作为交联剂,结果药物则固定于微球骨架或结合于表面,通过体外累计释药率的比较表明,所制微球具有缓释性和药物突释效应。
方志文[2]等以壳聚糖为分散介质, 选用戊二醛为交联固化剂,采用乳化交联法制备盐酸丙米嗪壳聚糖微球,所制微球外观均匀圆整,分散性良好,粒径分布均匀。
1.2 喷雾干燥法是将药物溶于壳聚糖制成溶液,经喷嘴喷入干燥室内,其雾滴中的水分被送入干燥室的热空气快速蒸发而干燥制备微球的一种方法。
该法具有操作简便、条件温和、微粒体形成速度快等特点,便大量生产,目前是微粒体制备工业化最有希望的方法之一。
在制备过程中需要注意的是混合液的粘度、均匀性、喷雾速率及干燥速率等。
为了减少微球间的粘连常可加入抗粘剂,如滑石粉、硬脂酸镁及二氧化硅等。
赵国巍等[3]以壳聚糖、丙烯酸树脂为载体材料, 采用喷雾干燥法制备三七皂苷缓释微球,所制三七皂苷缓释微球的外观圆整, 平均粒径为11.80μm,包封率70.4%,载药量9.1%,在磷酸缓冲液中三七皂苷12h释放缓慢、平稳,具有很好的缓释效果。
实验一 壳聚糖载药微球的制备
实验一 壳聚糖载药微球的制备一、目的要求1. 掌握离子交联法制备壳聚糖载药微球的机理及基本操作。
2. 学会使用紫外分光光度计测量微球的载药量。
二、实验原理壳聚糖是一种多糖,自然界中第二大糖类,由甲壳素经脱乙酰反应得到的,而甲壳素是虾或螃蟹的外骨骼以及真菌的细胞壁的主要组成部分。
壳聚糖的结构与纤维素相似但是与纤维素不同的是在其糖苷链上连接着2-氨基-2-脱氧-β-D-葡聚糖,正是因为壳聚糖有了这个氨基使其广泛的应用于药物制备与研发当中。
同时壳聚糖还是无毒的,具有生物可降解性和生物相容性并且不会引发免疫排斥反应的材料。
更重要的是壳聚糖还具有粘膜吸附性,这可以是其在体内停留更长的时间,正是因为以上特点壳聚糖成为了药物载体的理想原材料。
焦磷酸钠分子式Na 4P 2O 7·10H 2O,为无色或白色结晶性粉末,相对密度1.82.易溶于水,不溶于乙醇,对热极稳定。
是一种常见的食品添加剂。
壳聚糖与焦磷酸钠反应的原理:壳聚糖在酸性条件下产生NH 3+(如图2-1)。
3图2-1 壳聚糖在酸性条件下产生自由氨基自由氨基带有正电荷,而三聚磷酸钠在水溶液中产生阴离子(如图2-2)。
OP P O -Na ++Na -OO -Na ++Na -O O O图2-2 三聚磷酸钠在水溶液中产生阴离子壳聚糖的自由氨基阳离子与三聚磷酸钠上的阴离子发生静电吸附反应,紧紧的吸附在一起。
OP P O -Na +-OO -+Na -O OO 3OH+HO图2-3 壳聚糖与焦磷酸钠的静电吸附反应三、实验方法(一)载药微球的制备先称取0.5 g 的壳聚糖并溶于50 ml (2% v/v )醋酸溶液中,制得1 % (w/v)的壳聚糖醋酸溶液,然后用循环水式真空泵抽滤除去壳聚糖中的杂质。
在室温下,向壳聚糖醋酸溶液中滴加NaOH 溶液(0.1 mol/L ),调节pH=4.5值在一定范围。
加入0.2 g 的布洛芬,搅拌30 min 使其成为均一、稳定的悬浊液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【 D O I 】1 0 . 3 9 6 9 / j . i s s n . 1 6 7 4 — 8 1 1 5 . 2 0 1 7 . 0 7 . 0 0 1 [ 中图分类号 】R 3 1 8 . 0 8 [ 文献标志码 ] A
Pr ep ar at i on of c hi t os an- gel a t i n por ous mi cr os pher es by hi gh v ol t ag e el ec t r os t a t i c me t hod c om bi n ed wi t h f r eez e- dr yi ng and i oni c cr oss - l i nki ng met ho d
糖 一明 胶 多 孔 微 球 , 比较 壳 聚 糖 一明 胶不 同 体 积 比 、 冷 冻 温 度 、饱 和 S T P P的 8 5 % 乙醇 溶 液 交联 固化 时 间对 微 球 多孔 结构 的影 响 ,光
镜 、扫描 电镜 、苏木 精 一 伊红 染色切片观察壳聚糖 多孔微球和壳聚糖 一明胶 多孔微球的形态 、表面及 内部结构、粒 径。结 果 ・ 高压静
c r o s s — l i n k i n g me t h o d a n d i n v e s t i g a t e t h e f a c t o r s t h a t i n l f u e n c e t h e f o r ma t i o n o f p o r o u s me d i u m M e t h o d s・ P o r o u s c h i t o s a n mi c r o s p h e r e s a n d c h i t o s a n g e l a t i n p o r o u s mi c r o s p he r e s we r e p r e p a r e d u s i n g h i g h v o l t a g e e l e c t r o s t a t i c me t h o d c o mb i n e d wi t h f r e e z e — d r y i n g a n d i o n i c c r o s s — l i n k i n g me t h o d ,wi t h
多孔微 球的孔径 。明胶可 以和壳聚糖形成聚电解质复合 物,也 可以作为致孔剂参与 多孔结构 的形 成。结论 ・ 高压静电法结合冻干法和 离子交联 法制备的壳聚糖 ~明胶多孔微球具有较大 的孔径 ( 1 0 0~ 2 0 0“ m) ,适合细胞 的生长及迁移 。 【 关键词 】多孔微球 ;壳聚糖 ;三维培 养 ;组织工程
V0 1 . 3 7 No. 7 J u1 . 2 01 7
上海交通大学学报 ( 医学版) I Q Q
J OUR NAL OF S HANGHAI 儿Ao T0NG UNI VER S I TY ( ME DI CAL S CI E NCE) ‘
麓 基 础 研 究
高压静 电法结合冷冻干燥法和 离子 交联法制备 壳聚糖 一明胶
多孔微球
黄 芳’ ,芮 文斌 ,徐丹枫 ’ ,祝 字’ ,沈柏用 ,彭承宏
上 海 交 通 大 学 医学 院 附属 瑞 金 医 院 1 . 泌尿 外 科 , 2 . 普 外 科 ,上 海 2 0 0 0 2 5
[ 摘 要 】目的 ・ 应用高 压静电法结合冷 冻干燥 ( 冻干 )法 和离子交联法制备 壳聚糖 一明胶多孔微球 ,探讨微球 多孔结构形成 的影 响因 素。方法 ・ 以三 聚磷酸钠 ( S T P P )为交联剂 ,利用高压静 电法结合冻干 法和离子交联 法制备具有 多孔结构的壳聚糖 多孔微球和壳 聚
HU ANG F a n g , RUI We n — b i n ’ , X U Da n — f e n g ’ , ZHU Y u ’ , SHEN B a i — y o n g 。 , P ENG Ch e n g — h o n g 。
, De p a r t me n t o fUr o l o g y , Ru j i i n Ho s pi t a l , S h a n g h a i J i a o T o n g Un i v e r s i t y S c h o o l o fMe d i c i n e , S h a n g h a i 2 0 0 0 2 5 ,C h i n a , " 2 De pa r t me n t o fGe n e r a l S u r g e r y , Ru o ' i n Ho s p i t a l ,
电 结合 冻 干 法 和 离 子 交 联 法 制 备 的微 球 ,球 形 良 好 , 球 体 表 面 及 内 部 均 有 较 多微 孔 ,表 面 与 内部 孔 径 相 通 。饱 和 S T P P的 8 5 % 乙 醇 溶 液 交联 固 化 后 的 壳 聚 糖 一明胶 微 球 结 构 能 在 中 性 溶 液 中稳 定 存 在 ,冷 冻 、 冻干 与 交 联 反 应 的 先 后 顺 序 ,交 联 时 间 及 二 次 冷 冻 温 度 影 响
S h a n g h a i J i a o乃 U n i v e r s i y t S c h o o l o f Me d i c i n e , S h a n g h a i 2 0 0 0 2 5 , C h i n a
【 Ab s t r a c t 】0b j e c t i v e‘ T o p r e p a r e c h i t o s a n - g e l a t i n p o r o u s mi c r o s பைடு நூலகம் h e r e s b y h i g h v o l t a g e e l e c t r o s t a t i c me t h o d c o mb i n e d w i t h r f e e z e - d r y i n g a n d i o n i c